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Executive Summary 

The rising popularity of non-motorized transportation modes, such as walking and biking, 

can be attributed to the associated benefits of physical activity, improved health, enhanced 

psychological well-being, leisure, and a positive impact on environmental quality. However, the 

increase in walking and biking activities has brought about notable safety risks. The 

disproportionately higher risk of fatalities and serious injuries in incidents involving pedestrians 

and cyclists underscores the critical need for proactive measures to mitigate and reduce such 

crashes. 

When developing traffic risk models and analyzing associated safety scenarios, the 

inclusion of accurate traffic volume information is one of the key elements in producing robust 

outcomes. This project introduced and utilized Location-Based Services (LBS) data to analyze 

pedestrian and bicyclist traffic volume and patterns.  

This research report systematically pursues the project objectives in subsequent chapters, 

covering literature review, data collection, calibration processes, safety analysis, and 

spatiotemporal pattern analysis.  

Chapter 2 provides a thorough literature review and discusses the connectedness among 

traffic volume, vehicle speed, vehicle characteristics, urban form, and crash risk. The chapter 

also discusses the importance of LBS data, with a focus on the data provided by StreetLight Data 

Inc. It underscores the enrichment of spatial and temporal traffic volume information using such 

data.  

Chapter 3 details the challenges and methods involved in collecting and managing 

diverse datasets, showcasing the complexity of the research process. It provides insights into the 
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intricate nature of handling varied data sources and highlights the hurdles encountered in the 

research process. 

In Chapter 4, the calibration process is examined using advanced techniques such as 

random forest models to effectively manage complex datasets and capture non-linear 

relationships. The results indicate that traffic volume stands out as the most crucial variable 

influencing prediction accuracy across all three models—pedestrian, bicyclist, and vehicle. 

Overfitting analysis reveals a reasonable model fit, with minimal disparities between training and 

testing R-squared values for all modes. Overall, the chapter presents the calibration process, 

model selection, and performance evaluation for predicting traffic volumes in various travel 

modes. 

In Chapter 5, safety analysis and result interpretation are presented using census block 

group, link, and intersection data to incorporate both aggregate and facility-specific features. The 

research reveals variations in results based on the exposure measure employed to normalize 

crash counts. While factors like population and network density influence the safety of non-

motorized road users on an aggregate level, the most noteworthy findings appear when 

examining infrastructure at the facility scale. The safety ranking analysis identifies higher and 

lower risk areas in the city.  

Chapter 6 presents the analysis and visualization of spatial and intertemporal patterns in 

traffic volumes for pedestrians and bicyclists at the street segment level. A comparative 

examination of bicyclist and pedestrian traffic volumes between 2019 and 2020 reveals the 

change of volumes and the disparities in geographic patterns during the COVID-19 period. The 

analysis extends to include pedestrian activity patterns on weekdays and weekends, revealing 

distinct traffic variations at downtown and recreational locations. Spatial-temporal analysis 
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indicates that downtown and business districts show higher activities during peak hours. 

Additionally, the seasonal pattern analysis identifies a significant reduction in winter activities 

for pedestrians and bicyclists. Chapter 7 encompasses the project's benefits and concluding 

remarks. 

In conclusion, this project contributes insights into the ongoing discussion on the safety 

of pedestrians and bicyclists, particularly in relation to the use of LBS data for transportation 

research. The outcomes play a pivotal role in shaping policies and strategies geared towards 

establishing a safer and more sustainable environment. 
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Chapter 1 Introduction 

Non-motorized transportation modes, such as walking and biking, have gained increased 

popularity due to the benefits of physical activity, health, psychological well-being, leisure, and 

improved environmental quality. Studies highlight a diminished risk of cardiovascular and 

cancer mortality among those who commute using non-motorized modes (Panter et al., 2018). 

These travel modes have also demonstrated a positive impact on mental wellbeing (Martin et al., 

2014); additionally, their environmental benefits include decreased greenhouse gas (GHG) and 

air pollutant emissions. While many trips are too long to be accomplished by non-motorized 

modes, about 21% of trips are less than one mile (Federal Highway Administration, 2017). 

Furthermore, non-motorized modes provide a more economical alternative to pricier 

transportation options, like transit and private vehicles. Walking can result in savings of 25 to 50 

cents per vehicle-mile traveled (Litman, 2022). In comparison, as of 2010, constructing bicycle 

lanes can range from $10,000 to $50,000 per mile, whereas an urban area 4-lane road can cost 

between $8 million to $10 million (Litman, 2011).  

Walking and biking can be facilitated or constrained by the physical form of communities 

in general as well as transportation system in particular. Therefore, fostering a walkable and 

bikeable environment emerges as a pivotal strategy to promote active living and cultivate a 

healthy community. In response to this, local governments are progressively considering how the 

design of communities and transportation systems will influence the active and healthy lifestyle 

of their residents.  

Along with the popularity of walking and biking, the negative impact of crashes has also 

garnered attention. Total number of police-reported injured persons resulting from crashes on 

U.S. highways increased from 2.2 million in 2009 to 2.7 million in 2019 (BTS, 2019). Notably, 
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4.6% of these injuries were pedestrians or bicyclists, despite these modes only comprising 1.0% 

of total person-miles traveled (Federal Highway Administration, 2017). Furthermore, 19.2% of 

all fatalities were pedestrians or cyclists. From 2019-2022, 81 of the 946 fatalities on Nebraska 

roadways were pedestrians or cyclists. The elevated risk of fatalities and serious injuries in 

incidents involving pedestrians or bicyclists emphasizes the critical need for proactive measures 

to mitigate and prevent such crashes.  

To enhance our understanding of pedestrian and bicyclist safety and design effective 

policy solutions, information about traffic movements that may lead to safety or crash issues is 

critically important. Upon reviewing research on transportation safety, it becomes evident that 

the inclusion of traffic volume information is one of the key elements to produce robust 

outcomes when developing transportation safety models and simulating associated risk 

scenarios, as there is a strong positive correlation between crash counts and traffic volumes  

(Høye & Hesjevoll, 2020; Retallack & Ostendorf, 2020). This correlation is an intuitive 

relationship; higher volumes of motorized traffic lead to increased interactions and potential 

conflicts with pedestrians and bicyclists, subsequently raising the risk of crashes. Therefore, both 

motorized and non-motorized traffic volumes emerge as crucial variables when assessing the 

safety of the transportation system. However, the availability of adequate data has been a major 

challenge in the research efforts about measuring pedestrian and bicyclist’s travel volume and 

patterns. Traditionally, traffic volumes are approximated from manually collected traffic counts 

at a small number of specific locations. While this method offers a high level of accuracy for the 

selected locations, estimating traffic volumes at other locations without count data can be 

challenging. In recent years, the advancements of location-aware telecommunications 
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technologies have provided transport planners and engineers with new opportunities to study 

traffic volumes at a street level as a solution to this challenge. 

Over the last decade, the advancement in information and communication technologies, 

coupled with geospatial technology, have introduced various new sources of transportation data. 

Many of these data sources use cellular phone locations, derived from a combination of 

Location-Based Service (LBS), Bluetooth, and global positioning system (GPS) pings. The 

characteristics and coverage of these data vary widely.  

LBS data is typically categorized into two groups: mode-specified data and mode-

unspecified data. Mode-specified data is the type of data derived from phone apps, such as 

Strava and Ride Report. It is called mode-specified data because the data provider receives the 

data with the travel mode specified by the user. These data sources have the benefit of detailed 

trip information because the user specifies the trip start and end times, as well as whether they 

are biking or walking. However, these data require the user to be using the app while making the 

trip, so they will not capture trips made by individuals outside their customer base. This feature 

means that the sample sizes are relatively small, and the data tend to be biased toward middle-

aged individuals (Venter et al., 2023). Mode-unspecified data, such as LBS, can address these 

shortcomings. 

Mode-unspecified data is usually more representative of the population than mode-

specified data because there is no requirement for user interaction. Examples of mode-

unspecified data providers include INRIX, Miovision, and StreetLight (StL). While datasets are 

large, a limitation of mode-unspecified data and many emerging data sources is that the accuracy 

of the total volume measurements on a road segment is generally unknown. Many trips do not 

appear in the data, whether because a road user does not own a phone with LBS capabilities, they 
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have turned off all location tracking services, or they use a service provider not purchased by the 

data vendor. Traffic volumes gathered by mode-unspecified data providers are only a sample and 

thus require calibration to reconcile differences between the LBS traffic indicator and measured 

traffic volumes. While commercial vendors provide simple calibration tools in their products, 

more rigorous calibration is often necessary to perform detailed analyses. 

One significant application of LBS traffic data is safety analysis, particularly for non-

motorized modes such as pedestrians and bicyclists. Traffic data for these modes has historically 

been unreliable due to scarcity. This data is important because higher traffic volumes, 

specifically higher pedestrian/cyclist volumes, can lead to more conflicts with motorized travel 

modes. As such, transportation engineers must have an accurate understanding of traffic patterns 

and volumes of different travel modes. Municipal and state governments collect traffic volumes 

through manual and automatic traffic counts, typically at intersections, to accomplish various 

planning and operations tasks. While these datasets offer considerable benefits, their 

applicability is often limited. Traffic counts recorded at specific intersections may not be 

universally transferable to other locations and timeframes, leading to challenges in making broad 

inferences. Mode-unspecified data can address this limitation by increasing the sample size and 

the geographic extent for which data is available. 

To utilize mode-unspecified LBS data for safety research, it is essential to measure the 

accuracy of the data. This project seeks to verify the accuracy of a traffic volume dataset from 

StreetLight (StL) by creating traffic prediction models and calibrating the data against traditional 

traffic volume data gathered by the City of Lincoln (CoL). 
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1.1 Objectives 

The research is driven by the motivation to enhance pedestrian and bicyclist safety 

through the utilization of LBS data. The primary objective of the project is to develop a reliable 

methodology for measuring pedestrian and bicyclist exposure and analyzing the associated 

safety. 

To obtain the objective of the project, the following specific aims are outlined.  

1. Review and Document Existing Methods: the project conducts a comprehensive review 

and documentation of existing methods employed for estimating the risk exposure of 

pedestrians and bicyclists, as well as factors contributing to crash and severity.  

2. Creation of an Integrated Geodatabase: the project develops an integrated geodatabase 

designed for pedestrian and bicyclist safety research in Lincoln, Nebraska. This 

geodatabase incorporates calibrated LBS-based movement information categorized by 

street segment, intersection, and census block group (CBG) alongside place-based 

characteristics.  

3.  Traffic Data Calibration: the project develops calibration models. StreetLight data 

requires calibration against traffic volume to adjust their magnitude and temporal 

distribution. 

4. Safety Analysis: The project conducts a comprehensive analysis of traffic crashes, using 

a multifaceted approach to investigate factors influencing the safety of pedestrians and 

bicyclists. 

5. Spatial-temporal Analysis: The project develops reliable measures of pedestrian and 

bicyclist movements and conducts a spatial-temporal analysis of travel patterns and 

associated risks in Lincoln, Nebraska. The project produces hotspot maps that visually 
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highlight spatial variations in active transportation at the street-segment level. The GIS 

(Geographic Information System) models are utilized to identify locations of higher 

exposures.  

 

1.2 Report Structure 

The project focuses on analyzing pedestrian and bicyclist safety in Lincoln, Nebraska, 

leveraging LBS data obtained from StreetLight Data. The structure of the document is organized 

as follows: Chapter 2 provides an in-depth examination of the current practices in active 

transportation safety analysis and the utilization of LBS data by state Departments of 

Transportation (DOTs). Chapter 3 describes the data collection process and extraction methods 

along with detailing the various sources utilized in the process. Chapter 4 outlines the calibration 

process for LBS data to align it with observed multi-modal traffic counts sourced from the City 

of Lincoln. Chapter 5 presents safety analysis methods and the corresponding results. Chapter 6 

presents spatial-temporal analysis and visualization as well as hotspot mapping. It also provides 

the comparison of weekdays and weekends, the analysis of peak hour volume and seasonal 

changes, and the examination of interconnectedness between walkable environment and walking 

volumes. Chapter 7 provides conclusive insights and recommendations to the DOT based on the 

project team’s experience using LBS data to conclude this project.  
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Chapter 2 Literature Review 

This project integrates two analysis streams. The first stream is non-motorized road user 

safety and its contributing factors. The second stream is LBS data used by state DOTs. Evaluated 

together, the research team can identify where LBS data may enhance safety analyses based on 

conventional data sources. 

2.1 Non-Motorized Road User Safety Contributing Factors 

Many factors influence non-motorized traveler safety, such as roadway design 

characteristics, demographics, urban form features, and environmental and weather conditions 

(Lee & Abdel-Aty, 2005; Rahman & Kockelman, 2020; Ukkusuri et al., 2012; Wang & 

Kockelman, 2013; Yue et al., 2020). Urban form features including population density, 

employment density, and transportation facility design have important roles in increasing or 

decreasing non-motorized travel (Zhao et al., 2018). Urban areas that contain substantial 

amounts of urban sprawl and set aside large portions of their transportation right-of-way for 

automobile infrastructure generally have fewer daily trips taken by non-motorized modes 

(Eldeeb et al., 2021). These urban form features affect the total travel time and safety of 

pedestrians and bicyclists. While total travel time is more influential for users’ decision making 

(Witchayaphong et al., 2020), safety concerns for non-motorized road users require careful 

attention from transportation planners due to the higher fatality risk. 

Another factor influencing non-motorized road user safety is roadway length. For every 

percent increase in roadway length, a greater than one percent increase in crashes is expected. 

The number of lanes on a roadway can also affect crash frequency (Ukkusuri et al., 2012). In 

addition to these local variables, macroscopic variables, such as socio-demographic composition, 

show significant correlations with non-motorized road user safety. Merlin et al. (2019) found that 
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for every percent increase in poverty, there is a 0.08 to 0.23 percent increase in crash rate. This 

result is intuitive as people in poverty and in areas with more mixed land uses are more likely to 

use non-motorized modes of travel. 

Transportation safety inequity is exacerbated by disparities in access to safe and 

convenient pedestrian infrastructure frequently observed in economically disadvantaged 

communities. Examples of decreased access to these facilities include inadequate sidewalk 

maintenance, limited crosswalks, and poorly designed pedestrian pathways, which can also pose 

safety risks (Rajaee et al., 2021). Addressing these disparities is a critical component of 

promoting equitable access to transportation options and ensuring these populations benefit from 

safe and accessible pedestrian facilities. 

Vehicle travel speed is among the principal factors influencing non-motorized fatalities. 

Research using 2007-2009 data found that the median impact speed for pedestrian injuries was 

14 mph compared with 35 mph for pedestrian fatalities (Tefft, 2013). Within the 25 to 40 mph 

range, each one mph speed increase produced a roughly three percent increase in the fatality 

likelihood. Fatality likelihood rose to 90% at vehicle travel speeds of 55 mph or greater. Other 

research from Philadelphia found that roads with vehicle speeds of 55 to 65 mph generated 

roughly 1.6 times more crashes than would be expected on a 25 mph road (Merlin et al., 2019). 

Figure 2.1 illustrates the field of vision for drivers at various speeds. Increasing vehicle speed 

tends to diminish the effective area that a motorist perceives. Also, higher vehicle speeds 

increase the required perception reaction distance for drivers in cases of emergency braking or 

maneuvering. In summary, vehicle speed increases both the likelihood and severity of crashes 

involving non-motorized road users. 
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(a)10-15 mph  

 

(b) 30-35 mph 

 

(c) 40+ mph  

Figure 2.1 Driver’s Peripheral Vision at Standard Travel Speeds (National Association of City 

Transportation Officials, 2013) 
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A second major factor to consider is vehicle size. Larger vehicles tend to cause more 

severe outcomes for non-motorized road users when involved in crashes (Governors Highway 

Safety Association, 2019). This phenomenon is explained by these vehicles’ higher momentum 

and center of gravity, which will place more stress on smaller automobiles and non-motorized 

road users. A related regulatory point is that neither the National Highway Traffic Safety 

Administration (NHTSA) nor the Insurance Institute for Highway Safety (IIHS) provide vehicle 

safety ratings for vehicle-pedestrian crashes—only those with other vehicles and fixed objects 

(Lee & Kockelman, 2022). While state DOTs do not have the oversight to regulate vehicle sales, 

several jurisdictions are addressing the above concerns through registration fees that scale with 

vehicle weight (Zipper, 2022). 

2.2 Exposure Measures 

Because many leading factors in non-motorized crashes and fatalities are related to 

vehicular characteristics, movements, and volumes, understanding how non-motorized and 

motorized road users interact with each other is essential. This interaction is commonly studied 

by analyzing pedestrian crash exposure, which is defined as a pedestrian/bicyclist’s relative risk 

of experiencing a non-motorized crash (Pucher et al., 2011). The most common definition of risk 

is a measure of the probability of a crash to occur given exposure to potential crash events. There 

are a wide variety of exposure measures used in practice. Geographic scale is a critical element 

in most exposure analyses, and most analyses can be grouped into one of four scales: 1) regional 

(e.g., city, county, state); 2) network (e.g., traffic analysis zone, Census tract, Census block 

group); 3) road segment; and 4) point (e.g., mid-block or intersection street crossing).  

Most transportation agencies collect consistent and reliable estimates of vehicular traffic 

volume, which may be used to define crash exposure measures. However, pedestrian exposure 



11 

 

data is rarely available. Surrogate measures, such as population, are typically used in place of 

pedestrian traffic volumes (Cottrill & Thakuriah, 2010; MRIGlobal et al., 2023; Wier et al., 

2009). One approach to non-motorized road user exposure estimation, commonly referenced as 

the Keall method after its originator (Keall, 1995), uses travel diary information to impute 

pedestrian volume data. This method begins from origin-destination data for pedestrian-mode 

trips. These trips are expanded using survey weights and assigned to the transportation network 

using a shortest path algorithm. There are many limitations associated with this approach. First, 

such an approach misses pedestrian travel when accessing another mode (e.g., a person returning 

to their private vehicle from a store or accessing a bus stop from their home) (Li et al., 2020). 

Second, pedestrian trips are known to be underreported in travel surveys (Sammer et al., 2018). 

Finally, it is common for the safest pedestrian route to differ from the shortest path (e.g., a route 

without sidewalks is avoided even if it has the shortest travel time) (Li et al., 2020). In several 

cases (Dong et al. 2020; Lee and Abdel-Aty 2005; Sze, Su, and Bai 2019; Keall 1995), travel 

diary data are used to impute exposure and origin and destination data are assigned to the 

transport network using Dijkstra’s shortest path algorithm (or a similar approach). 

The “safety in numbers” hypothesis says that pedestrian (and bicycle) crash rates tend to 

decrease as a function of increasing volume. The assumption is that motorized travelers are more 

cautious when traveling in areas known to have high pedestrian volumes. For example, drivers 

may be more cautious in Lincoln’s Haymarket or Omaha’s Old Market because they anticipate 

pedestrian interaction. However, most tests of this hypothesis have relied on surrogate pedestrian 

exposure measures—a “space syntax” modeling approach that assumes pedestrian volume is a 

function of route directness and land use features (Geyer et al., 2006; Raford & Ragland, 2006), 

travel survey data (as detailed above) (Jacobsen et al. 2009), random number generation (Elvik, 
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2013), and machine learning (Mahmoud et al., 2021). The relationship between crash frequency 

and exposure is likely non-linear (Tao et al., 2021) and the relationship tends to decline as a 

function of exposure (Elvik & Goel, 2019). 

Islam et al. (2022) developed a novel pedestrian exposure measured based on traffic 

signal logs. They combined pedestrian button events with 10,000 hours of video recorded in 

2019 at 90 randomly selected signals throughout Utah to predict pedestrian volumes at 

intersections. They found a correlation of 0.84 between their observed and predicted hourly 

pedestrian crossing volumes, with a mean absolute error of 3.0 (Singleton et al., 2020). The 

traffic signal log requirement limits the applicability of such an approach to intersections with 

pedestrian actuation. They found a 4 percent increase in crash frequency for a 10 percent 

increase in pedestrian crossing volume. 

2.2.1 Macro Crash Exposure Measures  

Pedestrian and bicyclist crashes are (fortunately) rare events. Using area-wide analyses 

helps reduce zero observations, which can be challenging to accommodate in statistical models 

(Tao et al., 2021). Macro-level analysis is a simple method that researchers often use to examine 

crash exposure. This usually involves looking at crash counts by region (city, state, or country) 

or network zone (traffic analysis zone, Census tract, Census block group). The traffic volumes 

and pedestrian infrastructure within a given area or city are compared with other cities or areas of 

a city. This comparison is used to make inferences about the variables that are influential in 

creating pedestrian-vehicle crashes. Analyzing crashes at this level can be useful for policy 

makers when deciding to fund different projects. For example, policymakers could be looking to 

improve pedestrian infrastructure to lower motor vehicle-pedestrian crash frequency. If it can be 

shown that better infrastructure in a city or in an area lowers the frequency of crashes, the policy 
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makers can be persuaded to direct funds at these types of projects. This can be done by 

examining different regions or networks that vary in pedestrian infrastructure and trying to find 

relationships between these two variables. However, the drawback of this analysis is that it does 

not give much insight as to which specific types of infrastructure are the most successful in 

reducing crash frequencies. 

2.2.2 Micro Crash Exposure Measures  

 Micro level analysis is most useful for researchers who are trying to determine which 

aspects of the transportation system most affect crash counts. When analyzing pedestrian-vehicle 

crashes at the micro level, two geographic scales are normally used: road segments and points 

(i.e., crash counts per intersection). Intersection-level is common due to the high number of 

pedestrian and vehicle conflict points at intersecting roadways. Furthermore, focusing on 

intersections allows the safety analyst to examine which aspects of infrastructure geometry or 

other intersection features are influential in increasing crash risk and severity. A drawback to 

only analyzing intersections is that it ignores midblock crashes. 

 Crash exposure data are generally used in two complementary applications. The first 

application is the construction of hot spot maps that visually indicate higher risk locations. Hot 

spot maps can be beneficial because they are readily understood by the public when justifying a 

safety improvement project. The second application is statistical modeling of person, geometry, 

and environment conditions for their effect on crash frequency and severity. The most common 

approaches are Poisson and negative binomial regression models. In recent years, several studies 

explored geographically weighted regression (GWR) applications (Mohammadnazar et al., 2021; 

Xu & Huang, 2015). GWR is a flexible method that incorporates spatial variation and has the 
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benefit of generating interpretable maps of the parameter space. However, GWR should be used 

with caution as it is principally a data fitting algorithm that lacks causal interpretation.   

Tao et al. (2021) reported a pedestrian exposure elasticity of 0.66 at intersections and 

0.47 at midblock locations. That is, a 10 percent increase in pedestrian volume produced a 6.6 

percent and 4.7 percent crash frequency increase at intersection and midblock locations, 

respectively. These effects were only surpassed at intersection locations by number of 

intersection legs (-1.51), vehicular AADT (1.19), and average household size (-1.02). Li et al. 

(2020) found that the walking distance and number of crossed roads tended to be better metrics 

than total trips because they more closely measured potential pedestrian-vehicle interactions. 

Additional studies reviewed during the development of this project are summarized in Table 2.1. 
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Table 2.1 Summary of Crash Exposure Studies 

Authors Study Region Metric Geographic Scale Study 
Period 

Research Methods Exposure 
Measures 

Gong and Abdel-Aty 
2022)  

Florida, USA Micro Intersection October 
2019 

One-class SVM Yes Yes 

Rahman et al. (2022) Texas, USA Micro Road segment 2010-2019 Negative Binomial No Yes 
Raihan et al. (2019) Florida, USA Micro Road segment and 

intersection 
2011-2014 Zero Inflated 

Negative Binomial 
No Yes 

Sarkar et al. (2011) Bangladesh Micro Road segment 1998-2006 Binary Logistic 
Regression 

No Yes 

Wang et al. (2018) Oregon, USA Micro Intersection 2009-2013 Logistic Regression No Yes 
Almasi et al. (2021) Tehran, Iran Macro Traffic Analysis 

Zone 
2017-2019 Geographically 

Weighted 
Regression 

No Yes 

Guo et al. (2018) Vancouver, Canada Macro Traffic Analysis 
Zone 

2009-2013 Full Bayesian 
Poisson Lognormal 

No Yes 

Osama and Sayed (2017)  Vancouver, Canada Macro Traffic Analysis 
Zone 

2009-2013 Area-based Poisson 
Lognormal 

No Yes 

Pljakić et al. (2022) Novi Sad, Serbia Macro Traffic Analysis 
Zone 

2015-2019 Geographically 
Weighted 

Regression 

No Yes 

Saha et al. (2018) Florida, USA Macro Census block 2011-2014 Conditional 
Autoregressive 

No Yes 

Wang and Kockelman 
(2013) 

Austin, USA Macro Census tract 2007-2009 Multivariate 
Conditional 

Autoregressive 

No Yes 
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2.3 DOT Use of LBS 

Given the focus on traffic volume in crash exposure measures, the emergence of mode-

unspecified LBS data offers transportation engineers promising new avenues for safety analysis. 

However, it is important to understand the accuracy of trip details derived from LBS data, such 

as trip origin and destination locations, to assess its usefulness in transportation decision-making. 

To determine the reliability of the data source, researchers often compare the traffic volumes 

obtained from LBS data providers (termed by StL as a traffic index) to intersection or 

streetsegment traffic counts. One study analyzed StL traffic volumes at around 450 locations and 

compared them with traffic counts from Minnesota Department of Transportation sources. The 

researchers found that the mean absolute error of StL data at locations with an AADT of 10,000 

or greater is roughly 8-10% (Turner et al., 2020). For low-volume roads (<1,000 AADT), the 

error was 42% and was often overestimated. Low-volume roads typically have higher error 

percentages in traffic counts because a single miscounted road user will represent a higher 

proportion of the total volume. An earlier report from the same Minnesota study evaluated StL 

accuracy using mean absolute error percentage (MAPE). They found the MAPE decreased as a 

function of increasing roadway AADT (Turner & Koeneman, 2017). A second potential cause of 

higher error on low volumes urban roads is that motor vehicle speeds are generally lower than on 

high urban volume roads. Slow moving vehicles represent a challenge for volume estimation 

using StL because it can be difficult to differentiate between slow moving vehicles and bicycles 

(Lee & Sener, 2020). This challenge also offers one explanation for StL’s tendency to 

overestimate bicycle and pedestrian counts at these locations. 

Given that bicycle trips comprise a low percentage of total trips, especially in U.S. cities, 

it can be difficult to estimate bicycle volumes using StL data alone. Li et al. (2020) compared 
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StL data with bicycle counts at 32 locations in Texas and found a positive correlation between 

the two measurements (R2 values of 0.62 for weekday traffic and 0.69 for weekends). Weekend 

bicycle traffic was found to be greater than weekday traffic in this study, which supports a 

pattern of recreational over commuting cycling.  

Research on pedestrian volumes has yielded similar results. Turner et al (2019) studied 

pedestrian volumes from Miovision at multiple intersections throughout the City of Austin, 

Texas. They found that the average daytime error between the StL index and measured 

pedestrian volumes was 15%, while nighttime conditions yielded an error of 24%. While left 

unstated, potential reasons for a nighttime drop in accuracy may have been due to lower 

pedestrian volumes at night. This pattern aligned with the findings of Li et al. (2020) that the StL 

index more accurately predicted weekend bicycle volumes, due to the higher volumes relative to 

weekdays. In summary, the accuracy of LBS-based non-motorized road user volumes is 

anticipated to be lower than that of motorized volumes at the same location. Transportation 

engineers and planners should consider these factors when using LBS data in non-motorized 

road user planning and safety analysis. 

LBS data is best leveraged through fusion with other datasets. Sener et al. (2021) fused 

traditional traffic count, bikeshare, Strava, and StL data to model average annual daily bicycle 

traffic in Austin, Texas. This study found that the accuracy of the fused data depended on the 

fusion technique. The simplest fusion techniques took the form of generalized linear models. 

Machine learning algorithms show great promise to improve prediction accuracy. In one study, 

Kothuri et al. (2021) used random forest models to model a fused dataset of Strava, StL, and 

traditional traffic counts in Portland and Eugene, Oregon. The models had root mean squared 

errors (RMSE) of 20% and 14% for Portland and Eugene, respectively. 
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In addition to accuracy of the StL index relative to observed traffic, it is important to 

understand the measurement accuracy associated with the underlying data. LBS data are 

typically much more spatially precise (5-25 meters) than cellular tower data (100-200 meters), 

but less precise than in-vehicle navigation (3-5 meters) (StreetLight Data Inc., 2019). Given that 

LBS data can deviate by up to 25 meters from the true cellular device location, the exact counts 

on certain street networks can be uncertain. Accurate assignment to a road depends on the 

separation distance between parallel roads. The spatial precision of LBS data also decreases 

subject to multipath errors, which result from signals being deflected by surrounding objects, 

including trees and buildings (Mok et al., 2012). Finally, people travelling on subways are more 

difficult for LBS data providers to track because signals are often obstructed by ground cover. 

Fortunately, Lincoln does not contain subway lines. 

It must also be noted that LBS data exhibit socio-demographic biases. Yang et al. (2020) 

reviewed several studies on the topic and found the StL penetration ratio can be biased by 

income and age distributions. This bias can be explained by lower cellular device ownership 

among low income and older age groups. These findings provide crucial insights for planners 

and engineers to consider when using these data. Related, traffic safety outcomes correlate 

negatively with income and age (Merlin et al., 2019; Toran pour et al., 2017). Given these 

populations are also more likely to use non-motorized travel modes, inaccuracies in the 

representativeness of LBS data should be corrected through careful calibration to observed multi-

modal traffic counts. 

2.4 Chapter Summary 

The literature review found that total traffic volume and motorized vehicle speed are 

highly correlated with crash risk. Vehicle characteristics, such as weight, influence the severity 
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of a given crash. Traffic volume composition (i.e., the split between motorized and non-

motorized modes) affects safety through its influence on conflict opportunities and roadway 

facilities. LBS data, such as that provided by StL, can be useful to expand the available spatial 

and temporal traffic volume coverage for a region. However, accuracy depends on the true traffic 

volume, with accuracy declining as a function of mode-specific volume. Data accuracy is also 

affected by the ability to infer mode and road segment, which are functions of relative travel 

speeds and transportation network density, respectively.  
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Chapter 3 Data Collection 

While no primary data collection was conducted for this project, secondary data 

collection was a major task. This chapter summarizes two phases of data collection. In Phase 1 

data collection, StL data were compiled from the StreetLight Insights platform. Supplemental 

data necessary for traffic volume calibration and safety analysis were also collected during Phase 

1. Phase 2 data collection was informed by challenges encountered by the project team during 

Phase 1 (as detailed herein). In Phase 2, a Python-based approach was developed that directly 

queried the StreetLight Insights database through its application programming interface (API).  

3.1 Phase 1 Data Collection 

Three data sources were used in the Phase 1 traffic volume calibration procedure and an 

additional data source was necessary for the crash analysis. The first data source was City of 

Lincoln (CoL) traffic counts. Counts are available in a standard format, with turning and through 

movements at intersections tallied in 15-minute intervals. Most traffic counts span from 6 am to 

6 pm, although a small number of intersections have counts taken from 12 am to 6 am, or 6 pm 

to 12 pm. Count data include bicycle, pedestrian, and vehicular traffic movements at 422 

different intersections throughout CoL. In addition, traffic counts were taken on various days and 

in various years spanning from 2014 to 2022, although most counts occur in the years 2018, 

2019, and 2021, as well as on Tuesdays, Wednesdays, and Thursdays. In total, there are 768 

traffic counts available for calibration. 

The next data source was from StreetLight (StL). StL takes cellular LBS data and 

imputes trip origin, destination, and travel mode based on cellular location ping locations, speed, 

acceleration, and other features. The data gathered from StL tracks transportation movements 

throughout specified areas or zones and is collected from several cellular service providers’ 
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cloud environments. Once the data is gathered, it is de-identified by the suppliers and StL runs 

the data through numerous quality assurance tests that perform proprietary checks. After this 

processing, trips are constructed based on a set of assumptions. First, origin and destination 

locations are set based on the idle time for a cellular device. That is, if a device does not change 

its location for a specified amount of time (e.g., 5 minutes), the person is assumed to be at the 

end of a trip. Home and work locations are inferred from the frequency a device travels to a 

particular location, combined with land use information for that location. The most frequently 

visited residential location is coded as the home and the most frequently visited non-residential 

location is coded as the work or school location. Trip mode is inferred from travel speed. A low 

speed (calculated from the distance and time between successive device pings) denotes a walking 

trip, while a high speed denotes a motorized trip. Finally, StL normalizes the data monthly to 

account for certain parameter changes, such as changes in supplier sample size and population. 

This creates the StL Index. In this study, we used the OpenStreetMap road network layer 

provided by StL (i.e., zones are line segments that overlay the streets, sidewalks, and bicycle 

lanes within Lincoln city limits). This data is available for the day types and day parts defined in 

Table 3.1 below. 

 

Table 3.1 StL Day Types and Day Parts Used to Extract Data 

Day Types Day Parts 
All Days All Day (12 am - 12 am) 
Monday Early AM (12 am - 6 am) 
Tuesday Peak AM (6 am - 10 am) 

Wednesday Mid-Day (10 am - 3 pm) 
Thursday Peak PM (3 pm - 7 pm) 

Friday Late PM (7 pm - 12 am) 
Saturday -------- 
Sunday -------- 
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The last data source used for the model calibration was the EPA Smart Location Database 

(EPA-SLD). This database includes roughly 90 variables related to land use, built environment, 

and sociodemographic characteristics of census block groups (CBGs) for the United States. The 

EPA-SLD variables include total population and employment, road network density measured as 

facility miles per square mile, and industry entropy as a measure of land use diversity. Version 

3.0 of the Smart Location Database was used, which was released by the EPA in 2021 (Chapman 

et al., 2021).  

The data collection process is straightforward for the CoL counts and EPA-SLD dataset; 

engineers at the CoL provided the count data and the EPA-SLD is accessible online. Generating 

StL data in the necessary format is a more difficult process. StL provides an interactive online 

platform that allows the user to select data by location, day type, day part, and travel mode. 

Users can run many different types of analyses, but the relevant analysis for this case is Zone 

Activity. Running a Zone Activity analysis allows the user to extract traffic attributes such as 

year, day of the week, and hour of the day, as well as trip attributes such as average traffic 

volume and average traffic speed imputed by StL based on raw LBS data inputs. 

For this study, a comprehensive Zone Activity analysis was conducted covering the City 

of Lincoln for the year 2021. This specific year was chosen due to the data availability provided 

by StL, which includes monthly data for the years 2019, 2020, 2021, and a portion of 2022. 

Additionally, the StL platform limits the extraction of data to a maximum of 12 months in a 

single analysis. Therefore, 2021 was selected as the most suitable year for data collection. This 

decision was based on it being the most recent full calendar year and the diminished effect of the 

COVID-19 pandemic relative to 2020, which exhibited significant changes in travel patterns 

(Shamshiripour et al., 2020). 
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As part of the Zone Activity analysis, another critical part of the StL data extraction 

process is how data is gathered on smaller time scales. StL offers users the choice between daily 

and week part data, as well as hourly and day part data. In StL, a week part separates data 

between weekdays and weekends, while daily data provides traffic volumes for each individual 

day of the week. Similarly, “hourly” data captures volumes on an hourly basis, while “day part” 

data records them during specified time intervals, as detailed in Table 3.1. For this analysis, data 

collection focused on daily data within the day parts defined by StL. Daily and hourly data was 

too cumbersome to download, and week part data was too aggregated to be effectively compared 

to the CoL data, which was gathered on specific days. 

It is essential to note that during the creation of the StL index provided to users for 

download, the StL software performs a Zone Activity analysis on zones in Lincoln, NE for each 

day of the week, across all StL day parts, for each month in 2021. This means that multiple 

different days are averaged together to generate a single StL index for a given day of the week. 

Consequently, if a user seeks traffic volume data at a highly specific date and time (e.g., 12:30 

pm on Friday, May 7th, 2021), the information provided by StL may not be as precise as ground 

truth counts collected at that exact moment. StL data is designed to offer users a reliable estimate 

of travel patterns in general settings, while ground truth counts are better suited for capturing 

data in more specific and precise environments. 

Extracting all the necessary zones presents a challenge because StL only allows the user 

to include 1,000 zones in each analysis. Using line segments as the zones, the CoL has close to 

80,000 zones for each of the three travel modes (vehicles, bicycles, and pedestrians). This means 

that many different analyses must be run on the platform to collect all the necessary data. A 

tracking system was set up so that all the zones within the city limits could be extracted; 
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however, this system resulted in some zones being extracted in multiple analyses due to the 

extraction process being performed manually. Furthermore, the initial extraction process was 

done on the bicycle zones, as the zones that make up the bicycle layer in StL comprise the sum 

of vehicle and pedestrian zones. This is because bicycles are legally allowed to travel on more 

transportation facilities than both pedestrians and vehicles. Once Zone Activity analysis could be 

performed on all bicycle zones within Lincoln city limits, the extraction could be easily copied 

and repeated for the other two modes. Finally, all StL analysis data were downloaded onto a 

local computer. 

3.2 Phase 2 Data Collection 

 Phase 1 data collection was performed to do data calibration. StreetLight (StL) set daily 

data points as Early AM, Peak AM, Mid-Day, etc. and among StL data from 2019 to 2022, we 

only selected the 2021 Zone Activity analysis from StL for calibration. The StL data was 

downloaded manually and the time frame and scale of StL data matched the traffic counts of the 

City of Lincoln (CoL). Phase 2 of data collection aimed to download all available data from 

January 2019 to April 2022 in more detailed time scales. Therefore, we systematically and 

efficiently downloaded StL data using Python environments to improve performance. 

3.2.1 Data Access Using API 

The StL data can be accessed using the StL Insights API. We utilized OpenStreetMap 

(OSM) segment zones to perform Zone Activity analysis and downloaded StL volume data for 

the period January 2019 to April 2022. The raw StL data is approximately 1.5 TB and comprises 

about 150,000 comma-separated value files. The data includes six different attribute files for 

each mode and the StL volume file. The attribute files contain information on equity, household, 
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education and income, trip purpose, employment, and trip information derived from Census data. 

These traveler attributes are calculated from the aggregate likely home locations of devices.  

Table 3.2 summarizes the datasets collected from the StL Insights using the API 

approach. The “Geographical Scale” and “Temporal Scale” columns show the scale of an actual 

dataset, and the “Downloading Scale” column lists which scale those datasets are downloaded 

from. For example, if the geographical scale is OSM segment, the temporal scale is every 

day/hourly, and the downloading scale is CBG/monthly; this means the hourly OSM segment 

scale of traffic volume for every day from January 2019 to April 2022 was individually 

downloaded by the CBG and Monthly scales. 
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Table 3.2 Summary of StL Insights API Datasets Downloaded 

Mode Type Data Periods Geographical 
Scale Temporal Scale Downloading 

Scale 

Bicycle Zone 
Activity Jan 2019 – Apr 2022 OSM Segment Everyday / Hourly CBG / Monthly 

Pedestrian Zone 
Activity Jan 2019 – Apr 2022 OSM Segment  Everyday / Hourly CBG / Monthly 

Vehicle Zone 
Activity Jan 2019 – Apr 2022 OSM Segment Everyday / Hourly CBG / Monthly 

Bicycle Zone 
Activity Jan 2019 – Apr 2022 CBG Everyday / Hourly Lincoln City Limit 

/ Monthly 

Pedestrian Zone 
Activity Jan 2019 – Apr 2022 CBG Everyday / Hourly Lincoln City Limit 

/ Monthly 

Vehicle Zone 
Activity Jan 2019 – Apr 2022 CBG Everyday / Hourly Lincoln City Limit 

/ Monthly 

Vehicle Zone 
Activity Jan 2019 – Apr 2022 CBG Weekly / Hourly Lincoln City Limit 

/ Weekly 

Bicycle Origin-
Destination Jan 2019 – Apr 2022 CBG Everyday / Hourly Lincoln City Limit 

/ Monthly 

Pedestrian Origin-
Destination Jan 2019 – Apr 2022 CBG Everyday / Hourly Lincoln City Limit 

/ Monthly 

Vehicle Origin-
Destination Jan 2019 – Apr 2022 CBG Everyday / Hourly Lincoln City Limit 

/ Monthly 

Vehicle Origin-
Destination Jan 2019 – Apr 2022 CBG Weekly / Hourly Lincoln City Limit 

/ Weekly 

 

The StL Insights API was used to download this large dataset to improve efficiency and 

reduce download time. The StL Insights API simplifies data access and integration—allows 

Python packages and applications to communicate and download data directly from the StL 

server—and streamlines operations to reduce manual intervention, minimize errors, accelerate 

job execution, and improve automation. The StL developer hub also contributes to innovation 
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and development speed by allowing developers to build on existing scripts, which speeds up the 

development process and encourages the creation of new features and applications. Additionally, 

access to other Python packages can extend and improve data processing and analysis 

capabilities. Moreover, the StL Insights API includes some features unavailable in the web 

application. The API has a significantly larger zone limit per data analysis, reducing the data 

analysis time. Figure 3.1 shows each step for creating zone sets and running analysis. OSM 

segments were first divided into CBG, allowing the download of street segments for subscription 

zones by CBG sequentially from StL Insights. This implementation allows for future StL data 

extractions that capture changes in street configurations. The next step is creating zone sets based 

on census boundaries and OSM segments (as shown in Figure 3.1 on the right). After creating 

the OSM segment shapefile, the necessary StL Insights analysis can be run, and associated data 

can be downloaded to a local computer as CSV files. 

 

 

Figure 3.1 StL Insights API modeling framework 
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3.2.2 Data Extraction 

This task involved joining and cleaning separate CSV files that contain segment volume 

data for each CBG in Lincoln. Managing segment-based volume was challenging due to the 

large file sizes and numerous rows in the CSV files. Parallel processing was used as a faster 

method and a solution to these challenges. As a result, all Lincoln segments were merged and 

cleaned into a single shapefile within 3-5 minutes (depending on computer capabilities). The 

entire procedure includes various data processing and aggregation processes. We first assigned 

folder paths to the CSV files and then efficiently parallelized the file-reading operation. The 

generated data frames were merged and are filterable based on specific criteria defined by the 

user. For our analysis, we aggregated the data to daily averages for each month by mode 

(vehicle, pedestrian, and bicycle), segment, and CBG geography. 

3.2.3 Geodatabase 

An ArcGIS Pro map package was prepared for spatial-temporal analysis. The package 

includes geodatabase and map visualizations. The geodatabase contains monthly bicycle, 

pedestrian, and vehicle volume layers at the OSM segment and CBG scales. Table 3.3 shows the 

list of files in the geodatabase. 

 

Table 3.3 Files Included in Geodatabase for spatial-temporal analysis 

File Name (File Type: Feature Class) Description 

bike_blkgrp_2019_agg Monthly bicycle volume by CBG 

bike_blkgrp_2020_agg Monthly bicycle volume by CBG 

bike_blkgrp_2021_agg Monthly bicycle volume by CBG 

bike_blkgrp_2022_agg Monthly bicycle volume by CBG 
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Table 3.3 cont. Files Included in Geodatabase for spatial-temporal analysis 

File Name (File Type: Feature Class) Description 

bike_seg_2019_agg Monthly bicycle volume by OSM segment 

bike_seg_2020_agg Monthly bicycle volume by OSM segment 

bike_seg_2021_agg Monthly bicycle volume by OSM segment 

bike_seg_2022_agg Monthly bicycle volume by OSM segment 

ped_blkgrp_2019_agg Monthly pedestrian volume by CBG 

ped_blkgrp_2020_agg Monthly pedestrian volume by CBG 

ped_blkgrp_2021_agg Monthly pedestrian volume by CBG 

ped_blkgrp_2022_agg Monthly pedestrian volume by CBG 

ped_seg_2019_agg Monthly pedestrian volume by OSM segments 

ped_seg_2020_agg Monthly pedestrian volume by OSM segments 

ped_seg_2021_agg Monthly pedestrian volume by OSM segments 

ped_seg_2022_agg Monthly pedestrian volume by OSM segments 

veh_blkgrp_2019_agg Monthly vehicle volume by CBG 

veh_blkgrp_2020_agg Monthly vehicle volume by CBG 

veh_blkgrp_2021_agg Monthly vehicle volume by CBG 

veh_blkgrp_2022_agg Monthly vehicle volume by CBG 

veh_seg_2019_agg Monthly vehicle volume by OSM segments 

veh_seg_2020_agg Monthly vehicle volume by OSM segments 

veh_seg_2021_agg Monthly vehicle volume by OSM segments 

veh_seg_2022_agg Monthly vehicle volume by OSM segments 
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3.3 Chapter Summary 

Three datasets were collected during Phase 1 data collection to perform traffic volume 

calibration and crash analysis. In this phase, CoL traffic counts, StL segment scale traffic 

volume, and EPA-SLD datasets were collected. CoL traffic counts and EPA_SLD datasets were 

straightforward to download. However, downloading the StL segment scale traffic volume was 

more complex because StL zone sets and different time variables needed to be selected from the 

StL interactive online platform to create a comprehensive Zone Activity analysis. Also, StL had 

a number of data limits when analyzing and downloading the data. During the second phase of 

data collection, we utilized the StL Insights API to access the StL data. Our analysis involved 

segment zones from OpenStreetMap (OSM) and the download of StL volume data from January 

2019 to April 2022. Managing StL segment volume data was challenging due to the large file 

sizes and the countless rows in the multiple CSV files. Parallel processing was utilized to 

overcome these limitations. Additionally, spatial-temporal analysis was completed with an 

ArcGIS Pro map package, which includes geodatabase and map visualizations. The geodatabase 

contains monthly layers of bicycle, pedestrian, and vehicle volumes at the OSM segment and 

CBG scales.  
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Chapter 4 Traffic Data Calibration 

This chapter focuses on the traffic data calibration process. The calibration required the 

use of City of Lincoln (CoL) intersection counts, as well as land use and roadway geometric 

features, to adjust the StL traffic indicators to better represent multi-modal traffic on the network.  

4.1 Data Preparation 

An overview of the calibration procedure is provided in Figure 4.1. The StL traffic 

indices and EPA-SLD land use features are calibration inputs that explain the variation in 

observed traffic volumes, as reported in the CoL intersection counts. Any number of continuous 

outcome models could be used for calibration, such as linear regression, random forest, or neural 

networks. The trained model can then be used to predict segment-level traffic volumes by travel 

mode. With the three core datasets in hand, the first step is to prepare these data for calibration 

by reconciling differences in their reporting units. The CoL traffic counts were collected for 

approach movements at intersections (points). The StL data were collected for facility segments 

(lines). The EPA-SLD data were collected for census block groups (areas). Subsequently, we 

adjusted the model using roadway features. 
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Figure 4.1 Overview of data calibration process 

 

Beginning with the StL and CoL data, we associated StL segments with intersections 

containing available traffic counts. The summation of StL volumes at an intersection represents 

the total entering and exiting volumes (see Figure 4.2). That is, each approach volume was 

counted twice—once as an upstream volume and a second time as a downstream volume. The 

15-minute CoL volumes were also aggregated across the 5 StL day parts. Then, those totals were 

multiplied by two to account for StL measuring traffic volumes in both directions, which results 

in double counting movements going upstream and downstream. To complete this step, the 

intersections where traffic counts recorded by CoL were geocoded and converted into a spatial 

data format for use in GIS software. Then, a buffer outlining all the StL segments that enter each 

intersection was drawn. Finally, the StL facility segments that enter the intersections were 

extracted using a spatial join function. 
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Figure 4.2 StreetLight index and traffic count fusion process 

 

Once these facility segments were extracted, the CoL data and the StL data needed to be 

combined into one table for further use. Each CoL traffic count record was joined with its 

corresponding StL record by intersection location, day of week, and day part. The result is a 

table with only CoL traffic counts and StL records with locations corresponding to days of the 

week. 

With a fused dataset, the final step of the calibration data preparation was to add the 

EPA-SLD and roadway features data. A spatial join was defined between the EPA-SLD census 

block group (CBG) polygons and StL line segments. This join resulted in multiple CBGs being 

associated with StL segments entering a CoL intersection of interest. There are two possible 

methods to reconcile this many-to-one join. The first method is to use average statistics across 

the joined CBG. This approach has the benefit of creating a one-to-one join but reduces the 

feature variation and sample size for calibration model training. The second method (and the one 

used herein) is to maintain the many-to-one join and assume that predicted dependent variable 

values (i.e., traffic volumes) are a function of the combination of land use features in the adjacent 

CBGs. The second method was chosen for this analysis due to the drawbacks of Method 1 (i.e., 

Measured Upstream 
Traffic Volume

StreetLight Index Volume

Implicit Downstream 
Traffic Volume
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reduction of sample size and feature variation). Method 2, averaging predictions across results 

assuming multiple CBG feature combinations, captures the influence of feature variation on 

traffic counts. 

As for the roadway attributes, a common ID or defining attribute could not be found 

between the bicycle, pedestrian, and vehicle networks and the roadway attribute shapefiles. 

Therefore, the following approach was used to spatially join the roadway attributes, namely 

median type, shoulder type, shoulder width, presence of shoulder rumble strips, number of lanes, 

speed, and one-way/two-way configuration. 

1. Create a 70 ft buffer around the NDOT lines (buffer 1). 

2. Create a 10 ft buffer around the StL line segments (buffer 2). 

3. Intersect the 10 ft buffer layer with itself to split minor road parts where they intersect 

with major roads (buffer 2 intersect). 

4. Intersect the two layers (buffer 1 and buffer 2 intersect) and add the street attribute(s) 

 of interest to the buffered StL line segments (buffer 3). 

5. Remove the polygons in buffer 3 with an area less than 300 sqft. This way, the 

perpendicular segments where minor roads intersect major roads are removed (filtered 

buffer 3). 

6. Intersect the original StL line segments with filtered buffer 3 (StL line intersect). 

7. Remove any line segments with lengths less than 6 ft. Since the buffer in filtered buffer 3 

is 5 ft on each side, this accounts for when minor roads intersect major roads at non-

perpendicular angles (filtered StL line intersect).  

8. Add street attribute(s) from the buffer to filtered StL line intersect by location. 

9. Add these attributes to the original vehicle network based on ObjectID. 
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4.2 Calibration Models 

A random forest model was chosen to analyze the features considered for each travel 

mode. Random forest is an ensemble method that combines decision trees, which use dataset-

splitting rules to partition the feature space based on decision metrics, such as information gain 

(Ding et al., 2016). Random forest uses bagging and feature randomization to combine decision 

trees and minimize overfitting bias. They have some advantages over classical linear regression. 

The first advantage random forest models offer is that they excel at catching non-linear 

relationships between variables, which can help accommodate the complexities in transportation 

data. Also, the “Feature Importance” analysis provided by random forest models allows users to 

identify the variables most influential to the model. Additionally, random forest models are not 

as sensitive to outliers and the inclusion of irrelevant features as other models, which increases 

model robustness. Finally, a random forest model’s ability to account for interactions between 

variables is an important asset for creating models with complex datasets.  

Because numerous features influence traffic patterns, random forest models are an ideal 

choice for this analysis. Liu and Wu (2017) used a random forest model to predict traffic 

congestion on the Shanghai road network. They used attributes such as time of day, weather, and 

road quality gathered from the Shanghai Traffic Management Department and found the 

prediction accuracy of the model was approximately 88%. The advantages of random forest 

models are further demonstrated in research performed by Cheng et al. (2019). They applied a 

random forest model to travel mode choice behavior and found that random forest outperformed 

the three other models (Adaboost, Support Vector Machine (SVM), and multinomial logit) based 

on mean absolute error percentage.  
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4.3 Calibration Model Results 

4.3.1 Linear Regression Results 

As a starting point, linear regression models were chosen to explore how well the StL 

indices predict bicycle, pedestrian, and vehicle traffic volumes. In each linear regression model, 

EPA-SLD variables were included to improve model fit. The EPA-SLD database has roughly 90 

different variables including total population and road network density for each census block 

group (CBG). Variables were added or removed from the models based on the AIC and using a 

systematic process that tested all variable combinations. Results were benchmarked against 

results from past research (H. Li et al., 2020; Turner et al., 2020); a comprehensive review of the 

literature suggested that a model with an R-squared score equal to or exceeding 0.75 indicates 

acceptable accuracy. 

Based on this benchmark, only the vehicle model was anticipated to attain the previously 

defined acceptable level of accuracy. This anticipated result was bolstered by initial correlative 

analyses finding that StL vehicle volumes correlated highly (R2 ≈ 0.90) with aggregated CoL 

counts. However, StL pedestrian volumes have a weaker correlation (R2 ≈ 0.60) than vehicle 

volumes and StL bicycle volumes performed even worse in this setting (R2 ≈ 0.25).Linear 

regression model results are provided in Table 4.1, followed by a discussion of relevant model 

results. 
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Table 4.1 Linear Regression Model Results for Linear Regression Models by Mode 

Mode Adj-R-squared No. of Observations 
Vehicle 0.91 2263 

Pedestrian 0.78 3348 

Bicycle 0.37 3559 

 

The vehicle model included four EPA-SLD variables: Total population of each CBG in 

2018, Number of occupied housing units in 2018, Percentage of two-plus-car households in 

2018, and Total employment in 2017. The adjusted R2 value for this model was higher than the 

predetermined benchmark of 0.75. Furthermore, the adjusted R2 value of 0.91 represents the 

highest of all three models, which aligns with prior expectations. The number of occupied 

housing units correlated negatively with CoL counts. The pedestrian model included four EPA-

SLD variables: Total population in 2018, Number of occupied housing units in 2018, Percentage 

of zero-car households in each CBG in 2018, and Total employment in 2017. The bicycle model 

included fourteen additional EPA-SLD variables, some of which are Total road network density 

in the CBG, Percentage of two-plus-car households in 2018, Percentage of one-car households 

in 2018, and Percentage of high wage workers. Additional EPA-SLD variables were included to 

this model due to its lower accuracy. The StL index was identified as strongly predictive of 

traffic volume across all modes.  

4.3.2 Random Forest Model Results 

Random forest models were trained to improve prediction accuracy. In each random 

forest model, variables identified in the linear regression models were retained. All the random 

forest models had R2 scores greater than or equal to 0.97. The bicycle and pedestrian models 
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performed the best with an R2 score of 0.997. The vehicle model’s R2 score was slightly lower 

than the two other models at 0.971.  

In the bicycle model, the most important variable for influencing prediction accuracy was 

the Average Daily Zone Traffic (StL Volume). Each feature’s importance index to the model can 

be found in Table 4.2 below. The importance index provided for the StL volume variable was 

lower for the bicycle model than for the pedestrian and vehicle models. This could be explained 

by the bicycle dataset having lower volumes, so the additional variables added to the model 

provided more prediction accuracy than in the two other models. Additionally, the EPA-SLD 

variables available for the pedestrian and vehicle models could have been insufficient. Finally, 

there may have been other variables correlated with traffic volume variations, such as weather 

conditions. 
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Table 4.2 Feature Importance for Bicycle Model 

Feature Importance 

Average Daily Zone Traffic (StL Volume) 0.379 

Number of lanes 0.253 

Total road network density 0.165 

Percent of high wage workers (workplace) 0.078 

Percent medium wage workers (workplace) 0.034 

Gross residential density (HU/acre) 0.024 

One way 0.018 

National functional classification 0.009 

Gross_industrial (5-tier) employment density (jobs/acre) 0.008 

Median type 0.007 

8-tier employment entropy  0.005 

Employment and household entropy 0.004 

Gross industrial (8-tier) employment_density (jobs/acre) 0.003 

Percent of one-car households 0.003 

Housing units 0.003 

Percent of two-plus-car households  0.003 

Total land area (acres) 0.002 

Total land area (acres) that is not protected from development 0.001 

Shoulder 0.001 
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Like the bicycle model, the Average Daily Zone Traffic (StL Volume) variable was the 

most influential variable for the pedestrian model, as shown in Table 4.3 below. This variable 

impacted this model more than the bicycle model. This can be explained by the pedestrian 

dataset having higher volumes per segment. 

 

Table 4.3 Feature Importance for Pedestrian Model 

Feature Importance 

Average Daily Zone Traffic (StL Volume) 0.660 

Number of lanes 0.128 

Percent of zero-car households 0.078 

Total employment 0.034 

Population 0.032 

Median type 0.028 

National functional classification 0.021 

One way 0.016 

Households (occupied housing units) 0.004 

 

The feature importance for each variable in the vehicle model can be located in Table 4.4 

below. As with the two prior models, the StL volume variable provided the most statistically 

significant contribution toward the accuracy of this model. An interesting observation from this 

model and the two previous models is the placement of the Number of lanes variable consistently 

ranking the second most important. The variables included in the vehicle model were more 
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relevant to vehicle travel than in the previous model. However, none of these variables has an 

importance value that exceeds 0.05. 

 

Table 4.4 Feature Importance for Vehicle Model 

Feature Importance 

Average Daily Zone Traffic (StL Volume) 0.785 

Number of lanes 0.048 

Speed limit 0.041 

Jobs within 45 minutes auto travel time (time-decay weighted) 0.031 

Percent of high-wage workers (workplace) 0.020 

Total road network density (facility miles per square mile) 0.018 

Percent of two-plus-car households 0.015 

Intersection density (auto-oriented intersections per square mile) 0.014 

One way 0.010 

Shoulder 0.008 

Median type 0.006 

National functional classification 0.005 

 

4.3.3 ANOVA Test Results 

Note that CoL traffic count locations are not a random sample. Traffic counts are usually 

gathered on major roadways and in commercial areas, with few counts taken on low-volume 

residential streets. ANOVA tests were performed for all model features to quantify the variation 

between the training and prediction datasets and understand count location sampling bias. The 
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results of the ANOVA tests of each variable of the three different models can be found in 

Table 4.5 for vehicle volumes, Table 4.6 for pedestrian volumes, and Table 4.7 for bicycle 

volumes. 

The ANOVA test used a one-way blocking on whether a facility segment was included in 

the training dataset. In nearly all cases, there is a statistically significant difference in the feature 

variance between the training and prediction datasets (at a 0.05 significance level). These results 

indicate that the training dataset is not drawn from a random sample of the facility segment 

population. The high R2 scores for each model may be partially explained by this intersection 

selection bias. As such, prediction accuracy is unlikely to be as high as that reported in the 

calibration results. However, this finding tempers the interpretation of prediction accuracy rather 

than invalidating it. It is commonly the case in traffic prediction that model validation is 

performed on high-traffic volume facilities for which the analyst has traffic counts available. 

Additionally, this finding aligns with the findings from Turner et al. (2020), where the prediction 

accuracy of StL data decreased significantly on low-volume roads. Another factor to consider 

when interpreting these results is the final research objective. Predicted traffic volumes are used 

in areal crash exposure metrics, which aggregate volumes across multiple facilities. 

 

Table 4.5 ANOVA Results for StL Vehicle Zones Entering Intersections vs. Zones Not Entering 
Intersections 

Feature F-statistic 
Jobs within 45 minutes auto travel time (time-decay weighted) 143.67* 
Percent of two-plus-car households in CBG 297.19* 
Total road network density (facility miles per square mile) 248.12* 
Percent of high-wage workers (workplace) 5.42 
Intersection density (auto-oriented intersections per square mile) 654.08* 
* F-statistic statistically significant at 0.05 level 
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Table 4.6 ANOVA Results for StL Pedestrian Zones Entering Intersections vs. Zones Not 
Entering Intersections 

Feature F-statistic 
Total employment 1314.93* 
Total population 134.88* 
Total households 81.34* 

Percent of zero-car households 908.16* 

* F-statistic statistically significant at 0.05 level 

 

Table 4.7 ANOVA Results for StL Bicycle Zones Entering Intersections vs. Zones Not Entering 
Intersections 

Feature F-statistic 
Percent of high-wage workers (workplace) 11.26* 
Total land area (acres) that is not protected from development  
(i.e., not a park, natural area, or conservation area) 147.61* 
Total road network density (facility miles per square mile) 332.64* 
Percent of one-car households 347.51* 
Total land area (acres) 147.89* 
Total housing units 58.36* 
Employment and household entropy 40.44* 
Gross industrial (5-tier) employment density (jobs/acre) on unprotected 
land 38.09* 
Percent of two-plus-car households 534.51* 
Gross residential density (HU/acre) on unprotected land 212.64* 
Percent medium wage workers (workplace) 0.52 

8-tier employment entropy  123.86* 

Gross industrial (8-tier) employment density (jobs/acre) 38.09* 

* F-statistic statistically significant at 0.05 level  

 

4.3.4 Overfitting Analysis 

Another important aspect of verifying the accuracy of the random forest model is 

checking for overfitting. Overfitting is a common issue in statistical modeling where a model 

becomes overly complex, capturing random fluctuations in the training data rather than the 

underlying patterns or relationships. In an overfit model, the algorithm fits the training data so 
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closely that it fails to generalize well to unseen or new data. This results in poor performance 

when the model encounters other datasets that differ from the training data, essentially 

memorizing the training data rather than learning from it. Overfit models typically exhibit high 

accuracy on the training data but poor accuracy on validation or test datasets. Table 4.8 

summarizes the results for the traffic calibration models. The difference between the testing and 

training datasets are small for all modes, indicating the three models are not overfitting the data 

and thus represent a reasonable model fit. 

 

Table 4.8 Testing and Training R2 values for each Random Forest Model 

Bicycle Model 
R2 for Training Data 0.997 
R2 for Testing Data 0.981 

Pedestrian Model 
R2 for Training Data 0.992 
R2 for Testing Data 0.983 

Vehicle Model 
R2 for Training Data 0.992 
R2 for Testing Data 0.954 

 

4.4 Chapter Summary 

Chapter 4 described the traffic volume calibration developed in this research project. StL 

indices require calibration against traffic volumes to adjust their magnitude and temporal 

distribution. A large historical dataset comprising multi-modal traffic counts at major 

intersections was used in the calibration process. StL indices were combined with land use and 

roadway features to train random forest models on the historical traffic counts. High predictive 

accuracies were obtained for all models and statistical tests did not suggest model overfit. 

ANOVA tests were performed to test for sampling bias in the locations chosen for traffic counts. 
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While bias was identified in this sampling, it is believed that out-of-sample prediction was 

primarily used for low volume roads for which high prediction error is anticipated as a priori.  
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Chapter 5 Safety Analysis 

This chapter includes a comprehensive analysis of traffic crashes, using a multifaceted 

approach to study the factors influencing road safety. The chapter begins with an explanation of 

data sources, which sets the foundation for subsequent analytical procedures. The crash analysis 

procedure is comprised of several components: crash analysis, crash rate analysis, spatial lag 

model analysis, and relative rank analysis. The results section presents findings in detail, and 

each subsection is accompanied by a dedicated discussion that delves into the nuances of the 

results, fostering a holistic understanding of the factors contributing to crashes involving non-

motorized road users. 

5.1 Data Sources 

Many of the data sources in this chapter aligned with Chapter 3. Data included vehicle, 

bicycle, and pedestrian volumes on each transportation network segment, as determined by the 

calibration models described in Chapter 4, which facilitated the calculation of crash exposure 

measures. EPA-SLD land use variables by census block group (CBG) and roadway features were 

used in the analysis. Finally, a motorized-to-non-motorized crash dataset was provided by the 

Nebraska Department of Transportation. The dataset included 2,171 crashes by date and time, 

weather and road surface conditions, total fatalities, and crash severity for the period 2011 to 

2020 within the City of Lincoln (CoL) corporate limits. 

5.2 Analysis Procedures 

5.2.1 Crash Analysis Procedure 

Crash analysis was performed using a combination of graphical and quantitative analyses. 

Graphical analysis used maps in ArcGIS and quantitative analysis used Python scripts. Graphical 

analysis assigned crashes to the nearest intersection and sized each intersection point 
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proportional to the crash count at that location over the analysis period. This point layer was 

combined with choropleth maps for land use and demographic variables of interest (e.g., crash 

count vs. poverty rate). Census block groups (CBGs) were used as the geographic unit of 

analysis because they were the smallest geographic unit available for most demographic 

variables and they aligned with the EPA-SLD. The variables used in generating the crash rate 

maps in this study are summarized below and represent a mix of crash exposure and 

demographic variables that provided diversity in the preliminary crash evaluation.  

• Crashes: the number of crashes involving pedestrians and/or bicycles. A total of 2,171 

incidents were included in the analysis among which 1,653 (76%) were labeled as 

“Intersection Involved”. These crashes were then assigned to the nearest intersection. 

• Vehicle miles: the predicted vehicle traffic activity on vehicle segments, which were 

generated from the random forest model. Vehicle volumes on each segment were 

multiplied by the corresponding segment length to calculate vehicle travel miles. Then, 

all the vehicle miles within a given CBG were aggregated to obtain the total vehicle miles 

per CBG. 

• Pedestrian miles: the predicted pedestrian traffic activity on pedestrian segments, which 

were generated from the random forest models. Pedestrian volumes on each segment 

were multiplied by the corresponding segment length to calculate pedestrian travel miles. 

Then, all the pedestrian miles within a given CBG were aggregated to obtain the total 

pedestrian miles per CBG. Pedestrian segments located beyond 35 feet from the road 

center line were excluded from the aggregation due to the lack of pedestrian-vehicle 

interaction on such segments. 
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• Bicycle miles: the predicted bicycle traffic activity on pedestrian segments, which were 

generated from the random forest models. Bicycle volumes on each segment were 

multiplied by the corresponding segment length to calculate bicycle travel miles. Then, 

all the bicycle miles within a given CBG were aggregated to obtain the total bicycle miles 

per CBG. Bicycle segments located beyond 35 feet from the road center line were 

excluded from the aggregation due to the lack of bicycle-vehicle interaction on such 

segments. 

• Active miles: the active miles were calculated by a simple addition of pedestrian and 

bicycle miles per CBG. 

• Poverty: the poverty rate within the CBG was generated using the EPA-SLD variables. 

• Non-white population: the non-white population was calculated by the ratio of the non-

white population to the total population within the CBG, as given in the EPA-SLD.  

5.2.2 Crash Rate Analysis Procedure 

Like the crash analysis, the crash rate analysis used both visual and quantitative analyses, 

with visual analysis done using maps in ArcGIS and quantitative analysis done with Python 

scripts. Crash rate analysis was performed at the macro level, as performing micro-level analysis 

was difficult due to the small number of crashes recorded on many StL links (addressed in 

subsequent analysis detailed in Section 5.2.5 below). Three crash rate variables were defined in 

the analysis, which capture different aspects of crash risk. The first variable, multiplicative crash 

rate measure, accounts for the total traffic activity within each CBG. The multiplicative crash 

rate measure multiplies the active and vehicle miles but does not capture the difference in 

relative proportions between active and vehicle miles across CBGs. For example, two CBGs 

(CBG1 and CBG2) could have the same multiplicative exposure (i.e., active miles × vehicle 
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miles), but CBG1 could have twice the number of active miles as CBG2. In this example, if each 

CBG contains the same number of crashes, their multiplicative crash rate measures would be the 

same. 

 

Multiplicative Crash Rate =
No.  of Crashes

Active miles × Vehicle miles
(5.1) 

 

The ratio crash rate measure was defined as an alternative to the multiplicative crash 

rate measure. Using the example from above, if two CBGs have the same number of total miles 

but CBG1 has twice the number of active miles as CBG2, the ratio of active-to-vehicle-miles 

would be larger for CBG2. Furthermore, if these CBGs had the same crash total, they would 

have different ratio crash rate values. For CBGs with the same ratio, there is also the possibility 

for significantly different total volumes for the same crash count. For example, CBG1 with one 

active mile and 100 vehicle miles would have the same ratio crash rate as CBG2 with 1,000 

active miles and 100,000 vehicle miles if each CBG contains the same number of crashes. 

 

Ratio Crash Rate =
No.  of Crashes

Active miles
Vehicle miles

(5.2) 

 

The multiplicative and ratio rates often show conflicting raking results. The active miles 

crash rate measure was created to focus on the non-motorist crash exposure per mile of non-

motorist travel. If two CBGs have the same number of active miles and crashes but different 

vehicle miles, the active miles crash rate values will be the same. 
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Active Miles Crash Rate =
No.  of Crashes

Active Miles
(5.3) 

 

5.2.3 Spatial Lag Model Procedure 

Spatial lag models were estimated, setting the crash rates as the dependent variables, to 

understand the variations of each crash rate due to demographic and land use drivers. The spatial 

lag model specification controls for dependency in crash rate arising from unobserved but 

spatially related variables. The model is defined by the following equation. 

 

y = βX + ρWy + ε (5.4) 

 

where 𝛽𝛽𝛽𝛽 represents an ordinary least squares regression model structure, W is a term 

representing a global spatial weight, ρ is a spatial correlation parameter, and ε is a normally 

distributed error term. The model was estimated by maximum likelihood, so uses a pseudo-R2 

value, which does not represent a proportionate reduction in error. Variables were retained in the 

model with p-values less than 0.20 to avoid excluding variables with policy relevance that may 

have weak correlation due to low statistical power. 

5.2.4 Relative Rank Analysis Procedure 

Making comparisons between the two crash rates’ variables, as well as crash totals, 

requires a normalization to put each variable on the same scale. The relative rank measure is 

defined in the following equation. 

 

Relative Rank =
Rate Measurex − Rate Measurelowest

Rate Measurehighest − Rate Measurelowest
(5.5) 
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Where Rate Measurex represents the rate measure for each CBG. This process assigns a value 

between zero and one for each crash rate or total measure. The CBG with the highest rate 

measure will return a value of 1, while a CBG with a measure of half the maximum magnitude 

will have a value of 0.5. However, it is worth noting that having a relative rank of 0.5 does not 

mean the CBG is at the “50th-percentile”, as the value of rate measures are not evenly distributed 

across CBGs. 

5.2.5 Safety Assessment and Ranking of Links and Intersections 

A final set of analyses provides link and intersection-level results. The Composite Safety 

Scores (CSS) used in this section is based on an approach developed by Iowa DOT (2020). It 

ranks elements (i.e., links or intersections) in terms of crash rate based on their attribute values 

relative to those for all elements in the Lincoln road network. Each element is assigned a set of 

values (numeric or categorical) corresponding to the attributes used in the assessment. Through 

this ranking method, elements in the same group (i.e., possess the same values for all ranking 

attributes) are expected to have the same composite safety score. To ensure consistency, the 

score of every attribute is normalized on a scale from 1 to 10. Then, each attribute-based 

normalized score is adjusted against the attribute weight before the composite score of the group 

(or attribute set) is determined as the sum of the weighted normalized scores. 

5.2.5.1 Safety Assessment and Ranking of Links 

The following describes the road-link ranking method in detail. 

1. Crashes are assigned to the closest link. The number of crashes per link is then 

calculated.  

2. Mileage is calculated for each link. 

3. The attributes/safety factors are selected for this analysis. 
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4. The bins (categories) are determined for each attribute. 

5. Links are aggregated into bins by attribute and total crashes per mile is calculated for 

each bin.  

6. The weight of each attribute/factor (W) is determined such that the total weight is 100. In 

our analysis, the weights for the volume and speed limit attributes were assumed twice 

the individual weights of the remaining attributes, based on literature suggesting these 

attributes are particularly relevant to non-motorized road user safety. That is, considering 

a total of eight attributes, both volume and speed limit were assigned a weight of 20, 

whereas the remaining attributes were assigned a weight of 10 each. 

7. The Weighting Factor (WF) for each attribute is determined. Since a 10-tier uniform 

Normalized Score (NS) scale is adopted in this method, the weight of each attribute is 

divided by 10. The weighting factor converts the attribute-based normalized scores to 

produce the composite score for the link. 

 

WF =  
100
W

(5.6) 

 

8. The crashes and miles are aggregated to each bin within each attribute. This normally 

yields the same total miles and total crashes across all attributes (and the study area). 

9. The Crash Rate (CR) is calculated for each bin as the ratio of crashes to mileage for the 

bin. This will be the basis for defining the normalized score intervals, which will 

determine the attribute-based Normalized Scores (NS). 

10. The bounds of the NS intervals for each attribute are determined. For a particular 

attribute, it is calculated as follows. 
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NS Interval Width (NSIW) =
Max bin CR − Min bin CR

10
(5.7) 

NSn Interval = [Min bin CR, Min bin CR + (n − 1)NSIW)   ; n = 1, 2, … , 10 (5.8) 

 

Note that the intervals used in this method are left-closed. 

11. The Normalized Score (NS) is calculated for each bin as the order of the attribute NS 

interval within which the bin-specific Crash Rate (CR) falls. That is, a Speed_limit bin 

for which the CR value falls within the 3rd interval [Min bin rate, Min bin CR + (3 – 1) 

NSIW) is given a NS of 3 for the Speed_limit attribute. 

12. The Composite Normalized Score (CNS) of the link (or attribute set) is calculated as the 

sum of the attribute NS values each multiplied by its WF as follows. 

 

𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑊𝑊𝑊𝑊𝑛𝑛 × 𝑁𝑁𝑁𝑁𝑛𝑛

10

𝑛𝑛=1

(5.9) 

 

The table below presents the attributes, weights, weighting factors, and bins used in the 

links assessment and ranking. 
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Table 5.1 Selected Attributes, Bins and Weights for Link Safety Ranking 

Attribute (Risk Factor) Attribute 
Weight 

Weighting   
Factor Bins 

Volume 20 2 

0 - 250 vph 
250 - 500 vph 
500 - 1000 vph 
1000 - 2000 vph 

2000 vph or more 

Shoulder width 10 1 

0 ft (no shoulder) 
1 - 3 ft 
3 - 6 ft 

6 ft or greater 

Shoulder presence 10 1 No shoulder 
Shoulder 

Median type 10 1 

None 
Painted 
Open 

Barrier 
Raised 

Facility type 10 1 
One-way 
Two-way 

Ramp 

Number of lanes 10 1 

1 lanes 
2 lanes 
3 lanes 

4 lanes or more 

Speed limit 20 2 

20 - 30 mph 
30 - 40 mph 
40 - 50 mph 

50 mph or greater 

Road classification 10 1 

Remote residential 
Local 

Collector 
Minor arterial 

Major arterial and above 
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5.2.5.2 Safety Assessment and Ranking of Intersections 

The procedure used in the assessment and ranking of intersections differs slightly from 

that used for links. The differences include the denominator of the crash rates formula, as well as 

the treatment of the street attributes. Since multiple links converge at an intersection, a parameter 

(mean, minimum, maximum, etc.) that represents the attribute (e.g. Number of lanes) for the 

whole intersection needs to be selected for each attribute. The following describes the ranking 

method of intersections in detail. 

1. Crashes are filtered such that only intersection-related crashes (ITR_IVL_S = ‘Y’) are 

included in the analysis. The relevant crashes are then assigned to the closest intersection. 

The number of crashes per intersection is then calculated.  

2. The total predicted pedestrian and bicycle (non-motorized) volumes is determined for 

each intersection.  

3. The attributes/safety factors are selected for this analysis. 

4. The bins (categories) are determined for each attribute.  

5. Intersections are aggregated into bins by attribute and total crashes per non-motorized 

traffic volume is calculated for each bin.  

6. The weight of each attribute/factor (W) is determined such that the total weight is 100. 

The individual weights of AADT and maximum speed limit attributes were assumed to 

be twice the individual weights of the remaining attributes based on prior research 

findings. That is, for a total of five attributes, both AADT and max speed were assigned a 

weight of 28.6, whereas the remaining attributes were given a weight of 14.3 each. 
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7. The Weighting Factor (WF) for each attribute is determined. For the same 10-tier 

uniform Normalized Score (NS) scale adopted in the link analysis, the weight of each 

attribute is divided by 10. 

 

WF =  
100
W

(5.10) 

 

8. The assigned crashes and non-motorized traffic volumes are aggregated to each bin 

within each attribute.  

9. The Crash Rate (CR) is calculated for each bin as the ratio of crashes to pedestrian and 

bicycle AADT for the bin.  

10. The bounds of the NS intervals for each attribute are determined. For a particular 

attribute, the NS interval is determined as follows. 

 

NS Interval Width (NSIW) =
Max bin CR − Min bin CR

10
(5.11) 

NSn Interval = [Min bin CR, Min bin CR + (n − 1)NSIW)   ; n = 1, 2, … , 10 (5.12) 

 

11. The Normalized Score (NS) is calculated for each bin as the order of the attribute NS 

interval within which the bin-specific Crash Rate (CR) falls. That is, if the highest road 

class bin for which a CR value falls is within the 7th interval [Min bin rate, Min bin CR + 

(7 – 1) NSIW] is given an NS of 7. 

12. The Composite Normalized Score (CNS) of the link (or attribute set) is calculated as the 

sum of the attribute NS values multiplied by its WF as follows: 
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CNS = �WFn × NSn

5

n=1

(5.13) 

 

The table below presents the attributes, weights, weighting factors, and bins used in the 

intersections assessment and ranking. 

 

Table 5.2 Selected Attributes, Bins and Weights for Intersection Safety Ranking 

Attribute (Risk Factor) Attribute 
Weight 

Weighting 
Factor Bins 

 

Vehicle AADT 28.6 2.86 

0 - 250 vph  

250 - 500 vph  

500 - 1000 vph  

1000 - 2000 vph  

2000 vph or more  

Max speed limit 28.6 2.86 

20 - 30 mph  

30 - 40 mph  

40 - 50 mph  

50 mph or greater  

Highest road class 14.3 1.43 

Remote residential  

Local  

Collector  
Minor arterial  

Major arterial and above  

Median type 14.3 1.43 

None  

Painted  

Open  

Barrier  

Raised  

Average number of lanes 14.3 1.43 
2 lanes or fewer  

2 - 3 lanes  

3 - 4 lanes  

  4 lanes or more  
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5.3 Results 

5.3.1 Crash Analysis Results 

Figure 5.1 through Figure 5.3 show the results of the spatial analysis performed through 

the creation of maps in ArcGIS. Each of these three maps shows the number of crashes that 

occurred at various intersections overlaid with the quantity of a variable of interest by CBG: 

vehicle miles in Figure 5.1, active miles in Figure 5.2, and percentage of non-white citizens and 

poverty rate Figure 5.3a and Figure 5.3b, respectively. 

As demonstrated by Figure 5.1, there is a moderately high spatial correlation between 

motorized-to-non-motorized crashes and vehicles miles by CBG. Vehicle miles are very high 

toward the central business district (CBD) of Lincoln because there is a high concentration of 

commercial and residential buildings in this area. The CBD also contains the most crashes of any 

CBG in Lincoln, totaling 239 motorized-to-non-motorized crashes during the data collection 

period of 2011 to 2020. A notable aspect of this analysis outside this observation is the high 

number of crashes taking place on 27th Street. This street is located roughly one mile east of the 

Lincoln CBD and, as Figure 5.1 shows, the number of crashes in this area is moderately 

correlated with vehicle miles. This result is supported by the quantitative analysis shown in 

Table 5.3; the vehicle miles variable has a large coefficient of 0.58 and is statistically significant 

at the 0.05 level. 
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Figure 5.1 Number of crashes per intersection vs. vehicle miles per CBG 
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There is an even higher spatial correlation between the number of motorized-to-non-

motorized crashes and active miles per CBG, as shown in Figure 5.2. Similar to vehicle miles in 

Figure 5.1, many CBGs surrounding the Lincoln CBD contain a high number of active miles. In 

fact, these CBGs comprise a proportionality higher share of the active miles for the study area 

than vehicle miles. This phenomenon is due to the many commercial, residential, and educational 

land uses within the Lincoln CBD and its surrounding areas. Notable CBGs that contained higher 

levels of active miles compared to their vehicle miles include the CBGs northwest of the Lincoln 

CBD. Table 5.3 provides quantitative confirmation of this finding. 
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Figure 5.2 Number of crashes per intersection vs. active miles per CBG 
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Figure 5.3a (proportion non-white) exhibits the lowest correlation with total crash count. 

As previously discussed, the Lincoln CBD contains the most crashes of any CBG. However, this 

CBG does not contain a high proportion of non-white citizens, which affects the correlation 

strength between these two variables. Additionally, while there are many crashes on 27th Street, 

only a few CBGs along this corridor have a high proportion of non-white citizens. Quantitative 

correlations show that the percentage of non-white citizens had the lowest statistical significance 

of all four variables included in the figures.  

Figure 5.3b shows the correlation between the number of crashes per intersection and 

poverty rate per CBG. There is a stronger spatial correlation between these two variables than for 

the proportion non-white variable because the CBD and the CBGs surrounding it having a higher 

proportion of citizens in poverty than other areas of Lincoln. 
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Figure 5.3 Number of crashes per intersection vs proportion of non-white population (a) and 
poverty rate (b) in CBG 

A 

B 
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Table 5.3 Quantitative Analysis of Crash Analysis 

Variable Correlation P-Value 

Vehicle Miles 0.58 0.00 

Active Miles 0.76 0.00 

Non-White Population 0.13 0.09 

Poverty 0.29 0.00 

 

5.3.2 Crash Rate Analysis Results 

As with the general crash analysis, each of the two crash rate analyses had visual and 

quantitative components. The crash analysis from Section 5.3.1 shows that the most statistically 

significant correlations with crash counts that arise come from traffic volumes. This result 

highlights the importance of the creation of the three crash rate measures used for analysis in 

Section 5.3.2. Figure 5.4 shows a map of the multiplicative crash rate by CBG. Using the 

multiplicative crash rate measure, characteristics of CBGs that have high multiplicative crash 

rates are areas with a low amount of vehicle and active miles relative to the number of crashes. 

The most notable difference between this map and the maps shown in Figure 5.1 and Figure 5.2 

is that the CBD of Lincoln and the surrounding CBGs show a lower concentrated risk, meaning 

that the crash counts are low relative to the total volume of traffic activity. The higher risk areas 

appear in CBGs outside of the Lincoln CBD and its surrounding areas. Additionally, there are 

higher risk areas in the south-central portion of the city, just south of Nebraska Parkway. 

Another notable aspect of the spatial analysis is that the CBG that encompasses the city campus 

of the University of Nebraska-Lincoln has a low risk based on this rate measure. The same result 

is not found on the two other major postsecondary campuses within the city: the east campus of 
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the University of Nebraska-Lincoln and Nebraska Wesleyan University. All the CBGs that 

overlap these campuses have much higher rate values. It is important to note that the fifth class in 

the GIS map in Figure 5.4 shows a considerably broader range of values compared to the 

preceding four classes. This discrepancy can be attributed to a few CBGs with substantially 

higher risk levels than all other CBGs. These outliers are discussed further in Section 5.3.4. 

 



 

66 

 

 

Figure 5.4 Multiplicative crash rate measure by CBG 
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Figure 5.5 shows the ratio crash rate level for each CBG. Spatial analysis was conducted 

using this map. The most notable difference between results from this rate measure compared to 

the multiplicative crash rate results is that the Lincoln CBD and the surrounding CBGs show 

significantly higher risk. This is primarily due to the high number of vehicle miles and crashes in 

these areas. However, there are a few higher risk areas just outside the CBD and many more in 

the outer portions of the city, compared with the results for the multiplicative crash rate. Another 

notable aspect of the spatial analysis is the low-risk areas in the city campus of UNL. Like the 

UNL city campus, the CBG containing the campus of Nebraska Wesleyan University also shows 

a low ratio crash rate. Finally, this spatial analysis had similar issues to the previous analysis, 

where the fifth class in the map in Figure 5.5 displays a broader range of values compared to the 

other classes, due to outliers in the data. These outliers are discussed further in the relative rank 

analysis in Section 5.3.4. 
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Figure 5.5 Ratio crash rate measure by CBG 
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Figure 5.6 provides an alternative summary based solely on active miles as the exposure 

measure. The results are a blend of the results from the multiplicative crash rate and the ratio 

crash rate. Similar to the ratio crash rate results, the regions to the east of the Lincoln CBD show 

elevated crash risk. On the other hand, the active travel crash rate reflected the multiplicative 

crash rate results in the regions north of Cornhusker Highway or near Nebraska Parkway, where 

reduced crash risk is observed. The most notable difference between the results from this rate 

measure compared to the other two rate results is the Lincoln CBD, showing reduced crash risk. 
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Figure 5.6 Active miles crash rate measure by CBG 
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5.3.3 Spatial Lag Model Analysis Results 

Table 5.4 summarizes the results from the multiplicative crash rate spatial lag linear 

model. The spatial weight matrix used in this analysis used the Queen contiguity criterion. Under 

this criterion, spatial units were considered neighbors if they shared any part of their boundary, 

including corners. The resulting spatial weight matrix captured adjacent relationships among 

observations, reflecting the spatial connectivity in the dataset. The variables density, street 

intersection density (weighted, auto-oriented intersections eliminated), and household workers 

per job by CBG were downscaled by a factor of 10,000. This scaling made model interpretation 

more difficult because each variable was on a different scale. To account for differences in the 

explanatory variable scale, an effect-size estimate was calculated by multiplying the variable 

parameter and standard deviation, dividing the product of these two values by the mean of the 

dependent variable (i.e., crash rate), and multiplying this value by 100 to obtain a percentage 

(Gelman et al., 2020). While the parameter value measures a change in the dependent variable 

for a one-unit change in the explanatory variable, the effect size measures a percent change in the 

dependent variable for a one-standard- deviation change in the explanatory variable. This 

standardization helps to demonstrate the effect each variable has on the dependent variable, 

regardless of scale. 

Both demographic variables, percent of one-car households in CBG and percentage of 

low wage workers in CBG, were positively correlated with multiplicative crash rate. These two 

variables also had two of the top five largest effect sizes. Additionally, there was strong evidence 

that the effects were statistically significant. All diversity variables were negatively correlated 

with the rate measure. While 5-tier employment entropy displayed high statistical significance an 
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a large effect size, trip productions and trip attractions equilibrium index and household workers 

per job by CBG had much weaker effects on multiplicative crash rate. 

Density variables exhibited varying results. Gross employment density (jobs/acre) on 

unprotected land and street intersection density (weighted, auto-oriented intersections 

eliminated) were both negatively correlated with multiplicative crash rate. The two density 

variables that positively correlated with multiplicative crash rate (density and network density in 

terms of facility miles of multi-modal links per square mile), exhibited much different effect size 

estimates. Network density in terms of facility miles of multi-modal links per square mile was 

highly statistically significant and had the largest effect size estimate. The three other density 

variables exhibited low effect sizes for the multiplicative crash rate measure. The walkability 

index was negatively correlated with multiplicative crash rate, with a moderate effect size and 

statistical significance. Finally, the spatial weight term for this model had very low statistical 

significance, suggesting there was minimal residual spatial dependency for the multiplicative 

crash rate measure after controlling for other covariates.  
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Table 5.4 Results for Multiplicative Crash Rate Spatial Lag Linear Model 

Variable Coefficient Effect Size P-value 

Demographic Variables 

Percent of one-car households in CBG 0.16 79.18 0.01 

Percentage of Low Wage Workers in CBG 0.15 79.45 0.01 

Diversity Variables 

5-tier employment entropy  -0.11 -88.62 0.00 

Trip productions and trip attractions equilibrium index -0.040 -34.35 0.26 

Household Workers per Job, by CBG -7.94 -44.95 0.15 

Density Variables 

Gross employment density (jobs/acre) on unprotected 
land -2.30 × 10-3 -76.12 0.00 

Density 2.55 × 10-3 44.45 0.19 

Street intersection density (weighted, auto-oriented 
intersections eliminated) -1.95 -59.04 0.06 

Network density in terms of facility miles of multi-
modal links per square mile 0.010 112.27 0.00 

Transport Variables 

Walkability Index -0.010 -67.64 0.07 

Model Related Variables 

Multiplicative Crash Rate Spatial Weight 3.34 × 10-3 ---------- 0.94 

Constant 0.11 ---------- 0.03 

Pseudo-R2 0.23 

Spatial Pseudo-R2 0.23 

Number of Observations 187 

Number of Variables 12 
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Table 5.5 summarizes the results for the ratio crash rate spatial lag linear model. The 

demographic variables included in this model (total households and percent of two-plus-car 

households in CBG) were both positively correlated with ratio crash rate. The effect sizes for 

these variables were among the lowest among all included variables. This model contained fewer 

diversity variables than the multiplicative crash rate model but added two new variables, 

employment and destination accessibility. These variables were positively correlated with ratio 

crash rate. Regional diversity and office jobs within a 5-tier employment classification scheme 

had large effect sizes and showed high statistical significance. Destination accessibility had a 

moderate statistical significance and a low effect size. 

Much like the multiplicative crash rate model, the density variables results were mixed. 

The density variables include network density in terms of facility miles of auto-oriented links per 

square mile, gross entertainment (5-tier) employment density (jobs/acre) on unprotected land, 

and intersection density in terms of multi-modal intersections having three legs per square mile, 

all of which were statistically significant. Network density in terms of facility miles of auto-

oriented links per square mile and intersection density in terms of multi-modal intersections 

having three legs per square mile were positively correlated with crash rate, while gross 

entertainment (5-tier) employment density (jobs/acre) on unprotected land was negatively 

correlated. The effect sizes for intersection density in terms of multi-modal intersections having 

three legs per square mile and gross entertainment (5-tier) employment density (jobs/acre) on 

unprotected land were high, while network density in terms of facility miles of auto-oriented 

links per square mile had a moderate effect size. Lastly, the spatial dependence was much higher 

for the ratio crash rate model results than for the multiplicative crash rate model.  
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Table 5.5 Results for Ratio Crash Rate Spatial Lag Linear Model 

Variable Coefficient Effect Size P-Value 

Total households 0.33 17.68 0.12 

Percent of two-plus-car households in CBG 0.080 21.98 0.04 

Regional diversity of employment to  
population 

0.070 30.33 0.00 

Office jobs within a 5-tier employment classification 
scheme 0.39 38.25 0.00 

Jobs within 45 minutes auto travel time, time- decay 
(network travel time) weighted 2.20 × 10-4 23.17 0.06 

Network density in terms of facility miles of auto-
oriented links per square mile 0.010 28.40 0.00 

Intersection density in terms of multi-modal 
intersections having three legs per square mile 1.60 × 10-3 57.41 0.00 

Gross entertainment (5-tier) employment density 
(jobs/acre) on unprotected land -0.030 -34.37 0.01 

Ratio Crash Rate Spatial Weight 0.060 ------------- 0.08 

Constant -0.18 ------------- 0.00 

Pseudo R-squared 0.29 

Spatial Pseudo R-squared 0.28 

Number of Observations 187 

Number of Variables 10 
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Table 5.6 summarizes the results for the active miles crash rate spatial lag linear model. 

This model contained a smaller number of vatiable compared to the two previous models. Both 

demographic variables (percent of two-plus-car households in CBG and percent low wage 

workers) were positively correlated with the active miles crash rate with percent low wage 

workers having a larger effect size.  As for diversity variables, Regional diversity of employment 

to population showed the lowest statistical significance and smallest effect size of all the 

included variables. Much like the multiplicative crash rate and ratio crash rate models, the 

density variables results were mixed. The density variables included residential density in 

HU/acre, Street intersection density, and Intersection density in terms of multi-modal 

intersections having three legs per square mile. All of these variables demonstrated statistical 

significance and exhibited comparable effect sizes. Lastly, the spatial dependence was notably 

the highest in terms of coefficient and statistical significance for the active miles crash rate 

model compared to the other models. 
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Table 5.6 Results for Active Miles Crash Rate Spatial Lag Linear Model 

Variable Coefficient Effect Size P-Value 

Percent of two-plus-car households in CBG 3.657 13.510 0.051 

Percent low wage workers 27.619 19.321 0.003 

Regional diversity of employment to population -1.506 -7.702 0.165 

Residential density in HU/acre 0.257 15.703 0.013 

Street intersection density (auto-oriented 
removed) -0.008 -14.109 0.029 

Intersection density in terms of multi-modal 
intersections having three legs per square mile 0.048 17.361 0.005 

Active Crash Rate Spatial Weight 0.098 ------------- 0.000 

Constant -7.368 ------------- 0.018 

Pseudo R-squared 0.413 

Spatial Pseudo R-squared 0.185 

Number of Observations 194 

Number of Variables 8 

 

A final aspect of the spatial lag results involved calculating the Moran’s I statistic for the 

dependent variables of each model. This was done to confirm the spatial autocorrelation in these 

variables. A Moran's I statistic close to one suggests spatial clustering and a value close to 

negative one suggests spatial dispersion. The Moran's I statistic was computed for both crash rate 

measures, giving values of 0.47, 0.39 and 0.457 for the multiplicative, ratio and active miles 

models, respectively. The Moran's I statistic for all three models indicates a moderate spatial 

autocorrelation.  
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5.3.4 Relative Rank Analysis Results 

The results for the relative rank analysis for multiplicative crash rate are displayed in 

Table 5.7. Most of the highest ranking CBGs by multiplicative crash rate are located just outside 

the Lincoln CBD. This result is bolstered by analyzing the spatial analysis for crashes, detailed in 

Figure 5.1 and Figure 5.2, which illustrate that vehicle and active miles are lower in the CBGs 

surrounding the CBD; however, there are a relatively large number of crashes in these areas, 

resulting in a high crash rate. Additionally, most of the CBGs included in Table 5.7 also have 

relatively high ranking CBGs surrounding them (with some support from the spatial lag model 

results for this spatial correlation). CBGs boundaries sometimes do not perfectly overlap the 

boundaries for neighborhoods, so different CBGs may contain similar traffic patterns. Table 5.7 

also shows the crash counts in these high ranking CBGs; the crash counts shown are not notably 

high, excepting the Lincoln CBD that is ranked as the highest CBG for crash count over the 

analysis period. 

 

Table 5.7 Sample of Results from Multiplicative Crash Rate Relative Rank Analysis 

Major 
Neighborhood 

inside CBG 

Multiplicative 
Crash Rate 

Measure 

Multiplicative 
Crash Rate 

Rank 

Crash 
Counts 

Crash Count 
Rank 

Near South 1015.53 1.00 9 0.04 

40th & A 813.26 0.80 2 0.01 

West Lincoln 778.16 0.77 4 0.02 

40th & A 485.31 0.48 3 0.01 

Near South 275.17 0.27 10 0.04 
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The results for the relative rank analysis for ratio crash rate are shown in Table 5.8. Four 

of the five highest ranking CBG by ratio crash rate are just east of the Lincoln CBD, in the 

Woods Park and Hartley neighborhoods. 

 

Table 5.8 Sample of Results from Ratio Crash Rate Relative Rank Analysis 

Major 
Neighborhood 

inside CBG 

Ratio Crash 
Rate 

Ratio Crash 
Rate Rank 

Crash 
Counts 

Crash Count 
Rank 

Woods Park 16503.79 1.00 43 0.18 

Hartley 7222.45 0.44 32 0.13 

Oak Hills 6683.26 0.40 12 0.05 

Edenton South 4863.86 0.29 14 0.06 

Havelock 4849.73 0.29 7 0.03 

 

The results for the relative rank analysis for active miles crash rate are shown in 

Table 5.9. Adjusting for active miles brings several CBGs to the top of the ranking list that are 

ranked lower based only on crash count. Similar to the ratio crash rate results, Woods Park arises 

as a top location. 
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Table 5.9 Sample of Results from Active Miles Crash Rate Relative Rank Analysis 

Major 
Neighborhood 

inside CBG 

Active Crash 
Rate 

Active Crash 
Rate Rank 

Crash 
Counts 

Crash Count 
Rank 

Woods Park 0.64 1.00 43 0.18 

Havelock 0.61 0.95 19 0.08 

Witherbee 0.59 0.92 18 0.08 

40th & A 0.58 0.91 20 0.08 

Clinton 0.57 0.89 28 0.12 

 

Analysis was also conducted to compare how the two crash rate measures differed within 

the same CBG. The “movement” of ranks in Table 5.10 represents the difference between the 

relative rank according to each pair of rate measures. For example, a negative value in column 2 

is interpreted to mean that the ratio crash rate for a CBG is higher than the multiplicative crash 

rate, whereas a positive value means that the multiplicative crash rate is higher than the ratio 

crash rate. The CBGs representing the top and bottom 5 differences between multiplicative and 

ratio exposure measures are used for all differences. There is significant variation between the 

crash ranks for Near South (higher for multiplicative than ratio crash rate) and Woods Park 

(lower for multiplicative than ratio crash rate). Similar patterns are found for active miles rate, 

suggesting that the ratio and active miles rate measures give similar results for these CBGs. 
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Table 5.10 Sample of Results for Movement of Ranks across Models 

Major Neighborhood 
inside/near CBG 

Movement of Ranks 
between 

Multiplicative and 
Ratio Rate 
Measures 

Movement of Ranks 
between 

Multiplicative and 
Active Miles Rate 

Measures 

Movement of Ranks 
between Ratio and 
Active Miles Rate 

Measures 

Near South 0.99 0.79 -0.20 

40th & A 0.80 0.67 -0.13 

West Lincoln 0.76 0.55 -0.21 

40th & A 0.46 0.34 -0.13 

Near South 0.26 -0.01 -0.27 

Edenton South -0.29 -0.54 -0.25 

Havelock -0.29 -0.35 -0.06 

Oak Hills -0.40 -0.25 0.15 

Hartley -0.43 -075 -0.32 

Woods Park -0.99 -0.99 0.00 

 

CBGs with high positive movement values have a high number of total miles (i.e., 

vehicle plus active miles), but a very high proportion of those total miles comprise vehicle miles. 

The opposite is expected for CBGs with a high negative value; however, few CBGs in Lincoln 

have a high proportion of total miles accounted for by active miles. As such, the ratio between 

active miles and vehicle miles in these CBGs will be some of the lowest throughout the city. 

The final analysis on this topic is the difference between the relative crash rank of each 

CBG and the rank of each rate measure for each CBG. The relative crash rank was determined 

through a similar equation to the relative rank of the rate measures, given by 

 



 

82 

 

Relative Crash Rank =
Crash Countx − Crash Countlow

Crash Counthigh − Crash Countlow
(5.14) 

Where Crash Countx represents the crash count in a single CBG. 

 

Table 5.11 below shows the top and bottom 5 CBGs with the most movement between 

relative crash rank and the three crash rate ranks (i.e., multiplicative, ratio, and active miles). 

Positive values in Table 5.11 indicate a movement from a higher crash rank to a lower crash rate 

rank. A negative value indicates a movement from a lower crash rank to a higher crash rate 

rank. These results indicate that normalization by traffic volume consistently decreases the crash 

ranking for downtown Lincoln relative to the unnormalized crash count. Similarly, Near South, 

Woods Park, and Clinton neighborhoods represent higher risk (i.e., higher crash rate) areas 

depending on the normalization assumption. 
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Table 5.11 Sample of Results from the Movement of Ranks between Crash Rank and Rate Rank 

Major 
Neighborhood 

inside CBG 

Crash to 
Multiplicative 

Rank 
Movement 

Major 
Neighborhood 

inside CBG 

Crash to 
Ratio Rank 
Movement 

Major 
Neighborhood 

inside CBG 

Crash to 
Active Miles 

Rank 
Movement 

Downtown 
Lincoln 1.00 Downtown 

Lincoln 0.83 Downtown 
Lincoln 

0.79 

Downtown 
Lincoln 0.26 The Haymarket 0.17 North Bottom 0.10 

Sunset Acres 0.25 Sunset Acres 0.14 North Bottom 0.07 

South Salt 
Creek 0.21 UNL City 

Campus 0.08 UNL 0.05 

The 
Haymarket 0.20 Near South 0.08 Fallbrook 0.00 

Near South -0.23 Edenton South -0.24 Havelock -0.77 

40th & A -0.47 Havelock -0.26 Witherbee -0.82 

West Lincoln -0.75 Hartley -0.30 40th & A -0.82 

40th & A -0.79 Oak Hills -0.35 Woods Park -0.84 

Near South -0.96 Woods Park -0.82 Clinton -0.87 

 

5.3.5 Link and Intersection Safety Ranking Results 

The approach described in Section 5.2.5 is used to calculate the composite normalized 

scores for the attribute groups of links and intersections. The calculated scores were then applied 

to all the links and intersections in Lincoln based on their attribute groups. For instance, all links 

that share the same 8 attributes considered in the link ranking (same bins for volume, Number of 

lanes, median type, shoulder presence, shoulder width, speed limit, road classification, and 

facility type) would share the same Composite Normalized Score (CNS). The Normalized Scores 
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for all bins (within attributes) are presented in Figure 5.7 for links and Figure 5.8 for 

intersections. The Ranking of all the links and intersections in Lincoln is visualized in Figure 5.8 

and Figure 5.8, respectively. 
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Figure 5.7 Calculation of Composite Normalized Score (CNS) for Links 

1 2 3 4 5 6 7 8 9 10

0-250 1,215.13 265 0.218 1
250-500 236.32 174 0.736 2
500-1000 410.72 446 1.086 3
1000-2000 101.53 327 3.221 9
2000_or_more 235.93 923 3.912 10
0 1,898.82 2,083 1.097 10
1-3 88.72 6 0.068 1
3-6 149.63 36 0.241 2
6_or_more 62.46 10 0.160 1
No_shoulder 1,899.43 2,083 1.097 10
Shoulder 300.21 52 0.173 1
None 1,915.45 1,579 0.824 5
Painted 14.40 16 1.111 6
Open 7.20 10 1.390 7
Barrier 0.15 0 0.000 1
Raised 262.43 530 2.020 10
One-way 27.23 262 9.621 10
Two-way 2,172.07 1,873 0.862 1
Ramp 0.34 0 0.000 1
1 40.17 18 0.448 1
2 1,854.98 985 0.531 1
3 230.40 547 2.374 3
4_or_more 74.08 585 7.897 10
20-30 1,410.25 882 0.625 2
30-40 253.36 772 3.047 10
40-50 322.08 463 1.438 5
50_or_more 213.95 18 0.084 1
Remote residential 117.80 5 0.042 1
Local 1,413.87 653 0.462 2
Collector 184.53 222 1.203 4
Minor_arterial 352.41 857 2.432 8
Major_arterial_and_above 131.02 398 3.038 10

Normalized 
Score (NS)

4 5

3 4 5

6 7 8

6 7 8

2

Weighted Normalized Score = WF x NS

9

Crash Rate 
(CR)

Volume 20 2

Attribute (Risk Factor)
Attribute 
Weight

Weighting Factor 
(WF)

Bins Mileage Crashes

20

Shoulder_width 10 1 2 9 106 7 83 4 5

12 14 16 18

9 10

Median Type 10 1 1 2 9 106 7 8

Shoulder_presence 10 1 1 2 3

9 10

Number_of_lanes 10 1 2

Facility_type 10 1 2 3 4 5

9 106 7 8

2 2 4 6 8 10

3 4 5

10

Composite Normalized Score (CNS) = 6 + 10 + 10 + 6 + 1 + 1 + 20 + 4 = 58 

108642

3 4 5 6 7 8

12 14 16 18 20

Road_classification 10 1 1

Speed_limit 20

1

1

1
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Figure 5.8 Calculation of Composite Normalized Score (CNS) for Intersections 

1 2 3 4 5 6 7 8 9 10

0-1000 97,460 178 0.00183 1
1000-2000 22,632 51 0.00225 2
2000-4000 138,874 228 0.00164 1
4000-8000 57,393 195 0.00340 4
8000_or_more 144,695 1,036 0.00716 10
None 345,549 882 0.00255 1
Painted 7,647 57 0.00745 10
Open 1,644 11 0.00669 9
Raised 106,213 738 0.00695 9
Less_than_2 19,155 45 0.00235 1
2-3 334,614 1,032 0.00308 2
3-4 63,735 302 0.00474 6
4_or_more 43,550 309 0.00710 10
20-30 271,996 428 0.00157 1
30-40 121,550 813 0.00669 9
40-50 64,471 444 0.00689 10
50_or_more 3,037 3 0.00099 1
Remote residential 334 0 0.00000 1
Local 191,440 144 0.00075 1
Collector 52,701 134 0.00254 3
Minor_arterial 174,905 994 0.00568 6
Major_arterial_and_above 41,674 416 0.00998 10

Crashes

28.6

Crash 
Rate (CR)

Normalized 
Score (NS)

Weighted Normalized Score = WF x NS

Vehicle_AAADT 28.6 2.86 5.72 8.58 11.44

Attribute (Risk Factor)
Attribute 
Weight

Weighting 
Factor (WF)

Bins
Ped and 

Bike 
AADT

14.3 17.16 20.02 22.88 25.74

Median Type 10 1.43 1.43 2.86

4.29

14.35.72 7.15 8.58 10.01 11.444.29

Average_number_of_lanes 10 1.43 1.43 2.86 14.3

Max_speed_limit 20 2.86 5.72 8.58 11.44 14.3 17.16

5.72 7.15 8.58 10.01 11.44 12.87

20.02 22.88 25.74 28.6

Highest_road_class 10 1 2.86 4.29 14.3

Composite Normalized Score (CNS) = 2.86+14.3+2.86+25.74+4.29 = 50 

5.72 7.15 8.58 10.01 11.44 12.87

2.86

2.86

12.87

1.43
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To this point, analysis has focused on CBG areal statistics and aggregate land use and 

transportation system features. The safety ranking analysis provided a facility-level complement 

from which Nebraska DOT can identify appropriate infrastructural countermeasures. These 

results supported the CBG findings. Outside the Lincoln CBD, the streets to its south and near 

the Nebraska State Capitol were identified as higher risk facilities for non-motorized road users. 

Vine Street, 27th Street, and the Capitol Parkway also arise as foci for safety improvements. 

 

 

Figure 5.9 Composite Normalized Score (CNS) for links (red = higher risk) 
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Based on Figure 5.10, Vine Street and 27th Street are also consistent foci for safety 

improvements at their intersections. Fifty-sixth street near Holmes Lake was also identified as a 

location of high non-motorized traveler risk. 

 

 

Figure 5.10 Composite Normalized Score (CNS) for intersections (red = higher risk) 

 

5.4 Chapter Summary 

Chapter 5 provided the safety analysis results using CBG, link, and intersection results. 

Both aggregate and facility-specific features were considered in these analyses. It was found that 

results differ depending upon the exposure measure used to normalize crash counts. While 

aggregate features, such as population and network density, affect non-motorized road user 
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safety, the clearest results arise when considering infrastructure at the facility scale. Several 

communities surrounding the Lincoln CBD were identified as areas for further study. Safety 

ranking analysis identified specific corridors requiring more in-depth safety analysis to identify 

countermeasures.  
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Chapter 6 Spatiotemporal Pattern Analysis and Visualization 

This chapter presents the analysis and visualization of spatial and intertemporal patterns 

in traffic volumes for pedestrians and bicyclists at the street segment level. While area-based 

analyses, such as those using Traffic Analysis Zones (TAZ), census tracts, or census block 

groups, offer a broader perspective on safety trends across larger regions, a street segment-level 

analysis provides a more precise identification of volume patterns and potential risk locations. 

This approach allows for the pinpointing of specific intersections, crossings, or stretches of road 

where safety improvement opportunities may be concentrated. 

A noteworthy observation arose when comparing block group-level data with street 

segments. This comparison revealed that street segment data offer better detail, as block group 

data were derived from aggregated segment data. Consequently, block group data may indicate a 

high volume, even when only specific street segments within that block group contribute, and the 

majority of the area in that block group lacks streets (Figure 6.1). The lack of granularity in 

block group-scale data raises concerns about potential biases and inaccuracies, underscoring the 

importance of selecting an appropriate geographical scale for safety analysis.  

Moreover, map visualization uncovered a distinct trend in the presentation of hot spot 

maps for bicycle volumes, which appeared linear, while pedestrian volumes formed clusters 

across the city. This visual distinction may offer insights into unique patterns related to different 

transportation modes and varying areas or demographics. Overall, map visualization proved to be 

a powerful tool, effectively conveying complex data in a simple and easily understandable 

format. This capability enables users to discern patterns, trends, and relationships that might be 

challenging to extract from raw numerical data alone.  
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Figure 6.1 Maps showing the difference between the census block group (CBG) scale and 
segment scale visualization 

 

6.1 Pre and During COVID-19 

We compared bicycle and pedestrian traffic volume from 2019 and 2020 to understand 

the differences in traffic patterns between Non-COVID-19 and COVID-19 periods. Several 

studies indicated decreased pedestrian and bicycle volumes in 2020 compared to 2019 (Y. Li & 

Xu, 2021; Möllers et al., 2022). However, their geographic scale was area-based. In contrast, our 

analysis was done with segment scale data, giving us detailed information. There was a 

noticeable shift in pedestrian and bicycle activity, particularly near parks and residential areas, 

with an increase in traffic volume. In contrast, downtown activity decreased significantly in 2020 

compared to 2019. 
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Figure 6.2 Comparing 2019-2020 pedestrian and bicycle volume – CBD, UNL, Haymarket 

 

Figure 6.2 shows the CBD and Haymarket areas. Pedestrian and bicycle volume in 2020 

significantly decreased compared when compared to the previous year, 2019. This decrease is 

associated with the impact of the COVID-19 pandemic, reflecting an increase in remote work, as 

well as a decrease in business activities and commuting traffic during this period. 
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Figure 6.3 Comparing 2019-2020 pedestrian and bicycle volume – Holmes Lake Park 

 

Interestingly, pedestrian and bicycle traffic increased in parks around Lincoln. For 

example, as shown in Figure 6.3, Holmes Lake Park shows increased pedestrian and bicycle 

traffic volume, indicating that people did more outdoor activities in the parks where they can 

maintain social distancing due to COVID-19. 



 

94 

 

 

 

Figure 6.4 Comparing 2019-2020 pedestrian and bicycle volume - residential area 

 

Furthermore, Figure 6.4 shows that pedestrian and bicycle traffic in residential areas 

increased in 2020 during COVID-19. This pattern indicates that people preferred activities 

around their home to avoid contact with other people. 

As shown in Figure 6.4, these trends can be explained by a variety of reasons, including 

the closure of public spaces, the need for exercise, and the desire to spend time outside in a safe 

and socially isolated environment. Walking is a low-impact exercise that helps reduce stress, 

enhance cardiovascular health, and strengthen the immune system (Bonnell et al., 2022). It is 
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also an activity that can be easily included in daily routines, such as walking to the grocery store 

or walking around the neighborhood. The increase in walking activity during COVID-19 can be 

seen as a positive outcome because it promotes physical activity and can enhance overall health. 

6.2 Weekday/Weekend Comparison 

When comparing pedestrian and bicycle traffic patterns on maps showing volumes on 

weekdays and weekends, there were significant differences. The analyzed data highlighted trends 

in different areas that helped us understand pedestrian traffic patterns. First, public school areas 

showed a high pedestrian activity during weekdays. However, private school areas did not show 

much increase in pedestrian traffic during the weekdays. Second, parks showed a distinct pattern, 

with a significant increase in pedestrian volume during weekends, indicating increased leisure 

and recreational activities. Third, the University of Nebraska-Lincoln (UNL) city campus and 

Haymarket areas showed weekday/weekend dynamics. UNL city campus experienced more 

pedestrian traffic on weekdays, which was likely due to school activities and classes being in-

session. In contrast, the Haymarket area had more weekend activities, indicating a shift toward 

entertainment, local restaurant, and market activities during those days. These visualizations 

provide insights into the pedestrian walking trend and highlight the variations across different 

areas between weekdays and weekends. Unlike pedestrian volume patterns, bicycle patterns did 

not exhibit significant variation between weekdays and weekends. However, there was a slight 

increase in bicycle volumes around park areas. 
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Figure 6.5 Comparing Weekday-Weekend Pedestrian Volume – Downtown, Haymarket, 
Holmes Lake Park, School Areas 
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6.3 Walkability and Pedestrian Volume 

To explore whether people walk in a walkable environment, we created a bivariate map 

that divides areas into four quadrants based on Lincoln’s walkability and daily pedestrian 

volume. The National Walkability Index from the EPA was used in this analysis (US EPA, 

2014). The walkability index is at the census block group level, considering factors such as 

intersection density, proximity to transit stops, and the mix of employment types and housing. 

The four categories are: high pedestrian volume with high walkability, low volume-low 

walkability, low volume-high walkability, and high volume-low walkability. This mapping 

strategy comprehensively examines walkability and volume intersections at a block group level. 

It provides insights into urban planning and development initiatives by identifying areas in need 

of improvement and those excelling in both walkability and volume. Such bivariate maps 

facilitate visual understanding of walkability patterns, serving as strategic tools for policymakers 

and city planners to target specific areas for enhancements and interventions. 
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Figure 6.6 Map of EPA National Walkability Index and StL pedestrian volume (by CBG) 

 

6.4 Peak Hour Traffic Volume 

We compared morning and evening peak hours using 2019 pedestrian traffic volume 

data. The morning peak hours from StL were defined as 6-10 am, and evening peak hours as 3-7 

pm. We analyzed peak-hour traffic volume and found interesting patterns in pedestrian volume 

maps based on these hours. During the morning peak hours, most pedestrian traffic volumes 

were observed around the UNL city campus and the downtown area, likely due to school and 

business activities during these hours. However, in the evening peak hours, we observed 

increased pedestrian activity patterns around the Haymarket area, parks around Lincoln, and near 
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Gateway Mall. This result fits with the likelihood of people conducting recreational activities 

such as shopping, dining out, and visiting parks during this time period. Notably, the Haymarket 

area is a popular destination for numerous bars, dining, and entertainment options, attracting 

many evening visitors. Gateway Mall shows high pedestrian volume during evening peak hours 

around the year, which confirms that it is a major shopping destination in the city. 
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Figure 6.7 Comparing peak AM-peak PM pedestrian volume - CBD, UNL, Haymarket, Holmes 
Lake Park, shopping malls 
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6.5 Seasonal Variation 

Pedestrian and bicycle traffic volume is impacted by the season (Aultman-Hall et al., 

2009).  A survey by Sears et al. (2012) found that cyclists prefer not to bike during winter. To 

confirm these findings and see a detailed seasonal variation of pedestrian and bicycle traffic 

volume in Lincoln, a segment-scale seasonal comparison was made between winter and summer 

volumes. We divided the months of the year into seasons as shown in Table 6.1. 

 

Table 6.1 Months by Season 

Season Months 
Winter 12, 1, 2 
Spring 3, 4, 5 

Summer 6, 7, 8 
Fall 9, 10, 11 

 

The seasonal comparison showed that overall pedestrian and bicycle volumes are 

significantly higher during the spring, summer, and fall compared to winter. However, a few 

places maintained similar traffic volume levels in winter compared to summer. As exemplified in 

the green highlighted areas in Figure 6.9, the North Sams Club, Gateway Mall, South Pointe 

mall, Costco, and around Wilderness Hills mall areas did not show much difference between 

winter and other seasons because, unlike parks and the Haymarket area, most of the shopping 

facilities are a mix of indoor and outdoor environment. Holiday season shopping may also 

contribute to the pedestrian volume. The comparison between summer and fall revealed that 

pedestrian volume is higher in many areas during summer compared to fall. Parks around 

Lincoln had especially heavy pedestrian traffic for outdoor activities. However, in the fall 

season, there is a significantly high volume in downtown, UNL, and the Haymarket area, making 

Lincoln's overall fall volume higher than summer. Figure 6.8 also shows that bicycle volumes 
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decreased during winter but did not show the same pattern as pedestrian volumes. Reduced 

bicycle volume may be due to safety concerns during cold weather. 

 

 

Figure 6.8 Comparison of bicycle volume seasonal variation (summer/winter) 
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Figure 6.9 Comparison of pedestrian volume seasonal variation (summer/fall/winter) 
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6.6 Chapter Summary 

 Chapter 6 involved conducting five different analyses to visualize and analyze 

spatiotemporal patterns. First, we compared bicycle and pedestrian traffic volume from 2019 and 

2020 to see differences during the non-COVID-19 and COVID-19 periods. The analysis revealed 

changes in traffic volume during 2020, which could be attributed to the closure of public spaces, 

the need for exercise, and the desire to spend time outside in a safe and socially isolated 

environment. We also examined map visualization to uncover interesting pedestrian traffic 

patterns by comparing pedestrian activity volume on weekdays and weekends. Our analysis 

showed different traffic patterns for weekdays and weekends. Additionally, we created a 

bivariate map that divided areas into four quadrants based on walkability and daily pedestrian 

volume. Furthermore, we analyzed peak-hour traffic volume and found that downtown and 

UNL-city campuses showed high activities during morning peak hours, and there was an 

increased volume at locations related to recreational activities. Lastly, our analysis of seasonal 

patterns revealed significantly reduced winter activities for pedestrians and bicycles. 
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Chapter 7 Conclusion 

7.1 Summary of Findings 

The project investigated transportation safety of pedestrians and bicyclists, who are 

disproportionately affected by injuries and fatalities. A key focus was the integration of LBS data 

to analyze pedestrian and bicyclist traffic volume and patterns. The importance of accurate traffic 

volume analysis and the limitations of traditional methods were discussed, paving the way for 

the introduction of LBS data, StreetLight data in particular.  

The calibration of StreetLight data indices against traffic volumes was essential to adjust 

their magnitude and temporal distribution accurately. According to the calibration results, traffic 

volume stands out as the most crucial variable influencing prediction accuracy across all three 

models—pedestrian, bicyclist, and vehicle models. The calibration models demonstrated high 

predictive accuracies. The R-squared values of all three models were greater than 0.5. Overfitting 

analysis revealed a reasonable model fit, with minimal disparities between training and testing R-

squared values for all modes. 

The crash analysis procedure was comprised of several components: crash analysis, crash 

rate analysis, spatial lag model analysis, and relative rank analysis. According to crash analysis 

results, crash counts were highly correlated with traffic activity (volume). The research also 

revealed variations in results based on the exposure measure employed to normalize crash 

counts. While factors like population and network density influenced the safety of non-motorized 

road users on an aggregate level, the most noteworthy findings appeared when examining 

infrastructure at the facility scale. The safety ranking analysis identified higher and lower risk 

areas in the city.  
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The project also conducted spatial and temporal analysis of traffic volumes for 

pedestrians and bicyclists at the street segment level. Through a comparative examination of 

bicyclist and pedestrian traffic volumes between 2019 and 2020, the research unveiled changes 

in volumes and spatial disparities during the COVID-19 period. The analysis extended to include 

pedestrian activity patterns on weekdays and weekends, highlighting distinct traffic variations at 

downtown and recreational locations. Spatial-temporal analysis indicated that downtown and 

business districts exhibit higher activities during peak hours. Furthermore, the seasonal pattern 

analysis identified a noteworthy reduction in winter activities for pedestrians and bicyclists. 

Overall, this project contributes to the growing body of knowledge aimed at creating a 

safer environment for non-motorized road users. 

7.2 Merits of Project 

The project provided the following merits. First, this project contributed to the ongoing 

enhancement of traffic prediction models, crash risk assessments, and pedestrian/bicycle related 

designs in a city, as local planners and traffic engineers will have a better understanding of risk 

exposure patterns of roadway users. The project outcome can be utilized to identify and prioritize 

locations of higher risk where safety improvements would be most effective. 

Second, by analyzing safety at the street segment level, it becomes easier to monitor the 

effectiveness of implemented safety measures. This allows for ongoing adjustments and 

improvements based on data and feedback. 

Third, the pedestrian and bicyclist travel patterns developed in this model can be used as 

a foundation for future pedestrian and bicyclist modeling research. The current problem of 

inadequate pedestrian and bicyclist volume data restricts research and practical analysis on 

multiple pedestrian and bicyclist topics. The LBS data and development of a quality exposure 
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model would be a foundational platform to develop further research and practical tools to address 

these adjacent issues. 

7.3 Limitations and Recommendations 

While the project yielded promising results, there remains room for improvement in 

future traffic volume modeling efforts. The abundance of information generated by LBS data 

facilitates the need for the development of a time and cost-effective data extraction method to 

enhance the utilization of StreetLight datasets by local planners and traffic engineers. The use of 

APIs and Python programming, as demonstrated in this project, has proven effective and 

efficient for such purposes. 

It is also noted that LBS data comes with inherent limitations. First, LBS data may be 

biased towards individuals who use location-aware devices, such as smartphones. This potential 

bias could lead to the underrepresentation of certain demographic groups or those who do not 

carry such devices. Second, the accuracy of StreetLight data varies based on the size of traffic 

volume. Notably, a higher number of cases yield higher accuracy levels in the data. Third, Data 

accuracy is also subject to the functions of relative travel speeds and transportation network 

density. These factors can introduce variability in the accuracy of the data. Finally, there is a 

trend in the transportation data vendor space towards using connected vehicle data. StreetLight 

Data started transitioning their platform to connected vehicle data during the project period. 

Connected vehicle data is more accurate and comprehensive than LBS data, but it does not 

capture the bicycle and pedestrian volumes critical to this project. State DOTs should stay 

abreast of these changes and understand their implications for multi-modal transportation 

planning. 
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Transportation engineers and planners should approach the use of LBS data for 

transportation safety research with a clear understanding of these limitations. Combining LBS 

data with other data sources and employing appropriate methodologies can help mitigate some of 

these challenges and enhance the reliability of safety analyses. 
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Figure A.1 Sample StL Insights API call 
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