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ABSTRACT 
Due to the relatively high cement content and low water-to-cement ratio (w/c) used, bridge deck 
concrete is prone to premature cracking. Internal curing has been found to greatly reduce the 
chance of premature cracking as well as concrete deterioration. This research project was intended 
to develop internally cured bridge deck concrete based on a local mix design in Nebraska. Four 
different lightweight fine aggregate (LWFA) as internal curing agents were evaluated, and their 
effects on fresh, mechanical, durability, and shrinkage properties of concrete were studied. To 
identify the most effective LWFA dosage for shrinkage reduction, different replacement rates of 
sand and gravel with LWFA were adopted to account for the moisture loss during the construction 
and drying period. Aggregate blends of internally cured mixes were also optimized to account for 
the disturbed aggregate gradations due to the introduced LWFA. The research study demonstrated 
that it is possible to develop a local internally cured concrete mix that is both technical and 
economically feasible. Even though the replacement of fine aggregates by LWFAs results in 
decreases of 28-day modulus of elasticity, and modulus of rupture, the overall mechanical 
properties still meet bridge deck criteria. As the curing age decreases, internally cured mixes were 
found to be less affected owing to the curing water from within the concrete matrix provided by 
the saturated LWFAs, which demonstrated that internal curing could potentially decrease the 
required amount of curing period in the field. The developed internally curing mixes were also 
found to have comparable chloride penetrability compared to the control mix and were categorized 
as either very low or low chloride ion penetrability based on lab study. 
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CHAPTER 1. INTRODUCTION 

1.1 Background  
Due to the relatively high cement content and low water-to-cement ratio (w/c) or water-to-

binder ratio (w/b) used, bridge deck concrete is prone to early-age cracking. As shown in Figure 
1, bridge deck cracking and deterioration, coupled with the application of deicing chemicals during 
winter operations, have been a primary concern. Nebraska Department of Transportation (NDOT) 
has employed mitigating reactionary strategies such as crack sealing and overlay to address this 
issue of early-age deck cracking. However, these strategies are costly and could have an impact 
on traffic operations. NDOT will clearly benefit if concrete decks are free from premature cracking 
associated with initial construction.  

  
 

Figure 1. Examples of bridge deck cracking 
(photos from NDOT Bridge Inspection Database) 

In recent years, several states have examined the concept of internal curing of concrete 
bridge decks to address the early-age cracking. According to American Concrete Institute (ACI) 
(ACI 308, 2013), “Internal curing refers to the process by which the hydration of cement occurs 
because of the availability of additional internal water that is not part of the mixing water.” 
Internal curing has been found to greatly reduce the chance of early-age cracking as well as 
concrete deterioration. Besides, the success of internal curing could reduce the current required 
extensive wet curing period, which is expensive and difficult to enforce and monitor. Even though 
internal curing could lead to an increase in materials cost to some extent due to the use of 
lightweight fine aggregates (LWFA), there is a great potential to save life cycle costs by extending 
service life and shortening external curing. This research will provide NDOT with a cost-effective 
practice for internal curing. Successful accomplishment of this research project will allow NDOT 
to apply the internal curing concept in various concrete projects, particularly for bridge deck 
construction, which will bring significant benefits to both short-term and long-term performance 
of concrete structures. 

1.2 Research Objectives 
The overall goal of this study is to identify a cost-effective practice for internal curing of 

bridge deck concrete for NDOT. To achieve the goal, three specific objectives of this study are to 
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(1) summarize the best practice of internal curing concrete for bridge deck application through an 
extensive literature review and survey; (2) determine the appropriate source and addition rate of 
LWFA for internal curing of Nebraska concrete bridge decks; and (3) evaluate the technical 
feasibility and benefits of internal curing for Nebraska bridge deck construction.  

1.3 Organization of the Report 
This project report is divided into six chapters. Following the introduction, the report 

provides a detailed background of internal curing in Chapter 2, covering such topics as 
mechanisms of the method, materials for internal curing, mix designs and proportioning, properties 
of internally cured concrete, and, finally, DOT experience from both laboratory and field. Chapter 
3 presents the overview of materials used in the study, including various types of locally available 
LWFA, as well as concrete mixing procedures and testing methods. Next, Chapter 4 explains the 
experimental program and analyzes the results of the project in detail. Based on the project goals 
and needs, it was divided into three phases, each with its own goals and testing matrix. Chapter 5 
of the report includes the analysis of the feasibility and cost-effectiveness of the proposed method, 
and recommendations for construction practice of internally cured concrete. Finally, Chapter 6 
concludes the report by summarizing the findings, and suggesting further work that needs to be 
done for the successful implementation of the technique in the state of Nebraska.  
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CHAPTER 2. BACKGROUND 

This chapter provides a summary of state-of-the-practice and recent advances in the 
internal curing of concrete. While internal curing is still a relatively new concept, several states 
have successfully conducted field projects with internal curing bridge deck concrete. The research 
team conducted an extensive review of past experience, current practice, and specifications for 
internal curing concrete, with the focus on mixture design, batching, and placing. Measures and 
practices to ensure the successful construction of internal curing concrete, particularly the 
saturation (pre-wetting) and control of moisture content of LWFA in the field were also 
summarized. 

2.1 Concrete Shrinkage and Cracking 
By its nature, concrete experiences significant volumetric changes starting from the 

moment water comes into contact with cement. This process can last for years. When dealing with 
unrestrained concrete elements or structures, volumetric changes possess no harm to concrete. 
However, in real case scenarios, concrete is always restrained or fixed in some way. Continuous 
volumetric expansions and contractions will cause stress build-up in the concrete matrix, which 
will eventually lead to cracking and durability issues. Before discussing internal curing, it is 
essential to define the different types of concrete volumetric change, or shrinkage, and cover the 
governing mechanism behind each of them. This will later help in understanding the concepts 
behind internal curing. Concrete shrinkage is a broad topic with numerous types and details. This 
report will cover only the basics of the most relevant types of concrete shrinkage. 

2.1.1 Chemical Shrinkage 
Chemical shrinkage accounts for the total volume reduction during the chemical reaction 

between water and cement. In other words, there is a volumetric difference between the combined 
volume of a predefined amount of cement and water and the total volume of hydrated cement 
paste. That volume difference is accounted for as a chemical shrinkage (Kosmatka and Wilson, 
2011).  

It is also important to define the chemical shrinkage before and after the set. Before the 
initial set, cement paste is in the plastic state, which means that it can deform freely. However, 
after the initial set has occurred, cement paste hardens and can no longer deform. As a result, the 
major part of chemical shrinkage is compensated by the generation of stress-induced air voids in 
the paste matrix (Kosmatka and Wilson, 2011).  

2.1.2 Autogenous Shrinkage 
Autogenous shrinkage accounts for the visible part of chemical shrinkage, which occurs at 

the macro-level and can be visually measured. The remaining part of the chemical shrinkage is 
comprised of capillary voids, which are generated in the paste matrix after setting and due to 
surface tension of the capillaries. In other words, capillary voids compensate for the major part of 
the stresses induced by continuous chemical shrinkage of the paste after the development of the 
self-supporting cement matrix (Kosmatka and Wilson, 2011). Figure 2 and Figure 3 illustrate the 
difference between chemical and autogenous shrinkage. 
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Figure 2. Schematic diagram of the difference between chemical and autogenous shrinkage 

(adapted from Li, 2011) 

In general, autogenous shrinkage and chemical shrinkage are equivalent before the setting 
of concrete. However, there are some debates on whether autogenous shrinkage includes a pre-set 
part of the shrinkage. Some researchers and standards prefer to define autogenous shrinkage as the 
visible volume change occurred only after the set (Neville, 2011; ASTM C1698, 2009) whereas 
others claim that autogenous shrinkage accounts for visible volume change both before and after 
the set (Li, 2011; ACI 209 2005; ACI 209 1992). It should be noted that autogenous shrinkage 
does not occur with the presence of water. Figure 3 provides a graphic illustration of autogenous 
shrinkage and chemical shrinkage. 

 
Figure 3. Schematic diagram of chemical shrinkage of cement paste 

(adapted from Kosmatka and Wilson, 2011) 
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2.1.3 Drying Shrinkage 
As concrete starts losing moisture, drying shrinkage occurs, which can last for years. The 

amount of drying shrinkage highly depends on various factors, such as concrete curing conditions, 
cement type, w/c or w/b, concrete ingredients, and others (Kosmatka and Wilson, 2011). Figure 4 
illustrates how chemical and drying shrinkage results in a stress build-up inside the concrete 
matrix. 

 

 
Figure 4. Schematic diagram of the relationship between concrete shrinkage and stress 

build-up at the early ages 

2.1.4 Issues Associated with Concrete Shrinkage and Cracking 
Premature cracking of bridge decks has been a major problem in the United States at the 

nationwide level for decades. It is not uncommon to observe surface cracks as early as two months 
after the construction. Many reports identify early-age shrinkage of concrete as one of the driving 
factors of crack development (Rettner et al., 2014; MNDOT, 2011). 
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The development of cracks in concrete leads to faster deterioration of the structure by 
means of rapid transport of contaminants, such as chloride from deicing salts, from the surface to 
the reinforcement. Corroding reinforcement expands, which results in more cracks, and 
subsequently, accelerated deterioration. According to Lindquist et al. (2006), the corrosion level 
of the bridge deck reinforcement could start to exceed the acceptable limit in less than a year in 
case of a local crack, whereas the chloride content at non-cracked regions rarely exceeds even the 
conservative levels. However, most importantly, the research group, which studied three different 
types of bridge decks: monolithic bridge decks and decks with two different types of overlays, 
identified that the presence of overlay does not have a major impact on the chloride content in the 
concrete (Lindquist, 2006). In other words, the current reactive measure of cracking treatment is 
not as efficient as it should be. It seems that the bridge deck cracking issue should be treated in a 
proactive way. One of the measures to address early-age shrinkage of concrete includes the internal 
curing of concrete. 

2.2 Mechanism of Internal Curing 
According to American Concrete Institute (ACI): “Internal curing refers to the process by 

which the hydration of cement occurs because of the availability of additional internal water that 
is not part of the mixing water” (ACI Committee 308-213, 2013). Unlike traditional curing method, 
in which water is mostly supplied from outside sources, such as burlaps and fogging, internal water 
is generally supplied via internal reservoirs, such as saturated lightweight fine aggregates (LWFA), 
superabsorbent polymers (SAP), saturated wood fibers, or saturated crushed (returned) concrete 
aggregates. By replacing a portion of the conventional fine aggregate in the mixture with LWFA, 
internal curing can be induced by moisture that is provided from the concrete mix for later-stage 
cement hydration over time. As shown in Figure 5, high relative humidity can be maintained within 
the pore structure of concrete, which could reduce shrinkage, extend hydration, and increase 
strength and durability performance. 

  
(a) Mechanism                           (b) Aggregates and interfacial transition zone 

Figure 5. Schematic illustration of the mechanism of internal curing  
 (adapted from Expanded Shale, Clay and Slate Institute; Arcosa Lightweight) 
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Theoretically, water supplied by internal curing is intended to compensate for the 
difference between chemical and after-set autogenous shrinkage (Henkensiefken et al., 2009). 
However, in practice, the ignorance of shrinkage before the concrete set is an insignificant 
correction, which is challenging to measure. Instead, it is more feasible to assume the volume of 
total chemical shrinkage as a required volume of internal curing water (Schlitter et al., 2010). Thus, 
the effect of internal curing minimizes the conventional stress build-up and shrinkage, as shown 
in Figure 4, to the levels illustrated in Figure 6. 

 

 
Figure 6. Schematic diagram of the relationship between concrete shrinkage and stress 

build-up at the early ages with internal curing 
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As exemplified in Figure 7, several studies have demonstrated that internal curing can 
provide better concrete performance in various ways. Firstly, mortar with presoaked LWFA at a 
dosage rate higher than 14.3% by volume experienced little autogenous shrinkage and lesser 
drying shrinkage compared to the control specimen, which is illustrated in Figure 7a and Figure 
7c respectively. Furthermore, delayed cracking age from the restrained shrinkage test with the 
same mortar mixes may be observed in Figure 7b. Finally, another study revealed higher electrical 
resistivity of internally cured concrete compared to the plain mix at the later ages, which is 
illustrated in Figure 7d. All the findings indicate that internal curing contributes to mitigating 
chemical shrinkage, reducing self-desiccation, and improving cement hydration, which in turn 
minimizes the harmful effect of previously discussed issues associated with concrete shrinkage. 
As a result, reduced early-age cracking, higher concrete strength and stiffness, and reduced 
permeability and rebar corrosion are obtained by introducing internal curing to the concrete. 

  
       (a) Autogenous shrinkage                                          (b) Restrained shrinkage 

                     
(c) Drying shrinkage                                             (d) Electrical resistivity 

Figure 7. Benefits of internal curing on various concrete properties  
(adapted from Schlitter et al., 2010; Di Bella et al., 2012) 

2.3 DOT Experience of Internal Curing  
Internal curing of concrete is not a new concept. In recent years, several states have 

examined the internal curing efficiency of concrete bridge decks to address the early-age cracking. 
In 2009, Kansas DOT led a research project, which evaluated the impact of internal curing on low-
cracking high-performance concrete (Reynolds et al., 2009). In 2010, Indiana DOT worked on the 
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development of internally cured pavement concrete and assessment of its mechanical, shrinkage, 
and durability properties (Schlitter et al., 2010). Five years later, Indiana DOT documented the 
construction of four internally cured bridge decks, which applied findings of the previously 
mentioned study. The report provides a comparison of mechanical, shrinkage, and durability 
properties of internally cured and reference mixtures (Barrett et al., 2015). In 2012, a research team 
from Purdue University conducted a full-scale field study to compare the performance of two 
bridge decks, one of which utilized the concept of internal curing (Di Bella et al., 2012). In 2014, 
Colorado DOT funded a research project, which enhanced CDOT bridge deck mixtures with 
internal curing and studied its mechanical, shrinkage, and transport properties with a particular 
focus on freeze-thaw resistance (Jones et al., 2014). In 2015, New York State DOT summarized 
its positive experience on internally cured bridge decks, which were constructed several years prior 
to paper publication (Streeter et al.). In 2016, Louisiana DOTD published a report on laboratory 
and field evaluation of internally cured bridge deck concrete (Rupnow et al., 2016). In 2017, Iowa 
DOT investigated both laboratory and field performance of internally cured pavement concrete for 
the purpose of increasing joint spacing (Vosoughi et al., 2017). The following sections cover some 
of the essential details of each project, such as the materials used and their physical properties. In 
order to avoid confusion, each project report or paper was given an identification number (ID), 
which is comprised of an abbreviation of a governing agency and year published, and hereinafter 
will be referred by their respective IDs. Table 1 provides a summary of project IDs, their main 
purposes, and respective report codes. 
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Table 1. List of projects focused on internal curing of bridge deck concrete 

ID 
Governing/ 

Leading 
Agency  

Year 
published Project Objectives Reference 

ODOT-2007 Ohio DOT 2007 Evaluate the impact of high absorptive 
materials on cracking tendencies 

Delatte et al., 
2007 

KDOT-09 Kansas 
DOT 2009 

Evaluate the potential of LWA to be 
used as an internal curing aggregate in 

high-performance concrete 

Reynolds et al., 
2009 

INDOT-10 Indiana 
DOT 2010 Develop an internally cured concrete 

to be used in bridge decks 
Schlitter et al., 

2010 

PURDUE-12 Purdue 
University 2012 Evaluate and compare plain and 

internally cured concrete bridge decks 
Di Bella et al., 

2012 

UDOT-13 Utah DOT 2013 
Evaluate deck performance in terms of 

early-age cracking with distress 
surveys 

Guthrie and 
Stevens, 2013 

ORDOT-13 Oregon 
DOT 2013 

Evaluate long-term drying shrinkage 
performance with internal curing and 

shrinkage reducing admixtures 

Ideker et al., 
2013 

AKDOT-14 Arkansas 
DOT 2014 Evaluate the performance of concrete 

with two types of coarse LWA Goad et al., 2014 

CDOT-14 Colorado 
DOT 2014 Evaluate laboratory performance of 

internally cured bridge deck concrete Jones et al., 2014 

INDOT-15 Indiana 
DOT 2015 

Implement findings of KDOT-09 and 
evaluate the performance of internally 

cured full-scale bridge decks 

Barrett et al., 
2015 

FLDOT-2015 Florida 
DOT 2015 

Evaluate performance and usability of 
internally cured concrete for both 

bridge decks and concrete pavement 
slabs 

Tia et al., 2015 

NYSDOT-15 New York 
State DOT 2015 Inspect internally cured bridge decks 

and summarize their performance 
Streeter et al. 

2015 

LADOTD-16 Louisiana 
DOTD 2016 

Evaluate laboratory and field 
performance of internally cured bridge 

deck concrete 

Rupnow et al., 
2016 

IADOT-17 Iowa DOT 2017 
Evaluate laboratory and field 

performance of internally cured 
pavement concrete 

Vosoughi et al., 
2017 

NCDOT-19 
North 

Carolina 
DOT 

2019 

Evaluate shrinkage and permeability 
of internally cured concrete and 
performance of bridge deck with 

internally cured concrete 

Cavalline et al., 
2019 

 
2.4 Materials for Internal Curing 
2.4.1 General Material Requirement and Selection 

The primary principle behind the internal curing of concrete lies in water reservoirs, which 
are preserved in the concrete matrix and supply additional water during ongoing hydration of 
cementitious materials. Jensen and Lura (2006) claimed that successful internal curing requires 
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water to be readily available both thermodynamically and kinematically after the final set has 
occurred. Thermodynamic availability refers to the activity of absorbed water, which should be 
close to 1.0. Kinematic availability refers to both uniform and effective spatial distribution of water 
reservoirs and the ability of water to transport to the surrounding matrix when its relative humidity 
starts to decrease (Jensen and Lura, 2006). In 2013, the American Concrete Institute published a 
report, ACI 308-213 R-13 (ACI 308, 2013), on internally cured concrete. At that time, due to a 
lack of studies, there were no specific guidelines on the physical properties of lightweight 
aggregates. Thus, the report has covered a limited part on material selection, stating that 
lightweight aggregates should:  

1. Not reduce the compressive strength of mortar; 
2. Not break down during mixing action; 
3. Provide water to the surrounding matrix during early plastic state; 
4. Provide enough water for continuous cement hydration; 
5. Be compatible with replacing aggregate in terms of gradation; 

Many materials possess the required properties mentioned previously, such as LWFA, 
SAP, pumice, zeolite, perlite, and recycled aggregates. Out of them, only the former two were 
commonly used due to their availability, extensively studied, and evaluated as potential internal 
curing agents during the last decade (Liu et al., 2017). The main disadvantage found for the SAP 
is that they tend to significantly decrease in volume during water desorption, which leaves air voids 
inside the concrete matrix and may negatively affect its mechanical properties (Liu et al., 2017; 
Jones et al., 2014). As a result, it led to the complete dominance of LWFA for internally cured 
concrete at the current construction market. 

American Society for Testing and Materials (ASTM) has also published a standard (ASTM 
C1761) entitled “Standard Specification for Lightweight Aggregate for Internal Curing of 
Concrete” (ASTM 2017), which covers two types of aggregates: expanded and processed. The 
main physical properties for fine aggregates required by the standard are shown in Table 2. 
Gradation requirements are illustrated later in Table 4. 

Table 2. ASTM C1761 requirements on lightweight aggregates for internal curing 

Maximum Dry Loose Bulk Density (pcf) 70 
Minimum 72-hr Water Absorption (%) 5 
Minimum Desorption at 94% RH (%) 85 

 
Construction practices and research trends show that expanded lightweight aggregates, namely 
expanded shale, clay, and slate, are currently the most appropriate choice for internal curing and 
are available nationwide. They can absorb up to 25% of water by mass, and proven to effectively 
reduce early-age cracking of concrete decks (Henkensiefken et al., 2009). Table 3 summarizes 
the physical properties of internal curing materials utilized in documented DOT projects. It can 
be clearly seen that expanded lightweight fine aggregates are the most widely used materials for 
internal curing.  
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Table 3. Physical properties of LWFAs utilized in the projects 

Project ID Type of LWFA Absorption 
(%) 

Fineness 
Modulus 

Specific Gravity 
App SSD 

KDOT-09 
Expanded shale 16.0 N/A N/A 1.15 
Expanded shale 16.0 N/A N/A 1.15 
Expanded shale 16.0 N/A N/A 1.15 

INDOT-10 
Expanded shale 10.5 3.10 1.56 N/A 
Expanded shale 5.8 3.10 1.56 N/A 

Crushed concrete aggregate 9.8 N/A N/A N/A 
INDOT-15 Expanded shale 15-20 N/A N/A 1.75 

PURDUE-12 Expanded shale 10.4 N/A N/A 1.56 

CDOT-14 
Expanded LWFA 16.5 N/A N/A 1.85 
Expanded LWFA 16.5 N/A N/A 1.65 
Expanded LWFA 18.8 N/A N/A 1.87 

NYSDOT-15 Expanded LWFA 19.0 N/A N/A N/A 
LADOTD-16 Expanded clay N/A N/A N/A N/A 

IDOT-17 Expanded clay 22.2 N/A N/A 1.23 
 

Table 4 illustrates the gradation of materials used in projects listed in Table 3. As can be 
seen, preference is given to fine aggregates ranging mostly from No.4 to No.100 in size.  

Table 4. Gradation of LWFAs utilized in the projects 

Project ID Gradation (% Passing) 
3/8” No.4 No.8 No.16 No.30 No.50 No.100 No.200 

ASTM C1761 100 65-100 N/A 15-80 N/A 0-35 0-25 N/A 

KDOT-09 
100 95.51 69.81 33.3 16.15 7.05 3.37 1.84 
100 76.62 2.89 1.69 1.58 1.38 0.99 0.58 
100 77.9 2.04 0.57 0.49 0.47 0.45 0.41 

INDOT-10 
100 100 85-90 60-70 35-40 15-25 10-15 0-5 
100 100 80-85 55-65 35-40 15-25 10-15 0-5 
N/A N/A N/A N/A N/A N/A N/A N/A 

INDOT-15 N/A N/A N/A N/A N/A N/A N/A N/A 
PURDUE-12 N/A N/A N/A N/A N/A N/A N/A N/A 

CDOT-14 
N/A N/A N/A N/A N/A N/A N/A N/A 
N/A N/A N/A N/A N/A N/A N/A N/A 
N/A N/A N/A N/A N/A N/A N/A N/A 

NYSDOT-15 N/A N/A N/A N/A N/A N/A N/A N/A 
LaDOTD-16 N/A N/A N/A N/A N/A N/A N/A N/A 

IDOT-17 100 100 80-85 50-60 20-30 10-15 0-5 0-2 
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            Figure 8 further illustrates the gradation of those materials in a graphic version. Also, it 
should be noted that little attention was given to control the overall fineness modulus and gradation 
of aggregates. Since combined aggregate gradation is changed, both fresh and mechanical 
properties might directly be affected by the replacement of fine aggregates. Combined aggregate 
gradation will be one of the topics addressed in this study. 

 
Figure 8. Gradation of materials used in documented DOT internal curing studies 

compared to materials used in this study 

2.4.2 LWFA Test Methods 
The majority of the tests on physical properties of LWFAs, such as absorption capacity, 

desorption value, and specific gravity, require the material to be in a saturated surface-dry (SSD) 
condition. This state can be achieved relatively easily for the normal fine aggregate or coarse 
lightweight aggregate using standard test procedures. However, a certain degree of difficulty can 
be experienced with LWFA. This section covers several methods for bringing LWFA to SSD 
condition.  

2.4.2.1 “Brown Paper Towel” Method 
The following test method is implemented and approved by NYSDOT and outlined in 

ASTM C1761 (NY 703-19 E, 2008; ASTM 2017). As the test title implies, paper towels are used 
to wipe fine aggregates in order to remove surface water, which is illustrated in Figure 9. After the 
aggregates were soaked with water, and the top layer of free water was decanted, a sample 
representative is taken and placed on top of several layers of paper towels. Then, an operator should 
pat and stir the aggregates with dry paper towels as quickly as possible and ensuring that no 
aggregates are lost. If the bottom paper towels are wet and cannot absorb more water, they should 
be carefully replaced. The patting and stirring procedure can be stopped when moisture is no longer 
observed on the paper towels, meaning that aggregates were finally brought to SSD condition.  
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Figure 9. The process of bringing LWFA to SSD condition by a brown paper towel method 

Even though the “brown paper towel” test method is standardized, the human factor plays 
a key role in the procedure. In addition, a significant part of the fine aggregates might be lost during 
patting and stirring. Finally, several studies concluded that the test method might take up to one 
hour and is not repeatable, and may result in ranging values (Miller, 2014). 

2.4.2.2 Centrifuge Method 
In 2014, Miller proposed utilizing a centrifuge method for bringing fine aggregates to SSD 

condition. The example of centrifuge equipment can be seen in Figure 10. In his extensive research, 
he utilizes a similar concept described in ACI 211.2 (1990) for lightweight coarse aggregates. A 
sample of wet fine aggregates are placed in a centrifuge, where the surface water is removed by 
the action of centrifugal force (Miller, 2014) 

This method is believed not only to eliminate a human factor present in “brown paper 
towel” method, but also to significantly reduce procedure duration down to 15 minutes and provide 
repeatable results. However, the absorption capacity value is highly influenced by both rotation 
speed and duration, which should be carefully chosen and remain identical throughout the whole 
research study (Miller, 2014). In order to be able to compare test results from different studies, this 
test method needs to be standardized. 

 

Figure 10. A typical centrifuge setup  
(Miller, 2014) 
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2.4.2.3 ASTM C128 Method 
ASTM C128 (2015) is the standard test method for the relative density and absorption 

capacity of fine aggregates. After soaking period, it requires a sample of wet fine aggregates to be 
placed on a non-absorbent surface and to be exposed to a flow of gentle warm air, which can be 
produced by a commercially available hairdryer as shown in Figure 11a. At the same time, 
aggregates should be stirred and tumbled to accelerate the drying process. When fine aggregates 
reach a free-flowing condition, a small cone mold should be filled with fine aggregates and lifted. 
Slump flow will indicate that the aggregates reached SSD condition (see Figure 11b). Otherwise, 
if the aggregates retain the shape of a mold, the drying procedure should be further continued. 

           
         (a) Bringing aggregates to SSD condition  (b) Cone mold for examing moisture condition of LWFA 

Figure 11. Water absorption test by ASTM C128 method 

There are several problems associated with this test method utilized for LWFA. Firstly, 
after some period of drying, a portion of fine aggregates may become airborne and can be easily 
lost due to airflow (Reynolds et al., 2009). Secondly, the test method is time-consuming and may 
take up to one hour for LWFA. Finally, since the human factor is also present, it is easy to over-
dry or under-dry fine aggregates.  

2.5 Mix design of IC Concrete 
2.5.1 Mix Proportioning Methods of Internal Curing 

Since the main principle behind internal curing is to provide water to compensate for the 
water lost due to chemical shrinkage of cement paste, the amount of additional required curing 
water is a function of cement content. Bentz et al. (Bentz and Snyder, 1999; Bentz et al., 2005) 
proposed an equation for calculating the amount of LWFA needed to compensate water loss, which 
is as follows: 

𝐌𝐌𝐋𝐋𝐋𝐋𝐋𝐋 =
𝐜𝐜𝐟𝐟 × 𝐜𝐜𝐜𝐜 × 𝛂𝛂𝐦𝐦𝐦𝐦𝐦𝐦
𝐬𝐬 × 𝛟𝛟𝐋𝐋𝐋𝐋𝐋𝐋

 (Eq. 1) 

where:  

 𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 is dry mass of LWFA needed in the mix design (lb/yd3) 
 𝑐𝑐𝑓𝑓 is the cement content in the mix design (lb/yd3) 
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 𝑐𝑐𝑐𝑐 is chemical shrinkage coefficient of cement (lb of water/lb of cement) 
 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 is the degree of cement hydration (unitless) 
 𝑠𝑠 is the degree of LWFA saturation (0-1, where the value of 1 corresponds to complete 
saturation) 
 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿 is LWFA water absorption (lb of water/lb of dry LWFA) 

Equation 1, also known as the Bentz equation, was used as a basis for mix design and proportion 
in all of the covered projects from Table 1, except for LADOTD-16, where standard aggregate 
replacement values were chosen.  

It has been reported that the Bentz equation (Eq. 1) overlooks several details. Firstly, the 
absorption capacity of LWFA varies with the duration of soaking. For example, a difference 
between 24hr and 72hr water absorption might be up to several percents. Thus, it is important that 
soaking time is the same for both water absorption tests and concrete mixtures. Secondly, the 
desorption of LWFA is overlooked in the equation. At a relative humidity of 94%, it is uncommon 
that the aggregates release only a part of absorbed water with the other part remaining inside of 
the aggregate (Castro, 2011).  

Castro (2011) modified the Bentz equation to address the time-dependent parameter of 
water absorption and include the desorption value of LWFA. This equation (Eq. 2) will be utilized 
as a basis for mix proportioning in the study: 

𝐌𝐌𝐋𝐋𝐋𝐋𝐋𝐋 =
𝐜𝐜𝐟𝐟 × 𝐜𝐜𝐜𝐜 × 𝛂𝛂𝐦𝐦𝐦𝐦𝐦𝐦

𝐭𝐭𝐀𝐀 × 𝛟𝛟𝐋𝐋𝐋𝐋𝐋𝐋,𝟐𝟐𝟐𝟐𝐡𝐡𝐡𝐡 × 𝛙𝛙
 (Eq. 2) 

where:  

 tA is time-dependent coefficient normalized for 24-hour water absorption 
 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿,24hr is LWFA water absorption at 24 hours (lb of water/lb of dry LWFA) 
 Ψ is desorption coefficient, or the fraction of total water released at 94% RH (unitless) 

There are still some issues, which the modified Bentz ignores. Firstly, the equation assumes 
that all of the water provided by the internal curing agents will be used towards hydration. In other 
words, the equation does not account for the water, which might be lost during concrete production 
and drying.  

Secondly, no attention is given to the gradation of the fine aggregates and combined 
aggregate. In most cases, LWFA is finer compared to natural fine aggregates. In these cases, issues 
might arise with the replacement of fine aggregates. For example, Iowa DOT reported a slight 
reduction in workability with the introduction of internal curing aggregates. Furthermore, the state 
of Nebraska utilizes sand and gravel as fine aggregates, which is much coarser than most of the 
LWFA. A plain replacement of aggregates by volume without addressing the gradation may 
disturb the overall aggregate blend gradation, as well as aggregate packing, which may lead to 
potential workability issues. 

2.5.2 Examples of Internal Curing Concrete Mix Design 
Table 5 provides an overview of concrete mix designs evaluated by other DOT studies. It 

should be noted that most studies evaluated the effect of the calculated amount of LWFA based on 
the Bentz equation (Eq. 1), and some studies replaced fine aggregates by the fixed amount based 
on their experience. With regard to the limitations mentioned previously, only a few studies tried 
to study different replacement rates of LWFA. Furthermore, some of the studies determined the 
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amount of LWFA based on the rule of thumb with no explanation to support the decision. Also, 
no attention was given to overall aggregate blend gradation. 

Table 5. Concrete mix designs published in DOT studies 

ID w/b Replacement  
of FA (%) 

Cement  
(pcy) 

Fly  
Ash 

 (pcy) 

Silica  
Fume 
(pcy) 

Slag  
(pcy) 

Water  
(pcy) 

CA  
(pcy) 

FA  
(pcy) 

LWFA 
 (pcy) 

IDOT-17 0.45 20 457 114 0 0 257 1698 942 200 
LaDOTD-16 0.35 5, 10, 15 600 0 0 0 210 2031 819 291 
NYSDOT-15 0.40 30 500 135 40 0 270 N/A N/A N/A 
INDOT-15 0.40 N/A 435  115 25 0 228 1740 825 340 
CDOT-14 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

PURDUE-12 0.39 57 657 0 0 0 256 1763 528 455 
INDOT-10 0.30 21 1091 0 0 0 327 1168 598 564 
KDOT-09 0.44 8.4 384  0 0 149 234 1807 923 195 

 

2.5.3 Mix Design Adjustment and Optimization Methods 
Concrete is a complex material, where aggregates of various shapes, sizes, and specific 

gravities make up the basis of the final product. The proportions of each aggregate, their combined 
gradation and packing density, as well as fineness modulus have a direct impact on many concrete 
properties, such as workability. Disturbing the aggregate blend by plain replacement of fine 
aggregates may cause workability issues. For instance, a slight decrease of workability was 
reported by Iowa DOT in their field project, when sand was replaced by LWFA (Vosoughi et al., 
2017). For the case of Nebraska, the situation might be even more severe since Nebraska utilizes 
sand and gravel as fine aggregates, which are generally coarser. 

Throughout this particular study, the need for aggregate optimization for better workability 
was identified. The research team decided to overcome this issue by investigating the two 
following approaches: 

1. General adjustment method. The workability of the mixes was improved by the addition of 
water-reducing admixtures. 

2. Aggregate blend optimization. As the replacement of sand and gravel by finer lightweight 
aggregates disturbs the overall gradation of the blend and leads to lower workability, this 
approach will modify the blend proportions of the aggregates based on experimental void 
content tests, which were also compared to theoretical and empirical particle packing 
models. 
This section will describe various aggregate packing theories and models, which will be 

utilized in the project to obtain the optimum blend proportions. 
In the Modified Toufar Model, the packing density, ϕ, and characteristic diameter, dchar, of 

each material are used to calculate the packing densities of particle combinations (Goltermann et 
al., 1997). For multi-particle calculations, the model is used firstly to calculate the dchar, and ϕ of 
the combination of the two materials. Next, the model is used to integrate this initial combination 
with the next constituent material, and the process is repeated until all materials have been included 
and the resulting overall packing density of the mix has been calculated. Combined packing degree 
of the binary blend is estimated with the following equation: 
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                                                       Ф = 1

[𝑉𝑉1𝜑𝜑1
+𝑉𝑉2𝜑𝜑2

−𝑉𝑉2( 1
𝜑𝜑2
−1)𝑘𝑘𝑑𝑑𝑘𝑘𝑠𝑠

                                                   (Eq. 3) 

            where                                            𝑘𝑘𝑑𝑑 = 𝑑𝑑2−𝑑𝑑1
𝑑𝑑2+𝑑𝑑1

                                                             (Eq. 4) 

𝑘𝑘𝑠𝑠 = ( 𝑥𝑥
𝑥𝑥0

) × 𝑘𝑘0 for 𝑥𝑥 < 𝑥𝑥0                                                (Eq. 5) 

𝑘𝑘𝑠𝑠 = 1 − (1+4𝑥𝑥)
(1+𝑥𝑥)4

 for 𝑥𝑥 > 𝑥𝑥0                                                (Eq. 6) 

where V1, V2 and ϕ1, ϕ2 are the aggregate fractions by volume and packing degrees of each 
aggregate respectively, kd is a diameter ratio factor, ks is a statistical factor, 𝑥𝑥0=0.4753, 𝑘𝑘0=0.3881, 

and 𝑥𝑥 =
(𝑉𝑉1𝑉𝑉2

)×(𝜑𝜑1𝜑𝜑2
)

(1−𝜑𝜑2)
. 

The Modified Toufar Model was utilized in the research project, the main aim of which 
was to optimize the pavement concrete in the state of Nebraska for better workability and 
performance. The research team of the project conducted an extensive study on various theoretical 
particle packing theories and concluded that the Modified Toufar Model is the most suitable for 
the pavement concrete, which was optimized (Mamirov, 2019). 

In Dewar's model, the voids ratio, U, and the log mean size, dm of each single material are 
used to calculate the voids ratio of a particular combination of materials (Dewar, 1999). For multi-
particle calculations, a similar stepwise process, as described above, is used, except that it is a 
requirement of the Dewar method that the combination process should start from the finest two 
materials before the next coarser material can be added. The relationship between ϕ and U is as 
follows: 

                                                             𝜑𝜑 = 1
𝑈𝑈+1

                                                          (Eq. 7) 
In 1960s, a standard combined gradation graph was issued by the Federal Highway 

Administration. It yields the linear line of the highest density of the blend based on the maximum 
aggregate size. The graph, which is commonly known as the 0.45 power graph, has been used in 
aggregate gradation control in the hot mix asphalt industry for decades (Roberts et al., 1996). 
Figure 12 illustrates the examples of the chart for different maximum aggregate sizes.  
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Figure 12. Maximum density curves for 0.45 power gradation graph for a different 

maximum aggregate size (adapted from Pavement Interactive, 2019) 

Tarantula Curve is an empirical method to proportion aggregate content developed by Ley 
et al. (2012) after comparing the workability of the mixtures with different gradations using the 
Box test. As illustrated in Figure 13, Tarantula Curve includes boundary limits on an individual 
percent retained chart, and provides recommendations for the amount of coarse sand to provide 
appropriate cohesion and the amount of fine sand to provide adequate workability. 

 
Figure 13. Tarantula curve (adapted from Ley et al, 2012) 
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2.6 Properties of IC Concrete 
The following section covers the effect of internal curing on various concrete properties, 

which were reported in other DOT studies. Each subsection covers the impact of internal curing 
on a specific property. 

2.6.1 Fresh Concrete Properties 
No major issues associated with the workability of concrete mixes were reported in most 

of the studies. However, as mentioned before, Iowa DOT experienced a slight reduction in 
workability, which was successfully addressed by a higher dosage of high-range water reducer.  

No major issues associated with the air content of the concrete mixes were reported in any 
of the studies. The air contents of the mixes varied from 2% to 8%, which satisfied the local state 
requirements. 

In all cases, as it is expected, the fresh unit weight of concrete drops with the introduction 
of lightweight aggregates, which can reach up to 10%. However, most reports claim that the 
reduction of unit weight is insignificant, and the concrete still remains in the category of “normal-
weight” concrete.  

2.6.2 Mechanical Properties 
Other DOT studies on internal curing report either a slight improvement or no change in 

compressive strength of concrete with LWFA. Colorado DOT, Indiana DOT, and New York State 
DOT reported up to 13%, 12%, and 4.6% increase of the compressive strength, respectively, with 
lightweight aggregates. Furthermore, Louisiana DOT experienced the same or slightly higher 
compressive strength for the case of internally cured concrete (Rupnow et al., 2016). Finally, some 
studies, such as Iowa DOT and Kansas DOT, claimed either no change or slight reduction in the 
compressive strength of the mixes (Vosoughi et al, 2017; Reynolds et al., 2009). 

With regards to the modulus of elasticity, Colorado DOT, Iowa DOT, and Louisiana DOT 
all reported a 10-20% reduction in their studies. The following findings are supported by several 
studies, which claim that “softer” lightweight aggregates will eventually lead to the lower modulus 
of elasticity (Schlitter et al., 2010; Raoufi et al., 2011). 

2.6.3 Volume stability and Cracking 
In general, all studies on internal curing identified lower shrinkage for internally cured 

specimens in the cases of autogenous shrinkage and restrained shrinkage. 
The findings of Kansas DOT  (Reynolds et al., 2009)project indicate a reduction of free 

shrinkage for the majority of internally cured specimens. Among slag-free mixes, the most 
effective behavior in terms of free shrinkage was shown by a 14-day cured mix with the highest 
replacement of LWFA, 64% by volume of the pea gravel. 30-day and 90-day free shrinkage values 
of the mix were estimated as 220 µɛ and 347 µɛ respectively, compared to 313 µɛ and 410 µɛ of 
the plain mix. 

Indiana DOT (Schlitter et al., 2012) reports a significant reduction, and sometimes 
complete elimination, of autogenous shrinkage of concrete. A reduction in plastic shrinkage 
cracking was also observed. The internal curing of concrete resulted in lower cracking potential in 
large scale tests as well.  

Colorado DOT (Jones et al., 2014) signifies a reduction in autogenous and drying shrinkage 
as well as expansion in a sealed environment. The improvement in restrained shrinkage is more 
noticeable in mixtures with lower w/c. 
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2.6.4 Durability 
Most studies provide promising findings on the durability of internally cured concrete, 

which at least is comparable compared to the control mix. 
Both Indiana DOT (Schlitter et al., 2010) and Iowa DOT (Vosoughi et al., 2017) 

experienced the same trend with the surface resistivity of the concrete. At the very early ages, the 
surface resistivity of internally cured concrete was found to be either lower or almost the same 
compared to control ones. However, after 28 to 56 days, the resistivity of internally cured concrete 
becomes higher. The reason behind the trend might be explained by the presence of saturated 
aggregates at an early age, which lowers resistivity (Di Bella et al., 2012). As time passes, water 
desorbs from the aggregates and hydrates the surrounding cement particles, which improves the 
resistivity of the concrete.  

Furthermore, Colorado DOT (Jones et al., 2014) reported that with properly air 
entrainment, internally cured concrete should have sufficient resistance to freeze-thaw cycles. 
However, overdosage of LWFA, i.e., mixtures that have more prewetted LWFA than needed, 
could potentially have freeze-thaw resistance concerns. In addition, internally cured concrete 
showed scaling resistance, which was comparable to those of control mixes. Next, the study 
identified the reduction in chloride diffusion coefficient and permeability due to improved 
hydration. 

Finally, Indiana DOT (Barrett et al., 2015) paid close attention to various chloride 
transportation tests, such as rapid chloride penetration test, surface resistivity, rapid chloride 
migration test, migration cell, and chloride ponding and profiling in their study. Their results 
indicated better performance of internally cured concrete in all of the tests above. 

2.7 Construction Practice of Internally Cured Concrete  
2.7.1 Field Handling of Lightweight Fine Aggregates 

LWFAs require continuous water supply prior to batching, which might be a difficult task 
in the field due to the physical nature of the material. New York DOT project implemented the 
same concept of prewetting coarse aggregates for fine aggregates (Streeter et al. 2015). Stockpiles 
for LWFA were constructed, where a sprinkler system continuously provided water for at least 48 
hours, or until the absorbed moisture content of LWFA reached the required value. After the 
prewetting process is done, stockpiles were drained of excess water for 12 to 15 hours. At the end 
of the draining, LWFAs were immediately used in batching. The prewetting duration of stockpiles 
was determined based on the time-dependent absorption capacity of LWFAs. It was determined 
that most water was absorbed in the first 24 hours with a little further difference. A 48 hours of the 
prewetting period was established, taking safety factor into account. In addition, stockpiles were 
turned several times during the prewetting period for uniform soaking of aggregates (Streeter et 
al. 2015).  

The same method and procedures for prewetting LWFAs prior to batching are outlined in 
the Guide Specification for Internally Curing Concrete (Weiss and Montanari, 2017).  

2.7.2 Mixing Procedure 
New York State DOT (Streeter et al., 2015) implied that no differences in batching were 

needed to accommodate internally cured concrete. The LWFA was batched first, followed by the 
fine aggregate, coarse aggregate, admixtures, cement, pozzolan, microsilica, and remaining mixing 
water and then mixed completely. 

Furthermore, no major adjustments for the mixing procedure were introduced in the study 
conducted by Purdue University research group (Di Bella et al. 2012). The coarse and fine 
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aggregate were first placed in the pan mixer. Water was then added to the mixture (along with 
lightweight aggregate in the case of the internally cured mixture). Cement and admixtures were 
then added. After all the materials were placed in the mixer, they were mixed in accordance with 
ASTM C192 (ASTM 2007). 

Colorado DOT (Jones et al., 2014) implemented the following mixing procedure. The fine 
and coarse aggregates were first combined in a “buttered” mixer, adding a portion of the batch 
water to control dust and ensure proper water absorption for the aggregate. Next, cement and fly 
ash were added to the mixer and combined with the aggregates until a uniform distribution was 
achieved. The remaining batch water was slowly added, and the time of water to cement contact 
was noted. Immediately following the addition of water, the water-reducing and air-entraining 
admixtures were slowly added directly to the concrete. The concrete was mixed for three minutes, 
rested for three minutes, and then mixed for an additional two minutes. 

2.7.3 Placing, Finishing, and Curing  
The following subsection briefly discusses the issues and guidelines associated with 

placing, finishing, and curing of internally cured concrete. 
With regards to placing, New York State DOT (Streeter et al. 2015) placed an internally 

cured concrete using the same techniques and procedures as the control mix. Typically, the 
concrete would be pumped onto the deck, where no any difference in pumpability was noticed 
between internally cured and conventional concrete. Purdue University research group (Di Bella 
et al. 2012) had concerns on pumping the internally cured concrete. It was thought initially that 
pumping the concrete could result in water squeezed into the pores of the lightweight aggregate. 
Thus, the contractors were pouring concrete using the buckets. Later, after the discussion with 
NYSDOT about their successful experience with pumping internally cured concrete, the research 
team of Purdue University suggested pumping concrete in any future work. 

Finishability of internally cured concrete was improved in most of the studies. Contractors 
in the Louisiana DOT study (Rupnow et al. 2016) noted that the visual appearance of internally 
cured concrete is no different than conventional concrete and it finishes “slightly better”. In the 
study conducted by New York State DOT (Streeter et al. 2015), contractors also noted similar 
finishability and “less sticky” concrete.  

Louisiana DOT (Rupnow et al., 2016), as well as some other studies, stress that internal 
curing by no means should replace conventional curing of the concrete. Rather, it serves as a means 
for the reduction of cracking in addition to already established practices. The findings of Louisiana 
DOT project suggested combining the internal curing method with a 7-day wet burlap curing. In 
the case of Purdue University study (Di Bella et al. 2012) and New York State DOT project 
(Streeter et al. 2015), the curing durations were also not changed and remained at 7 days and 14 
days of curing respectively with soaker hoses and wet burlaps, which were periodically wetted by 
the construction personnel. 

2.8 Field Studies from Other DOTs 
Since the final goal of the project is to successfully implement the internal curing technique 

in the state of Nebraska, it is essential to analyze field-related studies of other DOTs. Table 6 
provides a summary of documented internal curing concrete field projects performed at different 
states with the locations and details of decks being constructed. The following section of the 
chapter includes five case studies that highlight some details of construction and performance of 
the field studies with bridge decks using internal curing concrete.  
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Table 6. List of documented field projects of internal curing of bridge deck concrete 

Constructed 
Year 

Location Deck Details References 

2009 Court Street Overpass I-81, 
 Syracuse, NY 

Steel girder 
3 Spans: 180’, 197’, 125’ 

Deck width: 65’ 

Streeter et 
al., 2015 

2010 Interstate 81 over East Hill  
Road, Lisle, NY 

Steel girder 
Single span: 74.2’ 
Deck width: 42.4’ 

Streeter et 
al., 2015 

2010 Mt. Gilead and Gettys Creek  
road, Bloomington, IN 

Composite reinforced concrete deck 
2 Spans: 50’ and 39.5’ 

Deck width: 27’-8” 
Deck thickness: 8” 

Di Bella et 
al., 2012 

2011 Interstate 190 / Interstate 290  
interchange, Tonawanda, NY 

Curved steel girder 
2 Spans: 376’ and 365’ 

Deck width: 42.4’ 

Streeter et 
al., 2015 

2013 NB I-69 over Little Black  
Creek, Grant County, IN 

Continuous Reinforced Concrete Slab 
3 Spans: 21’, 28’, 219’ 
Deck thickness: 15.50” 

Barrett et 
al., 2015 

2013 US 150 over Lost River,  
Orange County, IN 

Continuous Composite Steel Beam 
3 Spans: 69’-9”, 84’-6”, 69’-9” 

Deck thickness: 8” 

Barrett et 
al., 2015 

2013 US 31 over Hutto Creek,  
Scott County, IN 

Composite Steel Beam 
Single Span: 55’ 

Deck thickness: 8” 

Barrett et 
al., 2015 

2013 SR 933 over Baugo Creek St., 
Joseph County, IN 

Continuous Composite Prestressed 
 Concrete Bulb-T Beam 
2 Spans: 84’-6”, 84’-6” 

Deck thickness: 8” 

Barrett et 
al., 2015 

2014 US Hwy 54 and US Hwy 169, 
La Harpe, KS 

Pavement 
Length: 500’ 

ESCSI, 
2020 

2016 U.S. 80 KCS Railroad Crossing, 
Ada, LA 

Span: 270’ 
Deck width: 50’ 

Deck thickness: 8” 

Rupnow et 
al., 2016 

2016 Western Lafayette Parish on  
West Congress Street, 

Lafayette, LA 

3 Spans: 25’, 20’, 20’ Rupnow et 
al., 2016 

2017 Interstate 271 in Mayfield 
Heights, OH 

2 Spans: 193 feet (in total) CPTech, 
2020 

2017 NC 55 Alston Avenue crossing 
over NC 147 Durham 

Expressway, Durham, NC 

Span: 124’-6” Cavalline et 
al., 2019 

 

2.8.1 Indiana 2010 
In 2010, the research team of Purdue University conducted and documented the 

construction of plain and internally cured bridge decks (Di Bella et al. 2012). Two bridges were 
constructed 1000 ft away from each other in Bloomington, Indiana. Both of them are similar 
structurally and utilize a composite reinforced concrete deck 27’-8” wide. The thickness of bridge 
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decks was 8” at the center and 4.5” at the edges in both cases. The spans of the bridges were 50 ft 
(plain) and 39.5 ft (internally cured), respectively. 

Due to the initial concern that pumping the concrete could result in water preferentially 
squeezed into the pores of the LWFA, the internally cured concrete deck was placed using a bucket, 
as shown in Figure 14. However, the researcher pointed out that they discussed with NYSDOT 
that have reported with experience of no difficulties in pumping internally cured mixtures since 
the time of this project, and later made the recommendation that pumping would be permitted for 
future internal curing applications. 

 
Figure 14. Internally cured bridge deck placed by means of a bucket 
 
Visual inspection of bridge decks after one year revealed two cracks on the plain bridge 

deck, whereas no deficiencies were observed for internally cured concrete deck, as shown in Figure 
15. 

       
        (a) Crack on a plain bridge deck                (b) Internally cured bridge deck with no cracks 

Figure 15. Condition of both bridge decks with plain and internally cured concretes one 
year after placement 
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2.8.2 New York 2010 
As a part of their internal curing evaluation program, NYSDOT constructed seventeen 

bridge decks with internally cured concrete in 2010 (Streeter et al. 2015)  
From prior experience with prewetting coarse lightweight aggregate for use in structural 

lightweight concrete, it was determined that the use of a sprinkler on the stockpile was the best 
method to prewet the LWFA, see Figure 16. It was reported that there were no differences in 
batching that were needed to accommodate internally curing concrete. However, with cases with 
small concrete batch plants with an insufficient number of bins, two aggregates were pre-blended 
and placed into one bin, which left a bin space to batch LWFA.  

 

Figure 16. Sprinkler system used for soaking LWFA prior to batching  

As for placement, which all concrete were placed with pumps (see Figure 17), no 
differences were observed in the pumpability of the mix when compared to a similar mix without 
internal curing. Finishability was similar between conventional and internal curing concrete. At 
the beginning of the job, the engineer compared the air content measured by the pressure method 
and the volumetric method and found that the difference was within 0.5%, and the pressure meter 
was used throughout the pour. The burlap and soaker hoses were left in place for 14 curing days 
to provide continuous, uniform wetting for the entire curing period. 

  
(a) Interstate 190/ Interstate 290 Interchange  (b) Court Street Deck Placement 
Figure 17. Internally cured bridge deck placed by means of pump trucks 
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2.8.3 Indiana 2013 

In the summer of 2013, collaborated with a research team from Purdue University, Indiana 
Department of Transportation (INDOT) constructed four bridge decks utilizing internally cured 
high-performance concrete. A report from Barrett et al. (2015) provided detailed documentation 
of INDOT’s experience and construction of the four bridge decks.  

For each of the mix, a trial batch was held a minimum of 28 days prior to the date of 
construction to identify and solve potential issues for production prior to the date of construction.  

As shown in Figure 18, prior to batching, the lightweight aggregate pile was soaked for a 
minimum of 48 hours and allowed to drain for a minimum of 12 hours. Variability in moisture 
states within a stockpile of prewetted lightweight aggregate should be controlled or monitored and 
accounted for throughout concrete production. 

 

 
Figure 18. LWA piles being soaked prior to batching of internally cured concrete 
 
The research team recommended that additional training and education for batch plant 

operators to fully understand how to make moisture adjustments and change scale jog rates when 
producing mixtures containing LWFA may serve to avoid potential issues during batching. Similar 
to experiences from NYDOT projects, due to the lack of additional aggregate bins for LWFA, the 
producer was required to refill the LWFA hoppers throughout production. A few issues were also 
encountered during the construction, including lower air content than desired. However, it was 
later determined that the excess free fall to the point of placement because of the pump geometry 
may have contributed to this issue. The research team also commented that pumping issues were 
observed, which would be present regardless of the concrete mixture proportions are avoidable 
with additional training and education. All four bridge decks were successfully constructed and 
are now in service. 

 
2.8.4 Louisiana 2016 

In 2016, Louisiana DOT conducted a field investigation on the performance of internally 
cured bridge deck concrete. Two concrete placements were evaluated:  

1. U.S. 80 near Ada, North Louisiana. As illustrated in Figure 19, the placement was 8”-
thick section, which is 50 ft wide and 270 ft long. The total volume of the concrete placed is 350 
cu yd. The experience from the ready-mix plant operator and contractor showed that LWFA had 
no adverse effects on the fresh concrete, with the impression that the internally cured concrete 
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“looks and feels” like normal concrete and the concrete tended to finish with a little less effort than 
the control mixture. It has been identified by the research team (Rupnow et al., 2016) that U.S. 80 
showed significantly less cracking in nine months, and the trial was deemed successful. 

 
Figure 19. Internally cure concrete project at U.S. 80 near Ada, North Louisiana 

2. Western Lafayette Parish on West Congress Street. As illustrated in Figure 20, the 
placement was a 13”-thick slab with several spans. In this structure, 25-ft center spans were 
constructed with plain concrete, whereas the 20-ft adjacent spans were constructed with internally 
cured concrete. In this case, the reduced cracking was also observed at one year after the 
placement. 

Overall, the project showed promising results, and the standard replacement between 225 
and 275 pcy of LWFA was suggested by the research group. 

 
Figure 20. Internally cure concrete project at West Congress Street bridge 

 

2.8.5 North Carolina 2017 
In 2017, a research team from the University of North Carolina at Charlotte worked with 

North Carolina DOT and conducted a pilot project for field implementation of internally cured 
concrete (Cavalline et al. 2019). With regarding stockpile management, NCDOT adopted the 
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practice from NYDOT to pre-wet the LWFA for a minimum of 48 hours, followed by a draining 
period of 12-15 hours. The stockpile was also turned and remixed to obtain a homogenous 
aggregate moisture content prior to batching. As shown in Figure 21, the sprinklers were located 
on the side of the stockpile and the drainage of the stockpile was directed to the far side of the pole 
with slab sloped to drain.  

 

Figure 21. Stockpile of prewetted LWFA the day before placement of the internally cured 
bridge deck 

For concrete placement, as shown in Figure 22, the project used a pump line with a 
minimum 5-inch diameter to decrease the pressure that may prematurely draw the water out of the 
LWA pores. According to interviews with contractors and concrete suppliers, producing internal 
curing concrete may be more problematic in rural areas or smaller markets. Specifically, concrete 
batch plants tend to be smaller, and may not have the capacity (space or weigh bins) or technical 
expertise to handle prewetted LWFA and successfully batch internal curing concrete mixtures. 

 

Figure 22. Placement of internally cured concrete mixture 
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CHAPTER 3. MATERIAL, MIXING METHOD AND TEST PROCEDURES 

The experimental work included in this study was divided into three phases based on the 
needs at different stages. All the phases incorporated the same materials but used different mix 
designs and test methods. This chapter describes the materials used in the study and cover the 
experimental program of each phase. 

3.1 Materials 
The following section of the chapter provides a detailed description of materials used in 

the project.  

3.1.1 Cement and cementitious materials  
NDOT Standard Specifications for Highway Construction (2017) requires the use of IP 

interground/blended cement for pavement application. IP cement was designed to mitigate Alkali-
Silica Reaction (ASR), provide sulfate resistance, and reduced chloride permeability. For this 
study, type IP Portland-pozzolan cement with 25% blended class F fly ash content that meets 
ASTM C595 “Standard Specification for Blended Hydraulic Cements” (ASTM 2019) was used as 
the cementitious material. The chemical composition and physical properties of cement used in 
the study are reported in Table 7.  

Table 7. Chemical composition and physical properties of IP cement 

Chemical Properties 

Pozzolan content, % 25 
MgO, % 2.45 
SO3, % 3.10 

Loss in Ignition, % 1.00 

Physical Properties 
Blaine Fineness, cm2/g 4400 

Specific Gravity 2.95 
 

3.1.2 Natural Aggregates 
Plain aggregates, which do not provide any internal curing, will be referred to as natural 

aggregates hereinafter. As one of the project requirements, local materials were used as normal 
aggregates in the study. Locally available No. 57 limestone and sand and gravel were utilized as 
coarse and fine aggregates, respectively. Their physical properties are shown in Table 8.  

Table 8. Physical properties of normal aggregates 

Aggregate Gsb, SSD Absorption (%) Bulk Density (pcy) 
No. 57 Limestone 2.67 0.91 105.65 

Sand & Gravel 2.59 0.96 117.24 

Figure 23 illustrates the gradation of the normal aggregates. 
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Figure 23. Gradation chart of normal aggregates 

3.1.3 Lightweight Fine Aggregate 
Based on the project needs, which required to investigate local materials for internal curing, 

four types of LWFA were identified and ordered. LWFA A is expanded clay supplied from 
Boulder, Colorado. The LWFA B and C are expanded shale aggregates obtained from the same 
source located in New Market, Missouri. In general, LWFA B and C are identical aggregates but 
with different gradations. LWFA D is an expanded slate from Gold Hill, North Carolina. Their 
general information about the LWFA is presented in Table 9. 

Table 9. General information of LWFA used in the study 

LWFA ID LWFA A LWFA B LWFA C LWFA D 
Supplier Trinity/Arcosa Buildex Buildex Stalite 

Product name N/A 3/8" x 0 No. 4 x 0 MS-16 

Material type Expanded 
clay 

Expanded 
shale 

Expanded 
shale 

Expanded 
slate 

Location Boulder, CO New Market, 
MO 

New Market, 
MO 

Gold Hill, 
NC 

Table 10 provides the physical properties of LWFA, such as specific gravity, water 
absorption, and desorption values. 

Table 10. Physical properties of LWFAs in the study 

LWFA ID: LWFA A LWFA B LWFA C LWFA D 
Specific Gravity, SSD 1.91 1.74 1.80 1.88 
Water Absorption (%) 22.4 16.4 12.8 11.5 
Water Desorption (%) 85.8 99.1 98.7 N/A 
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Since the absorption of LWFA D is the smallest among all the four aggregates, it was 
decided to eliminate that type of aggregate from the study at this stage. The gradation of all types 
of LWFAs is illustrated on Figure 24, where they are also compared to the gradation of normal 
aggregates. It can be observed that all lightweight aggregates, especially LWFA A, are finer, in 
general, compared to sand and gravel. 

 
Figure 24. Gradation chart of LWFAs and natural aggregates used in the study 

Figure 26 and Figure 20 provide a visual representation of different types of LWFA in their initial 
state and in the concrete matrix. The porous matrix of each aggregate can be clearly seen and 
identified in Figure 26. 

   
               (a) LWFA A                               (b) LWFA B                               (c) LWFA C 

Figure 25. Physical appearance of LWFA  
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(a) LWFA A 

           
(b) LWFA C  

Figure 26. Physical appearance of LWFA in concrete matrix 

3.1.4 Chemical Admixtures 
Commercially available air-entraining agent (AEA) and mid-range water reducer 

(MRWR), meeting the standards described in ASTM C494 “Standard Specification for Chemical 
Admixtures for Concrete” (ASTM 2017), were utilized as chemical admixtures for concrete. 

3.2 Control Mixture 
A standard bridge deck concrete, identified as 47BD, was used as a basis for the control 

mixture of this study. Table 11 provides mix design requirements of 47BD (NDOT Pavement 
Design Manual, 2018). 

Table 11. Mix design requirements of 47BD mixture 

Mix 
Type 

Cement 
Type 

Total 
Cement 
Content 

(pcy) 

Total 
Aggregate 
Content 

(pcy) 

Required 
Air 

Content 
(%) 

Vol. Proportion 
of Rock in 
Aggregate 
Blend (%) 

w/c 
Max. 

Required 
28-day 

Strength 
(psi) 

47BD IP 658 2500-3000 6.0-8.5 30±3 0.42 4000 
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Furthermore, NDOT requires bridge deck concrete to be cured with wet burlaps for at least 
10 days after placement, followed by 7-day curing using curing compound (Standard 
Specifications for Highway Construction, 2017). This information will be taken into account in 
the experimental design of the study. 

3.3 Concrete Batching and Mixing 
Limestone and sand and gravel were prepared prior to mixing according to guidelines 

specified in ASTM C192 “Standard Practice for Making and Curing Concrete Test Specimens in 
the Laboratory” (ASTM 2018). Approximately 72 hours prior to the mixing, sufficient amounts of 
both coarse and fine aggregates were retrieved from the stockpile. The materials were then oven-
dried at 230±18oF for 24 hours. After the drying, aggregates were cooled at room temperature for 
2 hours. Then, limestone was soaked in water for the next 24 hours, followed by 1-hour draining. 
At the same time period, sand and gravel were brought to the wet condition by means of a water 
sprayer and left in a sealed bucket for 24 hours. Finally, both limestone and sand and gravel were 
measured for the moisture content according to ASTM C70 “Standard Test Method for Surface 
Moisture in Fine Aggregate” (ASTM 013). The moisture retained on the surface of the aggregates 
was then accounted for in the mix design. 

LWFAs were prepared according to the following procedure: a representative portion of 
LWFA from the stockpile was brought to the oven-dry state by keeping it in the oven at a constant 
temperature of 230±18oF for 24 hours, followed by air-cooling for approximately 2 hours. Then, 
the required total amount of oven-dry aggregates based on the mix design was weighed in the 
bucket and left submerged completely in the water for 24 hours. The bucket for saturating 
aggregates had 10-12 predrilled openings of approximately 1/16” in diameter at random locations 
of the bucket bottom, as shown in Figure 27, which were sealed with a waterproof tape prior to 
aggregate soaking. The dimensions of the bottom openings, which should be large enough to drain 
water and small enough to keep all saturated aggregate particles inside were obtained by trial and 
error method. 24 hours after soaking, on the day of the mixing, the tape was removed from the 
bottom to allow the excess non-absorbed water to drain for approximately 1 hour. Since the 
described procedure leaves some excess water on the aggregate surfaces, the difference between 
the weight of the obtained aggregates and the theoretical weight of SSD aggregates was accounted 
for in the mixing water.  

 
Figure 27. Openings at the bottom of the bucket for saturating LWFAs 

Concrete mixing was performed following ASTM C192 “Standard Practice for Making 
and Curing Concrete Test Specimens in the Laboratory” (ASTM 2018) with one additional 
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modification for the LWFA. Firstly, half of the mixing water was thoroughly premixed with AEA 
and another half with MRWR. Then, a limestone was discharged into a drum mixer followed by 
half of the mixing water with AEA. 30 seconds of mixing were given in order to initiate the 
production of entrained air. Then, the mixer was then stopped, and the following materials were 
discharged into the mixer in the order of sand and gravel, cement, and remaining half of the water 
premixed with MRWR. After mixing for another 30 seconds, the mixer was stopped again in order 
to discharge the last material, prewetted LWFA. The reason LWFA was not added together with 
sand and gravel is to avoid dry contact of LWFA, which might initiate early desorption. The next 
step involved mixing for 2.5 minutes, followed by 3-minute rest and final 2-minute mixing. The 
mixing procedure of the control mix did not include a stop for discharging LWFA as it was not 
needed. 

Upon the completion of mixing, various concrete specimens were prepared according to 
ASTM C192 (ASTM 2018) and then stored under a wet burlap and plastic sheeting at a room 
temperature of 73±3.5oF prior to demolding at 24±1 hour. The next section covers the curing 
periods and testing methods for each of the samples. 

3.4 Test Methods 
3.4.1 LWFA Absorption and Desorption 

Previously, in Chapter 2, three different methods of measuring water absorption of 
LWFAs, i.e., “brown paper towel” method, “brown paper towel” method, and ASTM C128 
method, were described. Out of three, the research team decided to utilize a modified “brown paper 
towel” method in this study. The wet specimen of LWFAs weighing approximately 750 grams was 
placed on a No. 200 sieve with a pan underneath for draining water. Then, brown paper towels 
were used to wipe fine aggregates in a circular motion while continually applying pressure. The 
wiping process was continued until no further moisture was observed on the paper towels, with 
which the LWFA was deemed as in SSD condition.  

After the LWFAs were brought to SSD condition, a representative sample weighing 
approximately 500 grams was obtained, weighed to the closest 0.1 gram, and placed in the oven 
at 212±9oF for 24 hours. After the drying process is over, the moisture loss was recorded, and the 
absorption capacity was calculated.   

The desorption test was conducted in accordance with ASTM C1761 (ASTM 2017). 
Another representative sample weighing approximately 5 grams from the same batch was 
obtained, weighed to the closest 0.0001 gram using the scales illustrated in Figure 28, and placed 
in the controlled environmental mini-chamber, as illustrated in Figure 29. 

The mini-chamber, which was kept at a room temperature of 73.0±3.5oF is a sealed plastic 
container with three cups filled with ~100 grams of super-saturated potassium nitrate solution each. 
A super-saturated solution of potassium nitrate is supposed to maintain the environment relative 
humidity at 94.0% ± 0.5%. A plastic mesh was placed on top of the cups in order to accommodate 
a mini-pan with saturated LWFAs.  
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Figure 28. High-accuracy scales for desorption test 

The weight of the aggregates in the chamber was weighed every 24 hours using the scales 
illustrated in Figure 28 until the difference between the two subsequent readings is not more than 
0.01 gram. After that, a pan with aggregates is placed in the oven at 110oC ± 5oC for 24 hours. 
After the drying process is over, the final moisture loss was recorded, and the desorption capacity 
of the aggregates was calculated.   

            
                             (a) Sealed mini-chamber                (b) Aggregates being tested for desorption 

Figure 29. Environmental mini-chamber for the desorption test 
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3.4.2 Aggregate Void Content Test 
Void contents of each individual coarse and fine aggregates were evaluated based on 

ASTM C29 “Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate” 
(ASTM 2017) and ASTM C1252 “Standard Test Methods for Uncompacted Void Content of Fine 
Aggregate (as Influenced by Particle Shape, Surface Texture, and Grading)” (ASTM 2017) 
respectively. Prior to the tests, all aggregate were then brought to the oven-dry state by keeping it 
in the oven at a constant temperature of 230±18oF for 24 hours, followed by air-cooling for 
approximately 2 hours. 

A combined void content test was utilized for the measurement of void content in any given 
aggregate blend. The test was performed in accordance with ASTM C29. Prior to the testing, 
sufficient amounts of individual aggregates were obtained from the stockpile, with the total volume 
of which exceeded the volume of the container for the test by at least 50%. All aggregate were 
then brought to the oven-dry state by keeping it in the oven at a constant temperature of 230±18oF 
for 24 hours, followed by air-cooling for approximately 2 hours. At the beginning of the test, all 
aggregates were mixed in a drum mixer for one minute. Following drum mixer mixing, the 
aggregate blend was discharged on a pan and further hand-mixed for one minute to ensure 
uniformity. Then, a steel container with a known volume of 0.250 cu ft ± 0.002 cu ft was filled 
with the aggregate blend in three layers. Each layer was rodded with 25 strokes of a No. 5 tamping 
rod. After filling the last layer, the surface of the aggregates was leveled by a straightedge. Finally, 
the weight of the measure and the container was reported to the nearest 0.01 lb. The test setup is 
illustrated in Figure 30. 

 

Figure 30. Combined void content test setup 

The void content of the aggregate blend was calculated by the following equation: 

                                               %𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐺𝐺𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐×𝑈𝑈𝑈𝑈𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐺𝐺𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐×𝑈𝑈𝑈𝑈𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

                                     (Eq. 7) 
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where 

                                 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑉𝑉𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

;                                  (Eq. 8) 

                                         𝐺𝐺𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 1
𝑃𝑃𝐿𝐿𝐿𝐿

𝐺𝐺𝑠𝑠𝑠𝑠,𝐿𝐿𝐿𝐿
+ 𝑃𝑃𝑆𝑆𝑆𝑆
𝐺𝐺𝑠𝑠𝑠𝑠,𝑆𝑆𝑆𝑆

+ 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐺𝐺𝑠𝑠𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

                                           (Eq. 9) 

where Gsb and P account for specific gravity and the volumetric fraction of each aggregate 
in the blend. 

3.4.3 Fresh Concrete Properties 
The workability of the concrete was evaluated based on the slump test method as specified 

in ASTM C143 “Standard Test Method for Slump of Hydraulic-Cement Concrete” (ASTM 2015) 
and is illustrated in Figure 31. Initial mix design for most mixes included the same dosage of 
MRWR in order to capture the effect of sand and gravel replacement only. After, if the slump of 
the mix was not within the 4”-6” range, an adjustment of MRWR dosage was made in order to 
bring the mix to consistency at slump between 4” and 6”. 

 
Figure 31. Slump test setup 

In the planning stage, both ASTM C231 “Standard Test Method for Air Content of Freshly 
Mixed Concrete by the Pressure Method” (ASTM 2017) and ASTM C173 “Standard Test Method 
for Air Content of Freshly Mixed Concrete by the Volumetric Method” (ASTM 2016) were 
considered for fresh concrete air content measure. However, a thorough literature review of 
previous DOT studies on internal curing did not identify any issues related to the two different 
methods for air content measurement. Iowa DOT and Louisiana DOT utilized pressure method. 
Furthermore, Colorado DOT utilized and compared both methods, and concluded that both 
methods are valid and do not yield a difference higher than 1.5%, with the pressure method 
showing slightly higher air content reading. As a result, the research team decided to use the 
pressure method for air content measurement since it is easier to perform in the field. The type B 
pressure air meter used in the study is shown in Figure 26. 
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Figure 32. Type B air pressure meter 

The fresh unit weight of the concrete was measured following ASTM C138 “Standard Test 
Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete” (ASTM 
2017). A steel container of 0.25 cu ft volume was filled with concrete following the standard 
specification, and the unit weight of the material was derived from fresh concrete mass in the filled 
container. 

The initial and final setting time of the mortar was evaluated per ASTM C403 “Standard 
Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance” (ASTM 2016). 
Each mortar sample was obtained from the corresponding concrete mixtures by sieving with a No. 
4 sieve based on the procedure. As soon as a specimen was obtained, it was placed in an open-top 
container, and the penetration resistance was measured at various times after placement by means 
of the loading apparatus with penetration needles of various sizes, as shown in Figure 33. As 
specified in the standard, the initial and final sets occur when the penetration resistance reaches 
500psi and 4000 psi, respectively.  

 
Figure 33. The loading apparatus for evaluating set time of concrete 
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3.4.4 Mechanical Properties 
Compressive strength of the concrete was evaluated at the ages of 4, 14, and 28 days in 

Phases I and II, and at the ages of 3, 7, and 28 days in Phase III, utilizing nine 4”×8” cylinders 
from each mix. Right after demolding, representative samples were placed inside an environmental 
chamber satisfying ASTM C511 “Standard Specification for Mixing Rooms, Moist Cabinets, 
Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes” 
(ASTM 2019) with constant relative humidity not lesser than 95% and temperature of 73.5±3.5oF, 
where they were continuously cured until testing. The compressive strength test was performed in 
accordance with ASTM C39 “Standard Test Method for Compressive Strength of Cylindrical 
Concrete Specimens” (ASTM 2018). Prior to the test, each specimen was end-ground to meet 
plane requirements for cylinder ends specified by the test method. The loading rate of the test 
specimens was kept at 440±88 lbs/s throughout the test. Figure 34 illustrates the test setup. 

 

Figure 34. Setup of compressive strength test 

Casted flexural beams with the dimensions of 6”×6”×20” (152mm×152 mm×508 mm) 
were used for modulus of rupture testing in a universal testing machine in accordance with ASTM 
C78 “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-
Point Loading)” (ASTM 2018). Figure 35 shows the three-point flexural test setup of a concrete 
beam. As per ASTM C78, the tests were conducted at a loading rate of 125 to 175 psi/min until 
the rupture occurs. The final modulus of rupture was calculated and reported accordinlgy. 
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Figure 35. Test setup for flexural strength test 

Since concrete deformation is also dependent on the modulus of elasticity, it was decided 
to include that test in the experimental program. Three 4”x8” cylinders, which were cured for 28 
days, were used for modulus of elasticity testing in accordance with ASTM C469 “Standard Test 
Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression” (ASTM 
2014). Figure 35 shows the modulus of elasticity test setup. As per ASTM C469, the tests were 
conducted at the same loading rate as in the compressive strength test at 440±88 lbs/s. The modulus 
of elasticity was obtained based on the procedure described in ASTM C469 and reported. 

 
Figure 36. Static Modulus of Elasticity test setup 

The bond strength of concrete was measured by utilizing ASTM C882 “Standard Test 
Method for Bond Strength of Epoxy-Resin Systems used with Concrete by Slant Shear” (ASTM 
2013) as a basis for the test. In this test, no epoxy-resin systems were used as a binding agent. 



41 
 

Instead, concrete-to-concrete bonding was evaluated. The dummy section for each test was 
prepared from the control (47BD) mixture. Thus, the bonding strength of the concrete will mean 
the bonding strength of the corresponding concrete mixture to the control mixture. Figure 37a 
illustrates prepared dummy sections with the control (47BD) ix. Each dummy section has three 
equidistant notches with a uniform depth of 0.25-0.50”. Before placing fresh concrete, the bonding 
surface of the dummy section was moistened with water. Each specimen was kept in the mold after 
placement for 7 days and in an environmental chamber satisfying ASTM C511 with constant 
relative humidity not lesser than 95% and temperature of 73.5±3.5oF, for the next 21 days until the 
test was performed. The loading rate of the specimen was kept at 440±88 lbs/s throughout the test, 
which is illustrated in Figure 37b. The reported bond strength corresponds to the average peak load 
divided by the area of the bonding interface. 

        
                                         (a) Dummy sections                                                  (b) Test setup 

Figure 37. Bond strength test specimen and setup 

3.4.5 Volume Stability 
Free shrinkage, or length change of concrete, was evaluated at the ages of 1, 3, 7, 14, 28, 

56, and 90 days utilizing four 3”×3”×11” prisms. The test method evaluated length change of 
unrestrained concrete beams at four curing periods (0 days, 5 days, 7 days, and 10 days) and two 
different environmental conditions (sealed and non-sealed).  

In order to study the performance of the developed mixes in different curing durations, four 
different curing conditions were adopted in this study. 0 days of curing means that the monitoring 
of the length change began immediately after demolding, with that day being the day one of the 
tests. Cured specimens were stored inside an environmental chamber satisfying ASTM C511  with 
constant relative humidity not lesser than 95% and temperature of 73.5±3.5oF for an additional 5, 
7, or 10 days. The monitoring of the length change for that specimen began immediately after the 
end of the curing period, that day being the day zero of the test. 

The sealed environmental condition indicates that the specimen was securely and tightly 
wrapped with foil and tape to isolate the specimen from the outside environment and prevent 
moisture loss. The sealed condition was needed to evaluate the autogenous shrinkage of concrete 
only, meaning that no drying shrinkage took place. The non-sealed environmental condition 
indicates that the specimen was stored in an environmental chamber at a relative humidity of 50% 



42 
 

and a temperature of 73.5±3.5oF. The following condition indicates two combined shrinkages: 
autogenous shrinkage and drying shrinkage. To conclude, the eight different conditions showing 
below are included in the study, with four of which are illustrated in Figure 38: 

- Condition 1: 0 days of curing followed by exposure in a sealed environment                   
(Figure 38, Specimen 1) 

- Condition 2: 0 days of curing followed by exposure in a drying environment  
(Figure 38, Specimen 2) 

- Condition 3: 5 days of curing followed by exposure in a sealed environment  
- Condition 4: 7 days of curing followed by exposure in a drying environment  
- Condition 5: 7 days of curing followed by exposure in a sealed environment  

(Figure 38, Specimen 3) 
- Condition 6: 7 days of curing followed by exposure in drying environment  

(Figure 38, Specimen 4) 
- Condition 7: 10 days of curing followed by exposure in a sealed environment 
- Condition 8: 10 days of curing followed by exposure in a drying environment 
 

 
Figure 38. Free shrinkage specimens at four different conditions 

The shrinkage test was performed in accordance with ASTM C157 “Standard Test Method 
for Length Change of Hardened Hydraulic-Cement Mortar and Concrete” (ASTM 2017). The total 
length of the bar was evaluated at the ages of 1, 3, 7, 14, 28, 56, and 90 days and the difference in 
length change was reported in microstrains (µɛ). Figure 39 illustrates the test setup. 
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Figure 39. Setup of a free shrinkage test 

The restrained shrinkage test was performed in accordance with ASTM C1581 “Standard 
Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of 
Mortar and Concrete under Restrained Shrinkage” (ASTM 2018). In general, the idea of the test 
is to measure the age of cracking of a restrained concrete ring. A fresh concrete ring is poured 
between a steel ring and a detachable plastic outer ring. Two strain gauges are connected to the 
steel ring to monitor the stresses induced by shrinking concrete on a ring. The concrete is restrained 
only from the side, where it is connected to the steel ring. The top part of concrete is waxed to 
prevent moisture loss from the top. The test is finished at one of the following scenarios: 

- If the crack developed in under 28 days. The crack is usually represented by a sudden 
drop in strain on a strain-time curve with the reduction of strain greater than 30 
microstrains. The age at which cracking occurred was reported to the nearest 0.25 day. 

- If the test was continuously going for 28 days. In this scenario, the test is stopped and 
report as no cracking. 

At the end of the test, the age of cracking and the strain at cracking is reported together 
with a strain versus time graph. Figure 40 illustrates the test setup. 

     
                                     (a) Rest setup                            (b) Example of a crack from the top view 

Figure 40. Restrained shrinkage test setup 
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3.4.6 Durability Performance 
Electrical resistivity of the concrete was evaluated at the ages of 3, 7, 14, 21, and 28 days 

utilizing 4”x8” cylinders in accordance with AASHTO TP 95-11 “Standard Test Method of Test 
for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration” 
(AASHTO 2011). The specimens were cured inside an environmental chamber, satisfying ASTM 
C511 at a constant relative humidity not lesser than 95% and temperature of 73.5±3.5oF. Surface 
moisture was removed with a towel prior to testing. The average result of the three cylinders tested 
was reported. Both surface and bulk electrical resistivity of the concrete were monitored. Figure 
41 illustrates the test setup. 

            
(a) surface resistivity                                               (b) bulk resistivity 

Figure 41. Setup of electrical resistivity test 

Rapid chloride permeability test was conducted in accordance with ASTM C1202 
“Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion 
Penetration” (ASTM 2019). The test was conducted with specimens, which were cured for 56 
days. The test setup is shown in Figure 42. 

 
Figure 42. Setup of rapid chloride permeability test  
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CHAPTER 4. EXPERIMENTAL PROGRAM 

Based on the needs and aims of the project, the experimental program was divided into 
three distinct phases: 

- Phase I. Effect of Replacement Rate 
- Phase II. Aggregate Blend Optimization 
- Phase III. Performance Evaluation 

Phase I of the project studied the effect of partial replacement of sand and gravel by LWFA 
in a 47BD control mix. All mix design parameters were kept unchanged, other than the amount of 
sand and gravel, amount of LWFA, and the adjustment of MRWR, where needed. Three 
replacement levels per each type of LWFA were evaluated at this stage. Phase I of the project 
concluded with the selection of two LWFA types at one replacement level, which demonstrated 
the best performance in terms of free and restrained shrinkage. 

During the scope of Phase I of the study, the research team identified an issue resulted from 
the incorporation of LWFA, which is that the replacement of sand and gravel by LWFA disturbs 
the overall gradation of the blend and leads to lower workability. The main aim of Phase II is, 
therefore to address this workability issue. The following two approaches were used to overcome 
this issue: 

1. General adjustment method. The workability of the mixes was adjusted by the addition 
of water-reducing admixtures (both Phase I and Phase II). 
2. Aggregate blend optimization. This approach will modify the blend proportions of the 
aggregates based on experimental void content tests, which were also compared to 
theoretical and empirical particle packing models (Phase II). 
The aggregate blends of the two mix designs selected from the previous phase were 

optimized based on experimental void content. The selection of optimum blend proportions was 
also supported by the theoretical particle packing model and empirical charts. The properties of 
the optimized mixes were compared with those of corresponding mixes from Phase I, and one mix 
design per each type of LWFA was selected to be studied in Phase III. 

The final phase of the project evaluated the mechanical behaviors and durability 
performance of the two best mixes from Phase I, the two corresponding mixes from Phase II, and 
the two control mixes with non-optimized and optimized aggregate gradations, respectively. Table 
12 summarizes the experimental program of the project. 
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Table 12. Summary of tests included in the different phases of the experimental program 

Test Preparation Phase I Phase II Phase III 

Aggregate 
Testing 

Sieve Analysis X       
Specific Gravity X       
Absorption X       
Desorption X       
Combined Aggregate Void Content     X   

Fresh 
Concrete 
Properties 

Slump   X X X 
Air Content   X X X 
Unit Weight   X X X 
Setting Time       X 

Mechanical 
Properties 

Compressive Strength   X X X 
Modulus of Rupture       X 
Modulus of Elasticity      X 
Bond Strength       X 

Volume 
Stability 

Free Shrinkage   X X X 
Restrained Shrinkage   X X X 

Durability 
Properties 

Electrical Resistivity   X X X 
Free and Thaw Resistance       X 
Rapid Chloride Permeability        X 

4.1 Phase I – Effect of Replacement Rate 
The main aim of Phase I was to evaluate the impact of sand and gravel replaced by different 

dosages of LWFA on the fresh, mechanical, and physical properties of the concrete. Three 
replacement levels for each aggregate based on Equation 2 were investigated. All other parameters, 
other than contents of sand & gravel, LWFA, and chemical admixtures, remained constant from 
mix to mix. At the end of Phase I, the two most promising aggregates and the respective dosage 
rate were identified and utilized further in Phase II and Phase III study. 

In order to meet the project objectives, three types of LWFA were identified based on local 
availability, and their effects on the following properties of concrete were studied: 

- Fresh concrete properties: slump, air content, and unit weight; 
- Hardened concrete properties: compressive strength, and electrical resistivity; 
- Volume stability: free shrinkage at sealed and drying environmental conditions with 

no curing, and restrained shrinkage; 
The control mix, or 47BD mix, which is a common bridge deck concrete utilized in the 

state of Nebraska, and eleven additional mixes incorporating three different types of LWFA at 
three replacement levels for LWFA A and B, and five replacement levels for LWFA C were 
studied. Additional dosage rates for LWFA C are explained by the fact that the research team 
identified that a higher amount of LWFA C is more suitable during the project. As a result, it was 
decided to incorporate two additional dosage rates for LWFA C. Equation 2 was used to calculate 
the theoretical amount of LWFA needed to compensate chemical shrinkage of the concrete. Based 
on that amount, three levels of LWFA dosage were estimated for each mix design. Each of the 
replacement levels incorporated 50% (0.5), 100% (1.0), and 150% (1.5) of the theoretical amount.  
Additional replacement levels of 125% (1.25) and 175% (1.75) were studied for the case of LWFA 
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C. The reason behind the different levels of dosage is to study the effect of under- and over-dosage 
of LWFA as well. 

4.1.1 Phase I Mix Designs 
The explanation of mixture IDs is shown in Figure 43. Mix designs for each concrete 

mixture are shown in Table 13. As it was stated earlier, after the physical properties of the LWFAs 
were obtained, individual mix designs were adjusted based on Equation 2.  

 
Figure 43. Explanation of mix ID 

It should be noted that the same initial dosage of MRWR was utilized for all mixes, except 
B-1.5-54%, for the purpose of observing the effect of aggregate replacement only. If the required 
workability was not met, the additional MRWR was added to the mix, which is shown in the 
“Final’ column of Table 13. 

Table 13. Mix designs of Phase I 

Mix ID Cement 
(pcy) 

Water 
(pcy) 

Limestone 
(pcy) 

Sand and 
Gravel 
(pcy) 

LWFA 
(pcy) 

AEA (fl 
oz/cwt) 

MRWR  
(fl oz/cwt) 

Initial Final  
Control 658 250 854 1992 0 1.5 5.0 5.0 

A-0.5-14% 658 250 854 1713 212 1.5 5.0 12.5 
A-1.0-29% 658 250 854 1400 450 1.5 5.0 14.0 
A-1.5-43% 658 250 854 1129 636 2.5 5.0 12.0 
B-0.5-18% 658 250 854 1637 239 1.5 5.0 8.0 
B-1.0-36% 658 250 854 1281 477 1.5 5.0 5.0 
B-1.5-54% 658 250 854 926 716 1.5 0.0 0.0 
C-0.5-21% 658 250 854 1563 298 1.5 5.0 10.0 
C-1.0-43% 658 250 854 1135 596 1.5 5.0 9.0 
C-1.25-54% 658 250 854 921 745 1.5 5.0 13.0 
C-1.5-64% 658 250 854 854 706 1.5 5.0 19.0 
C-1.75-75% 658 250 854 492 1042 1.5 5.0 12.0 
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4.1.2 Phase I Results and Discussion 
4.1.2.1 Fresh Properties 

Results showed that the replacement of sand and gravel by LWFA has a significant impact 
on the workability of the mix. It was noticed the replacement of sand and gravel with finer LWFAs, 
i.e., LWFA A and C, leads to lower workability, as illustrated in Figure 44. Lower fineness 
modulus and/or void content of combined aggregate blend are believed to play a significant role 
in the workability of the mix. This significant effect will be further studied and assessed in Phase 
II of the project. The introduction of LWFA B, which is closer to sand and gravel in terms of 
gradation, resulted in a required little-to-no adjustment.  

It was also observed that the slump of internal curing mixes could be closely correlated 
with air content. Likely due to the relatively small particle size, the introduction of LWFA tends 
to interference with the air entrainment in the system. As illustrated in Figure 44, some mixtures 
in Phase I do not necessarily have the air content within the air content limits. As the focus of 
Phase I study was mostly to identify the most effective types and dosages of LWFAs based on 
shrinkage results, the amount of air-entrainment was not adjusted in this Phase. In the Phase III 
study, all mixes will be adjusted to ensure to mee the air content requirement, and the 
corresponding slump values will be reported.  

 
                              (a) LWFA A                                                               (b) LWFA B 

 
 

  (c) LWFA C 
Figure 44. Workability of Phase I mixes 
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As expected, the replacement of sand and gravel with LWFA will result in a decrease in 
the unit weight of the concrete mixes. A design unit weight of the control mix is 139.0 pcf, whereas 
the unit weights of the developed internal curing mixes varied from 125.5 to 136.5 pcf, as shown 
in Figure 45. The actual unit weights did not vary significantly from the design values, except for 
the LWFA C, which was mainly linked to the air content. 

 
                                     (a) LWFA A                                                                  (b) LWFA B 

 
      (c) LWFA C 

Figure 45. Unit weight of Phase I mixes 

4.1.2.2 Mechanical Properties 
As shown in Figure 46, in general, it seems that most of the mixes are capable of reaching 

the NDOT 28-day requirement of 4000 psi. Similar to slump, the compressive strength of mixes 
can also be closely correlated to the air content. Since the air content seems to be the major 
influencing factor on compressive strength, a clear effect of LWFA in the compressive strength of 
the mixes cannot be determined at this stage. 
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                               (a) LWFA A                                                               (b) LWFA B 

 
 

 (c) LWFA C 
Figure 46. Compressive strength of Phase I mixes 

The important issue is the control of air content, since it has a direct influence on 
compressive strength, as demonstrated in Figure 47. The air content issue will be addressed in 
Phase II of the project, where the air-entrainment agent contents in all mixes will be adjusted to 
meet the air content requirement. 

 
Figure 47. Correlation between compressive strength and air content for Phase I mixes 
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As mentioned in Chapter 2 of the report, most DOT projects on internal curing reported 
either no effect or a slight improvement of compressive strength, which is comparable to the 
findings of our project. 

4.1.2.3 Durability Properties and Volume Stability 
When comparing internal curing mixes with the control mix, almost all mixes, except for 

A-1.0-29%, yielded lower surface and bulk resistivity, as shown in Figure 48 and Figure 49, 
respectively. The possible reason for this feature might be the fact that both the control mix and 
A-1.0-29% were cured in the curing room, whereas specimens from the remaining mixes were 
cured in the water tank. Phase II and III will provide consistent curing conditions for all specimens. 

When comparing internal curing mixes at different dosage rates of LWFA, it can be noticed 
that in most cases, higher replacement values lead to lower resistivity, which is attributed to the 
conductive characteristic of saturated porous aggregate. As showed in previous studies, it is 
believed that at the later stages of concrete, curing the water inside the LWFA will transport to the 
concrete matrix and contribute to improved hydration, which in turn will improve the electrical 
resistivity (Di Bella et al., 2012; Vosoughi et al., 2017). 

 
                                        (a) LWFA A                                                              (b) LWFA B 

 
            (c) LWFA C 

Figure 48. Surface resistivity results of Phase I mixes 
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                                      (a) LWFA A                                                             (b) LWFA B 

 
 (c) LWFA C 

Figure 49. Bulk resistivity results of Phase I mixes 
Figure 50 provides the results on free shrinkage of sealed prisms for all mixes. It is clearly 

noticed that the autogenous portion of the chemical shrinkage, which is controlled by the sealed 
environmental condition, is significantly lower at all dosage rates of every type of LWFA 
compared to the control specimen.  

Introducing LWFA A and LWFA B at a replacement rate of 0.5 (50% of the theoretical 
amount) generally results in a delayed shrinkage, meaning that the specimens were observed to 
shrink correspondingly with the control specimen at later age. 150% of LWFA A results in initial 
expansion due to the immediate abundance of curing water, which is likely attributed to a larger 
surface area of finer aggregates. With regards to individual LWFAs, the best performance, or in 
other words, the lowest autogenous shrinkage was observed at the replacement rates of 1.0 for 
LWFA A, at a replacement rate of 1.5 for LWFA B, and at replacement rates of 1.25, 1.5, and 1.75 
for LWFA C. 
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(a) Sealed condition, no curing, LWFA A  

 
(b) Sealed condition, no curing, LWFA B 

 
(c) Sealed condition, no curing, LWFA C 

Figure 50. Free shrinkage of uncured specimens at sealed condition of Phase I mixes 

As shown in Figure 51, with regards to free shrinkage at the drying environmental 
conditions, a similar trend was observed for LWFA A and B, matching to the control line. In 
addition, a higher dosage of LWFA results in higher shrinkage, which is believed to be a direct 
impact from two factors:  
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- Varying modulus of elasticity, which will be evaluated in Phase III of the project;  
- Water loss, which is larger with a higher dosage of LWFA, as shown in Figure 52; 

 
(a) Drying condition, no curing, LWFA A 

 
(b) Drying condition, no curing, LWFA B 

 
(c) Drying condition, no curing, LWFA C 

Figure 51. Free shrinkage of uncured specimens at drying condition, Phase I 
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(a) Mass loss, LWFA A 

 

(b) Mass loss, LWFA B 

 

(c) Mass loss, LWFA C 

Figure 52. Moisture loss of samples at drying condition from Figure 51 

Figure 53 provides the results for the restrained shrinkage test for all mixes of Phase I. 
Results showed that, in general, the introduction of LWFA improves restrained shrinkage test 
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results at all ages. Both delayed cracking age and lower strain at the crack are observed in most of 
the cases.  

Results also showed that overdosage of LWFA, as it can be noticed for the case of LWFA 
A, does not necessarily improve restrained shrinkage behavior. On the other hand, under dosage 
of LWFA resulted in poor restrained shrinkage behavior compared to those of dosage 1.0 in all 
cases.  

 
(a) Restrained shrinkage, LWFA A 

 
(b) Restrained shrinkage, LWFA B 

 
(c) Restrained shrinkage, LWFA C 

Figure 53. Restrained shrinkage test results 
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Table 14 summarizes the cracking age of the restrained shrinkage rings from different 
mixes. As it can be observed from both Figure 53 and Table 14, the introduction of LWFAs 
successfully delays the cracking age of concrete rings. Even though almost all mixes experienced 
slightly higher free shrinkage at drying conditions, which was previously illustrated in Figure 51, 
the same concrete cracked at a much later age. This observation can be explained by the fact that 
modulus of elasticity of internally cured concrete decreases, which means that the same level of 
free shrinkage in internally cured concrete and conventional concrete is caused actually by the 
lesser amount of internally built pressure in the former. This reasoning will be further observed 
and discussed in Phase III of the project. 

It is worth noting that since the free shrinkage test setup has the test specimens experiencing 
a very aggressive drying condition and not necessarily reflect the real field situation, results from 
the test were not considered in determining the most promising types and dosages of LWFA for 
internal curing. Since restrained shrinkage test setup simulates testing environment and conditions, 
which are the most similar to the real-case situation, the results of the test were utilized as a basis 
for the selection of potential mixes. Mixes A-1.0-29%, and C-1.25-54% were chosen to be studied 
further. 

Table 14. Summary of restrained shrinkage cracking age in Phase I mixes 

Dosage LWFA A LWFA B LWFA C Control 
0.5 8.75 days 7.75 days  8.25 days 

6.25 
days 

1.0 9.25 days 9.00 days  12.25 days 
1.25 - - 19.25 days  
1.5 6.75 days  9.75 days 20.50 days 
1.75 - - 16.75 days 

 

4.2 Phase II - Aggregate Blend Optimization 
Results from Phase I study revealed a strong need to address the workability issue of 

internally cured concrete. The replacement of sand and gravel with finer LWFA adversely 
impacted the workability of the mix. As it was covered in Chapter 2, the aggregate blend gradation 
plays a vital role in the workability of the mix. The main aims of Phase II are to analyze the effect 
of plain aggregate replacement on aggregate blend gradation, to optimize the mix in order to have 
better compaction and workability, and compare to the mix complying to NDOT specifications 
(70SG:30LS). 

Based on results of Phase I study, it was decided to continue the study with LWFA A and 
C at the dosage rate of 1.0 and 1.25 respectively, which correspond to 423.7 pcy (20.4% by volume 
of the aggregate blend) and 744.5 pcy (38.0% by volume of the aggregate blend) of LWFA 
respectively. The volume of LWFA in the aggregate blend will remain constant, and only the 
volumetric portions of limestone and sand and gravel are varied. The detailed process of mix 
adjustment will be explained further. 

Following properties of concrete were studied in Phase II: 
- Aggregate testing: combined void content test; 
- Fresh concrete properties: slump, air content, and unit weight; 
- Hardened concrete properties: compressive strength, and electrical resistivity; 
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- Volume stability: free shrinkage at sealed and drying environmental conditions with no 
curing, and restrained shrinkage 

4.2.1 Phase II Mix Designs 
Mix designs for concrete mixtures included in the Phase II study are shown in Table 15. 

The justification of each aggregate amount is explained in the next section. It should be noted that 
the same initial dosage of MRWR as in Phase I was utilized for both mixes to observe the effect 
of aggregate replacement on workability. If the required workability was not met, additional 
MRWR was added to the mix. The sum of initial and additional MRWR is shown in the column 
identified as “Total” in Table 15. 

Table 15. Mix designs of Phase II study 

Mix ID Cement 
(pcy) 

Water 
(pcy) 

Limestone 
(pcy) 

Sand and 
Gravel 
(pcy) 

LWFA 
(pcy) 

AEA (fl 
oz/cwt) 

MRWR  
(fl oz/cwt) 

Initial Total  
A-1.0-OPT 658 264 1438 851 424 1.5 5.0 5.0 
C-1.25-OPT 658 264 1291 497 745 1.5 5.0 10.0 

 

4.2.2 Phase II Results and Discussion 
4.2.2.1 Particle Packing of LWFA A 

It was discussed previously that the volumetric proportion of each LWFA in the aggregate 
blend would remain constant in the mix. That value corresponds to 0.204 for LWFA A and 0.380 
for LWFA C. In order to adjust the mix, void contents of each individual aggregate were evaluated 
first, which are shown in Table 16. 

Table 16. Void contents of individual aggregate 

Aggregate Limestone Sand and Gravel LWFA A LWFA C 
Void content (%) 38.5 27.3 25.7 34.4 

Experimental combined void content test for various proportions of limestone and sand 
and gravel was conducted for both LWFA A and LWFA C. As shown in Figure 54, the dotted 
black line represents the void content of the aggregate blend of control mix. Again, the volume of 
each LWFA was kept constant, and only the relative amount of limestone and sand and gravel has 
been varied. The x-axis represents the volumetric fraction of limestone in the aggregate blend only 
and not the entire mix. As shown in Equation 10, the volumetric fraction of the sand and gravel 
can be estimated by subtracting the volumetric fraction of limestone and the corresponding LWFA 
from 1.0.  

                   𝑉𝑉𝑉𝑉𝑉𝑉.𝑃𝑃𝑃𝑃. 𝑜𝑜𝑜𝑜 𝑆𝑆&𝐺𝐺 = 1.0 − 𝑉𝑉𝑉𝑉𝑉𝑉.𝑃𝑃𝑃𝑃. 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿 − 𝑉𝑉𝑉𝑉𝑉𝑉.𝑃𝑃𝑃𝑃. 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿            (Eq. 10) 

For example, a volumetric fraction of 0.494 for the case of LWFA A means that sand & 
gravel occupies 0.302 of the aggregate blend by volume. 

𝑉𝑉𝑉𝑉𝑉𝑉.𝑃𝑃𝑃𝑃. 𝑜𝑜𝑜𝑜 𝑆𝑆&𝐺𝐺 = 1.0 − 0.494 − 0.204 = 0.302 

The experimental void content test results were also compared to theoretical values 
computed from Modified Toufar model, which was described in Chapter 2. The model is proven 
to be the most suitable for the pavement concrete of Nebraska in a recently completed NDOT study 
(Mamirov et al., 2020). 
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(a) LS-SG-LWFA A aggregate blend, vol. fraction of LWFA A = 0.204 

 
(b) LS-SG-LWFA C aggregate blend, vol. fraction of LWFA C = 0.380 

Figure 54. Combined void content test results compared with theoretical values 

Results from Figure 54 illustrate that aggregate blends of mixes from Phase I, which are 
denoted by thick red circles, do not provide the best compaction degree. Based on the experimental 
test results, the best compaction is achieved at the following aggregate proportions: 

- LWFA A: 0.494-0.302-0.204 (LS-SG-LWFA A, respectively). The combined void content 
of the blend is 15.5%, compared to 21.7% of the control mix with no LWFA (47BD) and 18.6% 
of the original blend (A-1.0-29%). 

- LWFA C: 0.444-0.176-0.380 (LS-SG-LWFA C, respectively). The combined void content 
of the blend is 19.5%, compared to 21.7% of the control mix with no LWFA (47BD) and 22.1% 
of the original blend (C-1.25-54%). 

The experimental results are also supported by the theoretical values from the Modified 
Toufar model. Although the results did not match identically, a close correlation with the 
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theoretical model can be observed. Finally, a decision on the blend selection was made based on 
the experimental test results and following are the final aggregate blend proportions and their 
corresponding mix IDs, which will be further evaluated in Phase II study: 

- A-1.0-OPT: 0.494-0.302-0.204 (LS-SG-LWFA A respectively); 
- C-1.25-OPT: 0.444-0.176-0.380 (LS-SG-LWFA C respectively); 

The need for blend adjustment of selected aggregate blends was further justified and 
compared to Phase I mixes in terms of various empirical models and theoretical concepts related 
to workability.  

Figure 55 illustrates that the introduction of and further increase in the dosage of both 
LWFA reduces the fineness modulus of the aggregate blend. The consequent increase in the total 
aggregate surface area with the paste volume remaining constant may harm the workability of the 
mix, which was observed in Phase I results. Optimized mixes, on the other hand, resulted in the 
increase in the total fineness modulus of both blends. 

 
                            (a) LWFA A                                                         (b) LWFA C 

Figure 55. Combined fineness moduli of Phase I and Phase II aggregate blends 

Figure 56 illustrates the aggregate gradation of Phase I and II mixes in a 0.45 power 
gradation chart. As mentioned earlier in Chapter 2, the ideal compaction case is represented by the 
black dotted line. The closer the blend gradation curve to the dotted line, the better compaction is. 
As can be noticed, the introduction of and further increase in the dosage of both LWFA shifts the 
curve to the left, which means that the gradation becomes more disturbed, and the workability of 
the mix can be negatively influenced by that shift. The optimized aggregate blends, on the other 
hand, are better graded and closer to the best-fit line. 
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                                    (a) LWFA A                                                         (b) LWFA C 

Figure 56. 0.45 power gradation chart with Phase I and II aggregate blends 

Figure 57 shows the Shilstone chart with the mixes from Phase I and II. Results showed 
that every mix, including the control mix, are located in Zone I, which refers to the zone with 
excess fines. Moreover, the higher dosage of LWFA aggravated the situation and moved the blend 
further from the optimum zone (Zone II). The optimized aggregate blends for both LWFAs are 
located exactly at the transition line between Zones I and II. Results showed that the Shilstone 
chart also supports the selection of optimized blends. 

     
                                  (a) LWFA A                                                             (b) LWFA C 

Figure 57. Shilstone chart with Phase I and II aggregate blends 

To summarize, the aggregate blends of A-1.0-29% and C-1.25-54% were optimized to 
achieve the highest degree of compaction based on the experimental combined void content test. 
The selection of optimized blends for LWFAs A and C was further justified by theoretical particle 
packing model, various empirical models, and theoretical concepts. 

4.2.2.2 Fresh Properties 
The effect of the optimized aggregate gradation on fresh concrete properties is discussed 

in this section. Figure 58 compares the slump of optimized mixes with the corresponding mixes 
from Phase I, as well as with the control mix. It can be noticed that with the optimized aggregate 
blend, the initial dosage of MRWR (5.0 fl oz/cwt) resulted in better workability for both LWFAs. 
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Mix A-1.0-OPT has met the workability requirements with a slump of 5.25,” and no additional 
MRWR was necessary, whereas an additional 9.0 fl oz/cwt of MRWR was necessary for A-1.0-
29% to increase the slump from 0.25” to 3.75” before aggregate blend optimization.  

Even though the additional MRWR was necessary for C-1.25-OPT, the needed additional 
amount of chemical admixture was lesser compared to those of C-1.25-54%, at 5.0, and 8.0 fl 
oz/cwt respectively. 

 
 

                                (a) LWFA A                                                             (b) LWFA C 

Figure 58. Workability of Phase II mixes compared to Phase I mixes 

As expected, the unit weight of internally cured concrete was lower for almost all cases, as 
illustrated in Figure 59. The fact that as-cast unit weights are slightly higher than the design unit 
weights is attributed to the low air content of the mixes. As it was mentioned before, the air content 
requirements will be adjusted in Phase III study. 

 
                                      (a) LWFA A                                                              (b) LWFA C 

Figure 59. Unit weight results of Phase II mixes 
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In general, optimized aggregate blends of Phase II mixes were mostly able to address the 
workability issues Phase I mixes. The overall aim of Phase II study was successfully met. Results 
of the mechanical, durability, and volume stability of the optimized mixes, are to be presented and 
discussed next. 

4.2.2.3 Mechanical Properties 
Results from the compressive strength test of mixes with optimized aggregate blends are 

presented in Figure 60, where they are also compared to those of the control mix and corresponding 
internally cured mixes from Phase I study. It should be noted that no clear effect of aggregate blend 
optimization on compressive strength was observed. Although the compressive strength of A-1.0-
OPT is slightly lower compared to standard A-1.0-29% mix, it is higher than those of the control 
mix, and it still meets the 28-day compressive requirement. 

In the case of LWFA C, no significant effect of aggregate blend optimization is observed. 
The results are comparable for both C-1.25-54% and C-1.25-OPT. 

 

 
                                    (a) LWFA A                                                           (b) LWFA C 

Figure 60. Compressive strength results of Phase II mixes 

Based on the results of the mechanical properties of Phase II mixes, it can be concluded 
that while both optimized mixes met 28-day requirements, compressive strength is not affected 
greatly by the aggregate blend optimization.  

4.2.2.4 Durability Properties and Volume Stability 
As shown in Figure 61 and Figure 62, the same overall trend of the surface and electrical 

resistivity as in Phase I can be observed. As was previously explained, the saturated LWFA act as 
the conductive medium, which results in lower resistivity at an early age, when the aggregates are 
still saturated.  

The optimized aggregate blend resulted in a higher surface and bulk resistivity for the case 
of C-1.25-OPT compared to those of C-1.25-54%. Although it is still lower compared to the control 
mix, it can be noticed that at later ages, i.e., 28 days, the rate of resistivity increase becomes higher 
and almost reaches the bulk resistivity of the control mix. As was mentioned in earlier, for 
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internally cured concrete, it is not uncommon to have lower resistivity at an early age. However, 
at later ages, the rate of resistivity increase will become higher and will eventually exceed 
conventional concrete. 

 

                                      (a) LWFA A                                                         (b) LWFA C 

Figure 61. Surface resistivity results, Phase II 

 

                                      (a) LWFA A                                                         (b) LWFA C 

Figure 62. Bulk resistivity results, Phase II 

Figure 63 illustrates the free shrinkage results of specimens in a sealed condition for both 
LWFAs. The results are also compared to those of the control mix and corresponding internally 
cured mixes from Phase I. In general, it can be stated the overall trend of autogenous shrinkage is 
the same for both A-1.0-OPT and C-1.25-OPT in comparison with their corresponding mixes from 
Phase I. The only major difference is that no early expansion was observed in C-1.25-OPT. Other 
than that, both optimized mixes were observed to have horizontal lines, which means almost no 
autogenous shrinkage. 
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(a) Sealed condition, no curing, LWFA A 

 
(b) Sealed condition, no curing, LWFA C 

Figure 63. Free shrinkage of uncured specimens at sealed conditions of Phase II mixes 

Free shrinkage of the specimens at drying conditions for the same mixes is shown in Figure 
64. The same trend relative to their corresponding Phase I mixes is observed here as well. The free 
shrinkage at drying condition of A-1.0-OPT and C-1.25-OPT is comparable and close to A-1.0-
29% and C-1.25-54%, respectively. 

Moisture loss of samples at drying conditions is provided in Figure 65. The moisture loss 
is observed to be consistent and comparable between mixes with identical aggregates. 
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(a) Drying condition, no curing, LWFA A 

 
(b) Drying condition, no curing, LWFA C 

Figure 64. Free shrinkage of uncured specimens at drying conditions of Phase II mixes 
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(a) Mass loss, LWFA A 

 
(b) Mass loss, LWFA C 

Figure 65. Moisture loss of specimens from Phase II mixes 

The restrained shrinkage curves and cracking age data are shown in Figure 66 and Table 
17, respectively. The aggregate blend optimization did not have a significant impact on the mix 
with LWFA A, with their cracking age difference being only 0.50 days. However, with regards to 
LWFA C, the optimized blend C-1.25-OPT cracked 4.50 days earlier than C-1.25-54%. 
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(a) Restrained shrinkage, LWFA A 

 
(b) Restrained shrinkage, LWFA C 

Figure 66. Restrained shrinkage test results of Phase II mixes 

Table 17. Summary of restrained shrinkage cracking age, Phase II 

Mix ID Cracking age (days) 
Control 6.25 

A-1.0-29% 9.25 
A-1.0-OPT 9.75 
C-1.25-54% 19.25 
C-1.25-OPT 14.75 

 

4.3 Phase III – Performance Evaluation 
The final phase of the project was to evaluate the performance of the four internally cured 

mixes from the previous mixes, as well as two control mixes. In particular, two internally cured 
mixes from Phase I (A-1.0-29% and C-1.25-54%), two internally cured mixes from Phase II (A-
1.0-OPT and C-1.25-OPT), the control mix from Phase I (Control) and optimized control mix with 
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45:55 gradation (limestone: sand and gravel by volume) were included in Phase III study. 
Following properties of concrete were studied in Phase III: 

- Fresh concrete properties: slump, air content, unit weight, and setting time; 
- Hardened concrete properties: compressive strength, modulus of elasticity, modulus of 

rupture, bond strength; 
- Volume stability: free shrinkage at sealed and drying environmental conditions at 5, 7, and 

10 days of curing, and restrained shrinkage at 5 and 10 days of curing; 
- Durability performance: electrical resistivity, rapid chloride permeability test, freeze/thaw 

resistance; 

The following subsection of the chapter will provide the test results of the Phase III study 
and discussion of findings. 

4.3.1 Phase III Mix Designs 
Mix designs for each concrete mixture in the Phase III study are shown in Table 18. The 

initial amount of chemical admixtures was adjusted based on the fresh properties results obtained 
from Phase II. If the required workability was not met, an additional MRWR was added to the mix. 
The sum of initial and additional MRWR is shown in the column identified as “Total” in Table 18. 
It should also be noted that as the required workability for mixes with LWFA C was not achieved 
at the initial w/c of 0.38, it was increased to 0.41 to meet the slump requirements. 

Table 18. Mix designs of Phase III mixes 

Mix ID Cement 
(pcy) 

Water 
(pcy) 

Limestone 
(pcy) 

Sand and 
Gravel 
(pcy) 

LWFA 
(pcy) 

AEA (fl 
oz/cwt) 

MRWR (fl 
oz/cwt] 

Initial Total  
Control  658 250 854 1992 0 2.5 5.0 8.0 

A-1.0-29% 658 250 854 1417 424 3.0 8.0 8.0 
C-1.25-54% 658 270 828 893 745 3.5 7.0 14.0 
Control-OPT 658 250 1287 1573 0 2.5 5.0 7.5 
A-1.0-OPT 658 250 1438 851 424 3.0 6.0 6.0 
C-1.25-OPT 658 270 1271 479 733 3.5 7.0 11.0 

 

4.3.2 Phase III Results and Discussion 
4.3.2.1 Fresh Properties 

Workability and air content of Phase III mixes are illustrated in Figure 67. In Phase III of 
the study, the dosage of AEA was adjusted to assure that all mixes met the NDOT air content 
requirements of 6.5-8.0% by volume. The acceptable range of air content is between black dotted 
lines in Figure 67. 

Results, as shown in Table 18 and Figure 67, demonstrated that optimized gradation helped 
to improve workability in all three optimized mixes. Not only the higher slump was achieved for 
all the cases, but also a lesser amount of chemical admixtures was needed. 
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Figure 67. Workability and air content of Phase III mixes 

Unit weight of all Phase III mixes are illustrated in Figure 68. The actual unit weights did 
not vary significantly compared to the design values. 

 

Figure 68. Unit weight of Phase III mixes 

The initial and final setting times for each concrete mixture are illustrated in Figure 69. 
Firstly, it should be pointed out that the difference between standard mixes and their optimized 
counterparts is insignificant for all cases. Secondly, the control mixtures and internal curing 
mixtures with LWFA A have comparable initial and final setting time, yet the internal curing mixes 
with LWFA C tend to set at much later ages. 
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Figure 69. Setting times Phase III mixes 

4.3.2.2 Mechanical Properties 
Figure 70 shows compressive strength results for Phase III mixes. Previously, there was a 

significant variation in compressive strength among the mixes, which was linked to the air content. 
Results showed that with the controlled air content, the 28-day compressive strength requirement 
of 4000 psi could be easily met with all the mixes. Furthermore, all internally cured mixes show 
higher 28-day strength, which can be explained by a higher degree of cement hydration resulted 
from internal curing. Finally, the effect of aggregate optimization on compressive strength is 
minimal. 

 
 

Figure 70. Compressive strength results of Phase III mixes 

Figure 71 presented the results of the modulus of elasticity of all Phase III mixes. As it was 
reported by other researchers, LWFAs lead to a slight decrease the modulus of elasticity of 
concrete. Modulus of elasticity was measured as 5345ksi and 5095ksi for the Control and Control-
OPT mix, respectively, which is comparable to the modulus of elasticity of normal-weight 
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concrete. In comparison, A-1.0-29%, A-1.0-OPT, C-1.25-54%, and C-1.25-OPT were measured 
to have 4453 ksi, 4759 ksi, 4155 ksi, and 4485 ksi, respectively. Overall, the modulus of elasticity 
of internally cured concrete decreased by 7% to 23% compared to control mixes. As explained 
previously, the effect is expected and contributed by soft and porous nature of LWFA. 

 

Figure 71. Modulus of elasticity results of Phase III mixes 

The results of the modulus of rupture are shown in Figure 72. It can be observed, internally 
cured mixes have a lower modulus of rupture, in general. The control mixture has a modulus of 
rupture of 958.7 psi, whereas the modulus of rupture of internally cured mixtures are 19.9% (767.8 
psi) and 34.7% (626.4 psi) lower for A-1.0-29% and C-1.25-54% respectively. One potential 
reason behind that is the porous nature of lightweight aggregates, which may act as a weak 
cracking interface for tensile failure. Based on the trend, it may also be suggested that the decrease 
in modulus of rupture may be somewhat linearly proportional to the volumetric content of 
lightweight aggregates in the concrete. 

 
Figure 72. Modulus of rupture results of Phase III mixes 

The same trend as modulus of rupture can be observed with the bond strength. Figure 73 
illustrates the data on the bond strength of concrete mixtures. Bond strength of the control mixture 
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is 4078 psi, whereas A-1.0-29% and C-1.25-54% mixes have a bonding strength 10.2% (3662 psi) 
and 23.2% (3130 psi) lower respectively. 

 

Figure 73. Bond strength results of Phase III mixes 

The measured mechanical properties and their comparison to the prediction from LRFD 
equations (AASHTO 2017) are presented in Table 18. Results showed that LRFD euqations tend 
to underpredict the modulus of elasticity and modulus of rupture. The high variance of the 
measured and predicted mechanical properties indicated that likely due to the softer nature of 
introduced LWFA, modulus of elasticity and modulus of rupture equations from AASHTO LRFD 
is not adequate for predicting key parameters these of internally cured concrete. Further study and 
data collection are needed to develop revised LRFD equations for internally cured concrete in 
bridge design should the direct measurement of parameters such as modulus of elasticity, modulus 
of elasticity not available. 

Table 19. Measured and predicted mechanical properties of Phase III mixes 

  
f'c,28 (ksi) E'c,28 (ksi) MOR,28 (ksi) fb,28 (ksi) f'sp,28 (ksi) 
Measured Measured LRFD Measured LRFD Measured LRFD 

Control 4.971 5345 3871 0.959 0.535 4.078 0.513 
A-1.0-29% 5.679 4453 3858 0.768 0.572 3.662 0.548 
C-1.25-54% 5.944 4155 3749 0.626 0.585 3.130 0.561 
Control-OPT 4.746 5095 3810 0.766 0.523 3.284 0.501 
A-1.0-OPT 5.299 4759 3793 0.744 0.552 4.591 0.529 
C-1.25-OPT 5.940 4485 3735 0.606 0.585 2.185 0.561 

4.3.2.3 Durability Properties and Volume Stability 
Figure 74 and Figure 75 illustrate surface and bulk electrical resistivity of Phase III mixes, 

respectively. A similar trend is noticed in the previous research phases. In most cases, internally 
cured concrete has lower resistivity at an early age, mainly because of saturated porous LWFAs. 
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However, it is expected that the resistivity of internally cured concrete will reach the values of 
control mixes and even overpass them at later ages. 

    
                            (a) Regular mixes                                              (b) Optimized mixes 

Figure 74. Surface resistivity of Phase III mixes 

    
                             (a) Regular mixes                                             (b) Optimized mixes 

Figure 75. Bulk resistivity of Phase III mixes 

Results from the rapid chloride permeability test, as presented in Table 20, showed that the 
developed internally curing mixes have comparable chloride penetrability compared to the control 
mix and were also categorized as either very low or low chloride ion penetrability based on ASTM 
C1202 guidance.  

Table 20. Rapid chloride permeability test results of Phase III mixes 
Mix ID Total Charge Passed (C)  Chloride Ion Penetrability 
Control 1081 Low 

Control-OPT 1365 Low 
A-1.0-29% 975 Very Low 
A-1.0-OPT 1107 Low 
C-1.25-54% 1012 Low 
C-1.25-OPT 1388 Low 
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Results of free shrinkage of Phase III mixes at sealed and drying conditions are illustrated 
in Figure 76 and Figure 77, respectively. Each Figure is subdivided into six separate charts based 
on the age of curing (5, 7, or 10 days) and aggregate blend optimization (non-optimized and 
optimized blends). Various curing durations were proposed to study the effect of reduction of 
curing duration with internally cured mixes. 

The first observation is that internal curing allows minimizing or eliminating autogenous 
shrinkage, regardless of curing age and aggregate blend. It can be observed in Figure 76 that most 
charts of internally cured mixes keep close to the neutral x-axis, which means that the specimens 
do not experience any length change. Control mixes, on the other hand, tend to experience 
autogenous shrinkage, which starts at a later age. 

      
(a) 5 days curing                                      (b) 5 days curing, optimized 

      
(c) 7 days curing                                  (d) 7 days curing, optimized 

      
(e) 10 days curing                              (f) 10 days curing, optimized 

Figure 76. Free shrinkage at sealed condition at different curing ages of Phase III mixes 
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Secondly, it can be clearly observed that the longer duration of curing reduces the amount 
of autogenous shrinkage for both optimized and non-optimized control mixes. At 10 days of 
curing, the autogenous shrinkage behavior of control mixes and internally cured mixes is 
comparable. As the curing age decreases, the autogenous shrinkage of control mixes increases, 
whereas internally cured mixes are unaffected because saturated LWFAs provide curing water 
from within the concrete matrix. This finding may mean that internal curing could potentially 
decrease the required amount of curing period in the field. 

 
(a) 5 days curing                                  (b) 5 days curing, optimized 

 
(c) 7 days curing                               (d) 7 days curing, optimized 

 
(e) 10 days curing                                  (f) 10 days curing, optimized 

Figure 77. Free shrinkage at drying condition at different curing ages of Phase III mixes 

Thirdly, free shrinkage at drying conditions, or drying shrinkage of internally cured 
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following two factors play a vital role: 
- Moisture loss. Shrinkage specimens have a high ratio of surface area to the total volume of 

the concrete. This high ratio is the main reason behind moisture loss, which is lost from the 
specimen before it could be used for continuous cement hydration. Actual field structures 
are expected to have a much lower surface area to total volume ratios and are believed to 
provide a more appropriate sealed environment for the internally cured concrete. 

- Modulus of elasticity. The previous section of the chapter provided the values of modulus 
of elasticity for all mixes. Internally cured mixes had a lower modulus of elasticity, which 
means that even though the amount of drying shrinkage is the same or a bit higher 
compared to those of control mixes, the actual internal pressure causing the shrinkage is 
lower for specimens with lightweight aggregates. 

Restrained shrinkage findings are provided in Figure 78 and Table 21. As explained earlier, 
in order to simulate different field curing periods, it was decided to provide external curing to 
restrained shrinkage rings by means of wet burlaps. As was observed in previous phases, LWFAs 
help to significantly delay the crack formation. It was observed that rings cured by LWFA C tend 
to crack at later ages compared to LWFA A. As expected, prolonged (10 days over 5 days) curing 
resulted in delayed cracking age. Table 20 includes the cracking age for the mixes. Unfortunately, 
the test was not performed on optimized mixes because of the equipment issues. 

 
(a) 5 days curing 

 
(b) 10 days curing 

Figure 78. Restrained shrinkage of Phase III mixes 
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Table 21. Summary of restrained shrinkage cracking age of Phase III mixes 

Mix ID 
Cracking age (days) 

5 days curing 10 days curing 
Control 9.00 14.75 

A-1.0-29% 10.00 12.75 
C-1.25-54% 11.00 20.75 

 

4.4 Results Summary 
Table 22 provides a summary of all test results from Phase III study. As expected, 

aggregate blend optimization successfully enhanced the workability of internally cured mixes. 
Better workability was achieved with a lesser amount of chemical admixtures for both internal 
curing mixes and control mix. 

Furthermore, internal curing had a direct impact on the mechanical properties of concrete. 
Compressive strength increased by 7% to 20%, whereas modulus of elasticity, modulus of rupture, 
and bond strength experienced a slight decreases were observed. Both trends were attributed to 
enhanced cement hydration and “soft” LWFA, respectively. 

Table 22. Summary of results of Phase III mixes 

Properties Control A-1.0 C-1.25 Control-
OPT 

A-1.0-
OPT 

C-1.25-
OPT 

Slump (in.) 4.50 4.50 4.25 6.00 5.50 4.75 
Air Content1 (%) 6.9 6.0 7.0 6.0 6.5 6.2 
Unit Weight (pcf) 140.4 134.0 129.5 141.1 135.6 129.2 

Setting Time Initial Set(hrs) 4.90 5.20 7.87 5.58 5.32 8.75 
Final Set (hrs) 6.47 6.90 10.48 7.17 6.92 11.13 

Compressive Strength1, 28d (psi) 4971 5679 5944 4746 5679 5940 
Modulus of Elasticity, 28d (ksi) 5345 4453 4155 5095 4759 4485 
Modulus of Rupture, 28d (psi) 792 768 626 766 744 606 

Slant Shear Bond Strength, 28d (psi) 4078 3662 3130 4591 3284 2963 
Electrical Resistivity, 

90d (kΩ*cm) 
Surface 24.15 24.63 22.20 26.58 19.15 21.95 

Bulk  25.90 25.30 23.33 29.20 20.90 25.80 
Chloride Ion Penetration, 90d (Coulombs) 1081 975 1012 729 1107 697 

90d Autogenous 
Shrinkage, (µɛ) 

5d curing  -248 -136 16 -176 -8 16 
7d curing -176 -208 -8 -144 -80 -32 

10d curing -104 -88 0 -112 -112 -8 
90d Free Drying 
Shrinkage, (µɛ) 

5d curing  -616 -760 -568 -672 -672 -416 
7d curing -680 -672 -680 -576 -624 -496 

10d curing -552 -672 -608 -592 -664 -616 
Restrained Shrinkage 

Cracking Age, (d) 
0d curing  6.25 9.25 19.25 N/A N/A N/A 
5d curing 9.00 10.00 11.00 N/A N/A N/A 

10d curing 14.75 12.75 20.75 N/A N/A N/A 
1 NDOT requirement: 6.0%-8.5%   2 NDOT requirement: minimum 4000psi 
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Internal curing successfully minimizes and, in some cases, even eliminates autogenous 
shrinkage. In addition, it was found that the same trends of autogenous shrinkage were observed 
for internally cured mixes at early curing ages (5 to 7 days) as for control mixes at later ages (10 
days). This fact provides a basis to suggest that the curing age for internally cured mixes may be 
potentially reduced. Finally, a restrained shrinkage cracking age was delayed by means of internal 
curing in all cases. 

The findings on electrical resistivity are consistent with studies from other researchers; that 
is, resistivity is slightly lower compared to the reference mix at an early age. Long-term continuous 
monitoring of electrical resistivity is suggested, when most of the internal curing water is desorbed. 
Chloride ion penetrability of internal curing mixtures was found to be comparable to the reference 
mix, all in very low or low range.  
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CHAPTER 5. ANALYSIS OF FEASIBILITY AND COST EFFECTIVENESS  

5.1 Cost Effectiveness Analysis  

With the identified materials sources and developed mixture designs, a cost analysis was 
performed to estimate the mixtures production cost based on raw material costs, as shown in Table 
23. The results are to be used to justify if the developed concrete mixtures are cost-effective to be 
implemented in the state of Nebraska. 

Table 23. Costs of raw materials 

Material Unit Cost Unit 
IP Cement $135  Ton 
Limestone $25  Ton 

Sand & Gravel $18  Ton 
LWFA A $50  Ton 
LWFA C $50  Ton 

Water $2.5  Ton 
Water Reducer $9  Gallon 

Air Entraining Agent $7  Gallon 

The production cost of each mixture based on the cost of raw materials and mix designs is 
provided in Table 24. It should be noted that the exact cost depends on the location and availability 
of materials. Also, the unit costs of raw materials are subject to change. 

Table 24. Production cost of each mixture 

Mixture Base Cost ($/cu yd) 
Control 77.93 

A-1.0-29% 83.54 
C-1.25-54% 89.50 
Control-OPT 79.34 
A-1.0-OPT 84.82 
C-1.25-OPT 89.62 

 
5.2 Feasibility Analysis 

Many aspects make internally cured mixtures feasible in the state of Nebraska. First of all, 
sources of LWFA identified through the study are located relatively close, in the neighboring state 
of Missouri and Colorado. In terms of concrete production, while attention is needed for pre-
wetting LWFA, no significant change is needed for mixing and handling of internally cured 
concrete. Final mixes are workable and have no issues with finishability. As demonstrated by the 
experimental study, with appropriate mix design, it was possible to achieve promising mixes 
utilizing local materials with sufficient fresh concrete, mechanical, and durability performance that 
meet NDOT requirements. 

It is worth noting that there are still some issues that should be taken into account before 
the successful use of internally curing mixtures in the field. Mixtures need to be carefully designed 
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to ensure appropriate air content and workability. Special attention is need for soaking and control 
the mixture content of LWFA prior to batching. Also, it should be kept in mind that internal curing 
comes with changes in mechanical properties, such as decreased modulus of elasticity, modulus 
of rupture, and bond strength, which needed to be accounted for in the structural design.  

 
5.3 Recommendations for Construction Practice of Internally Cured Concrete 
5.3.1 Field Handling of Lightweight Fine Aggregates  

According to NY State DOT (Streeter et al. 2015) and Indiana DOT (Barrett et al. 2015) 
studies, and CP Tech Center Guide Specification (Weiss and Montanari, 2017), the same concept 
of prewetting coarse aggregates should be adopted to LWFA. Stockpiles for LWFA should be 
used, where a sprinkler system continuously provide water for at least 48 hours, or until the 
absorbed moisture content of LWFA reached the required value. Besides, stockpiles should be 
turned several times during the prewetting period for uniform soaking of aggregates. After the 
prewetting process is completed, stockpiles should be drained of excess water for 12 to 15 hours. 
At the end of the draining, LWFAs should be immediately used in batching. Variability in moisture 
states within a stockpile of prewetted lightweight aggregate should be controlled or monitored and 
accounted for throughout concrete production. 

 
5.3.2 Concrete Production and Mixing Procedure  

According to New York State DOT (Streeter et al., 2015), Indiana DOT (Barrett et al. 
2015), and North Carolina DOT (Cavalline et al. 2019) studies, in smaller batch plants in rural 
areas or smaller markets, producing internal curing concrete may be more problematic as they 
might not have the capacity (space of aggregate bins) to accommodate LWFA. In that case, 
hoppers might be used to load LWFA. Another practice that was reportedly used was to pre-
combine aggregates and freed up an aggregate bin for LWFA. In general, no differences in 
batching and mixing are needed to accommodate internally cured concrete. 

 
5.3.3 Placing  

According to New York State DOT (Streeter et al., 2015) and North Carolina DOT 
(Cavalline et al. 2019) studies, the internally cured concrete can be pumped onto the deck, where 
no difference in pumpability is expected between internally cured and conventional concrete. 
Studies from North Carolina DOT (Cavalline et al. 2019) recommended a minimum 5-inch 
diameter pump line is to be used to decrease the pressure that may prematurely draw the water out 
of the LWFA pores. 

 
5.3.4 Finishing  

According to New York State DOT (Streeter et al., 2015) and Louisiana DOT studies 
(Rupnow et al. 2016), finishability of internally cured concrete is expected to be either no 
difference or slightly better compared to conventional concrete.  

 
5.3.5 Curing 

According to New York State DOT (Streeter et al., 2015) and Louisiana DOT studies 
(Rupnow et al. 2016), it is recommended to maintain the conventional curing practice and duration. 
It should be noted that while the current lab study demonstrated that there is potential to reduce 
the required curing time, as the drying condition and geometries from the lab shrinkage tests are 
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different compared to field conditions, field demonstration projects are needed to justify if a 
reduced curing time can be adopted without causing higher cracking potential.  

 
5.3.5 Quality control 

According to New York State DOT (Streeter et al., 2015) study, quality control tests 
(slump, air content, and strength) should be conducted in the same manner as for regular bridge 
deck mixes, and no adjustment for the criteria is needed.    
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Chapter 6. Conclusions and Recommendations 
6.1 Conclusions 

The main goal of the project was to develop and evaluate an internally cured concrete based 
on local bridge deck concrete mix design by means of partial replacement of sand and gravel with 
saturated LWFA. The research study demonstrated that it is possible to develop a local internally 
cured concrete mix that is both technical and economically feasible.  

- Due to the relatively small particle size, the introduction of LWFA tends to interference 
with the overall aggregate gradation and air entrainment in the system. Adjustment of water 
reducer and air entrainment agent dosages might be needed to ensure appropriate fresh 
concrete behavior.  

- Aggregate blend optimization is an effective measure of addressing the workability issue, 
which might arise from aggregate replacement in internal curing concrete. 

- Even though the replacement of fine aggregates by LWFAs results in an increase of 28-
day compressive strength, and slight decreases of modulus of elasticity, and modulus of 
rupture, the overall mechanical properties still meet bridge deck criteria.  

- Likely due to the softer nature of introduced LWFA, modulus of elasticity and modulus of 
rupture equations from AASHTO LRFD is not adequate for predicting key parameters 
these of internally cured concrete. 

- Internally cured concrete was found to successfully reduce autogenous shrinkage of 
concrete and effectively delay the cracking age of in restrained shrinkage test.  

- As the curing age decreases, internally cured mixes were found to be less affected because 
of the curing water from within the concrete matrix provided by the saturated LWFAs, 
which demonstrated that internal curing could potentially decrease the required amount of 
curing period in the field. 

- At the very early ages (up to 3-4 weeks) the resistivity of internally cured mixes is slightly 
lower compared to the control mixes. However, at the later ages, due to the contribution of 
LWFAs to hydration of surrounding paste matrix, the resistivity of internally cured mixes 
could catch up with those of control mixes.  

- The developed internally curing mixes have comparable chloride penetrability compared 
to the control mix and were categorized as either very low or low chloride ion penetrability. 

6.2 Recommendations for Future Studies 
Based on the results and findings, as well as the personal experience throughout the course 

of the project, it is believed that studies related to the concrete crack formation with internal curing 
will further benefit the state of Nebraska. As it was previously mentioned, none of the available 
tests represent the real conditions of field-scale concrete. Therefore, one of the potential 
recommendations is the field-scale demonstration project to study the impact of internal curing on 
full-scale concrete bridge decks with embedded strain gauges and temperature/moisture sensors, 
which can serve several purposes: 

- While the experience from other states, particularly New York and Indiana are extremely 
beneficial, it is important for NDOT engineers and contractors to have the experience of 
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production and construction of internally cured concrete based on Nebraska bridge deck 
mix design, materials, and construction practice.  

- Monitoring crack formation at different locations and different curing durations. In the 
present study, the free drying shrinkage test was found to post specimens in an extreme 
and aggressive testing environment, which resulted in massive moisture loss. Furthermore, 
autogenous shrinkage test results indicate the potential of reduction of curing age. As the 
drying condition and geometries of both free shrinkage and autogenous shrinkage tests are 
different compared to the real field condition, the potential of reducing required curing 
duration  should be further studied in field-scale projects. 

- Monitoring relative humidity inside concrete at different locations in order to evaluate the 
degree of moisture loss in the real field applications and to determine if a further adjustment 
of the level of internal curing is needed.  

- Monitoring deterioration resistance of internal curing concrete from various mechanism, 
including freezing/thawing and de-icing agents. 

The direct measurements of parameters such as modulus of elasticity, modulus of elasticity 
are always desirable for bridge deck design. However, as the modulus of elasticity, and modulus 
of rupture equations from AASHTO LRFD is not adequate for predicting these key parameters of 
internally cured concrete, further study and data collection are needed to develop revised LRFD 
equations to better predict mechanical properties of internally cured concrete should the direct 
measurement of above-mentioned parameters not feasible. Also, bridge design parameters are to 
be adjusted to account for the different mechanical properties of internally cured concrete.  

Lastly, the internal curing mechanism could potentially be applied to ultra-high-
performance concrete (UHPC). Since the w/c is usually lower than 0.20 in UHPC, there is a 
considerable portion of unhydrated cement left in the concrete matrix. Internal curing may 
facilitate further hydration of those cement particles and lead to better mechanical and durability 
performance of the material. 
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