
APPENDIX E DESIGN FORMS AND CHECKLISTS

Exhibit E.1	Culvert Design Checklist/Data	E-3
Exhibit E.2	Broken-Back Culvert Design Checklist/Data	E-4
	Culvert Design Form	
	Drainage Computation Form	
	Hydraulic Grade Line Computation Form	

This Page Left Intentionally Blank

Project	Location:					
Project	No:		Control N	0:	Designer:	
Culvert	Station:		Strea	m Name: _		
1-	Roadway Design	Standard				
2-						
3-	Design Frequency	y				
	Comments					
4-	Design Discharge					
5-	Design Tailwater	Level				
6-	Vertical Orientation	on (Broken Bac	ck, Breaks?) _			
7-	Slope:					
	Upstream:		Culvert:		_ Downstream:	_
8-	Horizontal Orienta	ation				
9-	Skew					
10-	Fill Height (See th					
	Maximum		Minimum _			
11-	Culvert Shape:					
		Box or Rect	angular:	_ Arch:	Elliptical:	
12-	Culvert Type:					
		Metal:				
13-			, etc.)			
14-	Design Headwate					
		Elevation				
15-						
	Comments					
16-	Outlet velocity					
17-	Downstream Con	siderations				
18-	Velocity Protectio	n Device				
19-	Velocity Control D	Device				
20-	Alternates Consid	lered				
21-						
22-	Comments					

Project	No:		_ Control No:	Designer:
Culvert	Station:		Stream Name:	
1-	Roadway Design St	andard		
2-	Average Daily Traffi	c (and date) _		
3-	Design Frequency _	, ,		
	Comments			
4-	Design Discharge			
5-	Design ranwater Le	:V C I		
3-	Vertical Orientation	(Broken Back	, Breaks?)	
7-	Slope:	`	,	
	Upstream:		Culvert:	Culvert:
	Culvert:		Downstream:	
3-	Horizontal Orientation	on		
)-	Skew			
l O-	Fill Height (See the	"Pipe Material	Policy"):	
	Maximum		Minimum	
1-	Culvert Shape:			
	Circular:	Box or Rectar	ngular: Arch:	Elliptical:
2-	Culvert Type:			·
	Concrete:	_ Metal:	_ Plastic:	
3-	End Treatment (FES	S, Headwall, e	tc.)	
14-	Design Headwater:			
	Depth:	Elevation:		
15-	Elevations of Buildir	ngs / Upstrean	n Considerations	
	Comments			
6-	Outlet Velocity			
7-	Downstream Consid	derations		
8-	Velocity Protection I	Device		
9-	Velocity Control Dev	vice		
0-	Alternates Consider	ed		
1-	Economic Comparis	son of Alternat	ives	
2-				

										CULVERT		DESIGN	FORM	
PROJECT:			STATION:						DESI(DESIGNER/DATE:	ATE:		\	
i.v.			SHEET	 -		유			REVIE	REVIEWER/DATE:	ATE:			
HYDROLOGICAL DATA HYDROLOGICAL DATA			T0P	TOP OF SUBGRADE AT SHOULDER POINT	ADE AT — POINT									
E AREA: STREAM	SLOPE:			.E.hd =					© ELEV =				_	
CHANNEL SHAPE: ROUTING: OTHER:		H	-		FLsf =	$\ \ $		`	— ORIGIN	ORIGINAL STREAM BED	M BED	/		
DESIGN FLOWS/TAILWATER R.I. (YEARS) FLOW (cfs)	 		a								EL _o =			
		W W W	x, allowal ograde e ichever i	Max, allowable hd equals D + 1' or subgrade elev, at the shoulderline whichever is lower.	uals D + he should	1' or th Jerline -	the 1',	L _a =	EL; - ELo				[
CIII VERT DESCRIPTION.	TOTAL FLOW	-		Hed	Headwater	Calcul	Calculations				SNI	٨.		
SHAPE - SIZE - ENTRANCE	PER BARREL	ᇉ	않		3		 	Ι <u>ϯ</u> Ͱ	-		JOAT JTAWO JTAV	TLET LOCIT	COMMENTS	
סוואו ב סזכר בויוויאויטר	(cfs) (1) ((cfs)	(2) HW;	(3)	(4)	(2)▲	_ව	2 ((6) Ke	±(-)	(8) (8)	ELE' HEA	ΛΕΙ ON		
							+							
														1
TECHNICAL FOOTNOTES:			(4) EL	(4) EL _{ni} = HW _i +EL _i (Invert inlet control section)	/; +EL; (i+rol s	Invert	- of	(6) h _o	0 ML =	r (d _c +	$(6) h_0 = TW \text{ or } (d_c + D/2) \text{ (Whichever)}$	/hichev	er is greater	_
			(5) TW	Jaspy /	5	WDS+r	E	(7)H	= [1+K	+(29n ^e	$(7)H = [1+k_e + (29n^2 L)/R^{1.33}] V^2/2g$	3 1 1/2/	29	
(2)HW;/V = HW/V or HW;/V trom desi (3)Fall = Fl.r-Fl.: fall is zero for	design charts for culverts on	arade	99	control or flow depth in channel.	or 450	/ dep+	<u>.</u> ⊆	(8) EL ₁	$(8) EL_{ho} = EL_o + H + h_o$	H+hc				
TS /DISCHISSION•		i i							0	CULVERT	T BARREI		SELECTED:	
									0)	SIZE:				
									0) <u>2</u> Ш	SHAPE: MATERIAL:_ ENTRANCE:	 - !!			
DEFINITIONS:		۲۵	hd. Desig	Design Headwater Headwater in Inlet Control	ater Inlet	1				Outlet Uniform D	Outlet Uniform Discharge	ų,		_
A. Cross-Sectional Area of the Barrel a. Approximate		Ĕ		Headwater in Outlet Cinet Control Section	in Outlet Control	Contro	_		S. SIC	Slope of Culvert Streambed at Cu	Culver+	vert Fac	ø	
Critical Depth Interior Height of Culv. Barrel Culvert Face		ğ	ke. Entrand L. Length N. Number	Entrance Loss Coefficient Length of Culvert Barrel Number of Culvert Barrels	of Culvert Barrel of Culvert Barrel	ficient arrel arrels				ilwater erage \	Depth A elocity	bove th in Culv.	Tailwater Depth Above the Outlet Invert Average Velocity in Culv. Barrel (V=Q/A)	
32.2	f+/s/s)	Ž			Sex									\neg

Exhibit E.3 Culvert Design Form

			IULICS		Remarks													
			HYDRA	Vel	V full (fps)													
	% By:		STORM SEWER HYDRAULICS	Capacity	Offull (cfs)													
	Computed By: Date: Checked By: Date:	ge:	STORN	;	(E) Sign													
	 	– rag	01	i	Slope (%)													
				•	Length (ft)													
				LATIVE	CxA Q (cfs)													
utation				CUMU	CxA													
Comp					CxA													
Drainage Computation Form	od: rea: ial:			REMENTAL	A Runoff Coeff.													
Dr	Return Period: Zone: Drainage Area: Pipe Material:	N Value:		INCI	Area A (acres)													
			OLOGY Rainfall	Rainfall	Conc. Intensity Tc I (min) (in/hr)													
			HYDR	Time of] j j j													
					Time (min)	l												
				Inlet	ij Ti													
					From/ To													
	Location: Project Name: Project No.:				Sta													
	Locat Projec Projec			Į	No.													

Exhibit E.4 Drainage Computation Form

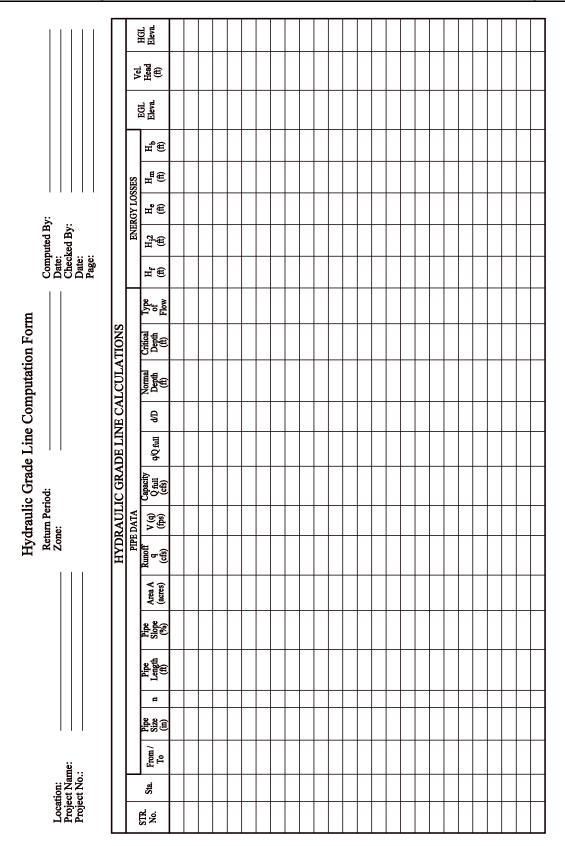


Exhibit E.5 Hydraulic Grade Line Computation Form