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EXECUTIVE SUMMARY 

 

Work zones have become an essential and integral feature of U.S. highways. A work zone is set up 

when there is a need for rehabilitation and construction on an existing roadway, which usually requires 

the closure of a traffic lane and/or shoulder. However, if not managed properly, a work zone can become 

a burden or even a risk to the traffic. The goals that are set for work zone management, especially on 

freeways, are to maintain a safe and efficient flow of traffic, decrease the injury risk to traffic users as 

well as to construction forces. 

Intelligent work zones have been widely adopted in the United States because they have been 

proven to improve traffic safety and operations. One specific work zone technology, known as 

automatic queue detection (AQD), is designed to measure work zone-related queuing in real-time, and 

inform drivers upstream so they may be prepared to slowdown or stop. This report describes an 

evaluation of the performance and efficacy of the AQD systems installed at four locations on Interstate 

80 in Nebraska.  

The AQD system involves a number of technologies. Non-intrusive speed detectors are placed at 

one or more locations within and/or upstream of the work zone. They are often placed at a location, or 

locations, where queues may be reasonably expected to form. The AQD system also has one or more 

portable dynamic message signs (PDMS) placed upstream of the work zone. Based on the real-time 

speeds measured by the speed detectors, the AQD system algorithms identify appropriate messages to 

display on the PDMS. The algorithms and the messages vary across vendors and states. For the AQD 

systems examined in this study, when the downstream measured speeds drop below specific thresholds, 

then the corresponding warning messages are posed on PDMS that is located upstream of the work zone. 

These messages indicate that there is slowing or stopped traffic ahead and the drivers should slow down 

and be prepared to stop. 

Specifically, (1) the system performance was verified by examining whether the messages 

displayed on the portable dynamic message signs (PDMS) were consistent with the underlying AQD 

logic for the particular system being analyzed, and (2) the system efficacy was measured by determining 

whether driver space mean speeds were reduced when warning messages were provided on the PDMS.  

It was found that the AQD systems were functioning well as evidenced by an error rate of 0.7% – 

2.3%. It was concluded that drivers did reduce their space mean speeds in response to the PDMS 

warning display indicating that there was slow or stopped traffic ahead. The decrease was found to be 

statistically significant and in the range of 3.5 to 7 mph. This was approximately 90% greater than the 

reduction in speed that occurred when the PDMS did not display any message. In summary, it was 

found that the AQD systems were operating correctly and, more importantly, they were effective in 

reducing the space mean speeds of vehicles approaching work zones. 

 



Results from the crash analysis show that most crashes occurred in the activity area and are rear-

ended. In addition, a crash is more likely to occur on weekdays, off-peak hour, in the daytime, no worker 

present at rural work zones. A crash is severer when drivers driving drunk, during the daytime, on 

weekdays, and more vehicles are involved. 

For crash occurred work zone areas, according to the model results, advance warning and transition 

areas need to pay attention to road conditions (e.g., worn, obstruction, debris), AADT, heavy vehicles, 

rural areas, and driver age younger than 25 years. Activity areas need to pay attention to work zone 

type, heavy vehicle, and curvature. Lastly, termination areas need to pay attention to nighttime, weekend, 

driving impaired (alcohol), young driver, and road conditions. Finally, the effect of the COVID 

intervention on I-80 crashes is evaluated. 

In summary, this report first reviews the representative research on the performance of AQD 

systems. Next, four test sites on I-80 in Nebraska and the data collection process are described. Then, 

the analysis of the data is conducted, followed by a statistical analysis designed to make inferences on 

the efficacy of the AQD system. Crash models are developed to study the safety features at work zones, 

taking into account of COVID impact. Conclusions and recommendations are provided at the end of 

the report. 
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1. INTRODUCTION 

 

A work zone can be described as a section of the roadway where construction or maintenance road 

activities are being undertaken, and they typically have driver warning signs or signals to control vehicle 

movement from the beginning to the end of the affected roadway section. Lane closures, especially on 

freeways, contravenes drivers’ expectations, reduces roadway capacity, and increases the exposure of 

work zone workers to passing vehicles. If the controls are not properly managed, long queues may be 

formed that increase delays and rear-end collisions.  

In 2015, work zone crashes caused 35,000 injuries and 700 fatalities (Paracha and Ostroff, 2018). 

The objective of work zone control signs is to manage and balance the mobility and safety challenges 

that typically exist in work zones (Ullman & Schroeder, 2014). Intelligent Transportation Systems (ITS) 

are often applied by the State Department of Transportation (DOTs) to achieve the mobility and safety 

objectives of work zones.  

In the last two decades, ITS systems have been widely promoted in the United States. Among them, 

an increasingly popular option is the automated queue detection (AQD) system. The goal of AQD 

systems is to 1) identify locations of unstable flow, 2) provide information to upstream drivers in 

advance of these areas of unstable flow, and 3) based on information provided to motorists have them 

take the appropriate action. This action could include slowing down and/or being prepared to stop when 

it becomes necessary.  

1.1. Intelligent Work Zone (IWZ) on Freeways 

Work zone sites in the United States often have lower or restricted speed limits, because excessive 

vehicle speeds and high variations in speed have been identified as two of the major contributing factors 

in crashes (Li and Bai, 2009). The information on the restricted speed limits historically has been 

provided using standard traffic regulatory signs located upstream of the work zone. 

Unfortunately, studies have shown that drivers do not always slow down in response to these 

upstream traffic speed signs (Garber and Patel, 1995). This could be problematic, particularly when the 

work zone is causing queueing that is hidden from the view of oncoming drivers. Drivers may not be 

aware of the queueing for a number of reasons including roadway geometry (e.g., poor sight lines due 
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to vertical alignment), environmental factors (e.g., snow, rain, glare, etc.), sight obstruction (e.g., large 

trucks), etc. When these situations occur drivers may have limited ability to reduce their speeds before 

encountering the queued vehicles, which increases the likelihood of a crash. 

Traditionally, the construction work zone may equip with static message signs or changeable 

message signs that do not provide real-time information on the expected travel time, delay, or operating 

speed. To overcome these issues, the “intelligent work zone” system has been adopted in the work zone 

projects, especially on freeways. 

Intelligent work zone (IWZ) system utilizes sensors, communications, and computers to get the 

real-time traffic conditions and provide dynamic information to the road users. In general, the system 

is portable and reliable and operates automatically and in real-time. The IWZ system is beneficial 

because the motorists are provided with real-time information so that they will not be surprised when 

delay, slow speed, or queue, as vehicles ahead suddenly begin to brake, which the behavior is 

hypothesized to contribute to rear-end accidents. 

On freeways, there is often a dynamic queue detection system as part of the IWZ setup to alert 

approaching drivers of stopped or slow-moving vehicles and avoid rear-end collisions. In 2015, the 

Federal Highway Administration (FHWA) launched the IWZ initiative to assist state DOTs to better 

manage work zones to improve safety and mobility. Typically, the IWZ applications serve a 

combination of the purposes such as speed monitoring, travel time display, incident detection and 

surveillance, over-height vehicle warning, and end-of-queue detection. 

Figure 1.1 shows a standard freeway IWZ layout in Nebraska. A typical IWZ setup that involves 

the advance queue detection function includes non-intrusive speed detectors placed at or near the taper 

of the work zone and a series of portable dynamic message signs (PDMS) placed on both sides of the 

road a few miles upstream of the work zone for information release. 
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Figure 1.1 Layout of the NDOT intelligent work zone 
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1.2. Advance Queue Detection (AQD) Systems 

Since 2019, the Nebraska Department of Transportation (NDOT) has implemented AQD systems on 

select Interstate 80 work zones. The AQD is one type of IWZ that focuses on detecting the queue, slow 

or stop traffic near the work zone, and informing the upstream motorists of the proper actions. 

Specifically, an AQD traffic management system is designed to identify critical changes in speed within 

or preceding the work zone and communicate this information to drivers upstream. The hope is that by 

providing accurate real-time information to the drivers, approach speeds will decrease, particularly 

during times of congestion, and safety will be improved. 

The AQD system is typically installed on work zones where there is (1) significant congestion and 

associated slowing or stopped vehicles and (2) sight line issues that preclude drivers from identifying 

the slowing/stopped vehicles. These types of work zones usually have one or more lanes of traffic closed. 

Note that periods of peak demand often occur during holiday periods, particularly in the western, rural 

areas of the state. The system structures can be simplified as shown in Figure 1.2. 

 

 

Figure 1.2. the framework zone an AQD system 

 

The speed sensors located at the beginning of the work zone first detect the real-time speed and 

send it back to the central processing system. A computation algorithm of the speed (e.g., rolling 

average) will be used to feed the PDMS with predefined warning messages. A schematic diagram of a 

typical Nebraska AQD system is illustrated in Figure 1.3.  
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Figure 1.3. The layout of the Nebraska AQD system (not to scale) 

 

It may be seen that the speed detector typically is placed at or near the taper of the work zone. The 

detector is used to measure the instantaneous speed at this location. Typically, the AQD system takes 

these individual instantaneous speed values and estimates a 3-minute or 5-minute rolling average speed. 

Intuitively, if the average speed is low (e.g., lower than a pre-defined speed threshold), it indicates a 

slow-moving queue has formed or is forming which represents a hazard situation for on-coming traffic.  

In addition, the AQD system also includes a set of PDMS placed upstream of the work zone on 

both sides of the road. The AQD system provides real-time information to the drivers through the 

messages posted on the PDMS. For example, it may be seen in Figure 1.3, based on the instantaneous 

speeds measured by the speed detector in the work zone, the AQD system has detected that there is 

stopped traffic at the beginning of the work zone and has posted a message that approaching drivers 

should be prepared to stop. 

Given different traffic conditions at work zones, NDOT provides a typical setting of the PDMS 

display in accordance with the calculated speed, as shown in Table 1.1. As a function of the estimated 

rolling average speeds, one of three standard warning messages will be displayed on the PDMS. 

 If the rolling average speed is less than 25 mph the warning message “STOP TRAFFIC 

AHEAD, PREPARE TO STOP” is displayed on the PDMS. This will be referred to as “STOP” 

status for the remainder of the report. 

 If the rolling average speed is between 25 mph and 45 mph the warning message “SLOW 

TRAFFIC AHEAD, SLOW DOWN” is displayed. This will be referred to as “SLOW” status 

for the remainder of the report. 
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 If the rolling average speed is greater than 45 mph, no warning message is displayed. The 

PDMS simply displays nothing or places four asterisks at the corners of the sign. This will be 

referred to as “NONE” status for the remainder of the report. 

 

Table 1.1. Predefined speed and message 

Last 3-min/5-min average speed V (mph) PDMS message 

V  45 

  

25 < V < 45 

  

V  25 

  

 

It is important to note the warning messages follow the MUTCD guidance. In particular, the 

messages provided during the “STOP” and “SLOW” status are displayed in two phases. To illustrate, 

when the AQD is in “STOP” status the phrase “STOP TRAFFIC AHEAD” is displayed first. This is 

followed by the phrase “PREPARE TO STOP.” These two messages are alternated at three-second 

intervals until the STOP status phase is no longer active. 

Note that the AQD system is adopted by the NDOT on some of their freeway work zone projects. 

The settings of the AQD system are location specific and depend on the traffic condition and 

construction intensity at the work zones. In fact, the AQD design is based on the characteristics of the 

work zone site. The NDOT operations engineers, in consultation with the AQD operators, may decide 

that for complex work zones (e.g., how many detectors and PDMS are required, where these should be 

placed, and the values of the operating parameters). For example, more than one speed detector may be 

required to provide information to the AQD algorithm. In addition, the location and number of PDMS 

units will be a function of the expected queue length at each test site. Intuitively, it is important to place 

the PDMS well upstream of the expected end of the queue so drivers will have the time to adjust their 

speeds in response to the information provided on the PDMS. The distance of the upstream location 

will be based on the characteristics of the site and the engineer’s judgment. 
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1.3. Objectives and Benefits 

The first objective of the study will be to determine whether the AQD system is performing adequately. 

For example, the researchers will ascertain whether the correct messages are being displayed on the 

PDMS for given traffic conditions at the AQD detectors. For instance, if the AQD system identifies a 

queue, the research will confirm that the correct message is displayed on the PDMS upstream of the 

queue. The hypothesis that will be tested is that the correct message is displayed X percent of the time. 

The acceptable range used will be identified by the TAC. The hypothesis tested is shown below: 

H0: The AQD system displays the correct message within an acceptable range (e.g., X percent 

of the time). 

The second objective of the study will be to ascertain how the drivers react to the messages 

displayed on the PDMS. It is expected that when the drivers are informed that a queue is present ahead 

of them, they will slow down. The amount of speed reduction will be quantified as a function of distance 

from the PDMS. The hypothesis that will be tested is that the drivers will, on average, drive slower in 

response to the queue-related PDMS messages. In other words, the average speed in the vicinity of the 

PDMS will be lower when a “stop/slow traffic ahead” message is displayed as compared to when a 

“roadwork ahead” message is displayed. Also, the location of the end-of-queue will be monitored to 

determine whether the response of drivers is linked to the message on the PDMS and not the tail-light 

of vehicles at the end-of-queue. The delay associated with the work zone will also be estimated from 

the empirical data using the Highway Capacity Manual 6th version (HCM6) methodology [3]. The 

hypothesis tested is shown below: 

H0: A statistically significant decrease in average speed will occur when the PDMS indicates 

that the drivers should be prepared to stop because a queue has been detected ahead. 

The third objective of the study will be to determine if crash rates are lower on the SWZ equipped 

with the AQD system and will compare them to crashes on work zones without the AQD system using 

statistical theory. Note that the static signage at both types of locations will be consistent with NDOT 

practice. The focus will be on rear-end crashes, but all types of crashes will be examined. The hypothesis 

tested is shown below: 

H0: The crash rate for work zones equipped with the AQD system will be lower than work zones 

that are not equipped with the AQD system. 
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The insights gained from this research will improve the safety and efficiency of operations at 

freeway work zones within the State of Nebraska. There are four main benefits:  

a. The functionality of the current AQD system will be validated using empirical data. In addition, 

any potential modifications and improvements will be identified; 

b. The efficacy of the systems as measured by a reduction in average vehicle speed as a function 

of distance from the PDMS and the message displayed on the PDMS will be quantified; 

c. The crash reduction rates associated with the AQD systems will be quantitatively identified;  

d. The NDOT benefit/cost procedure for the AQD system deployment will be validated. This will 

help NDOT refine the criteria used to justify the deployment of the AQD systems and 

determine when AQD systems should be used in work zones, etc. 

 

The results of this project, including the validation of the NDOT benefit/cost procedures, will help 

NDOT engineers in deciding 1) when a lane closure may be used, 2) the length of time the lane closure 

should be active, and 3) whether an AQD system should be installed. The results can also provide 

evidence of compliance amongst drivers so NDOT may consider complementary systems. For example, 

enforcement may be used if the systems are found non-compliant.  

1.4. The Scope and Structure of the Report 

The project focuses on those IWZs on Interstate-80 in Nebraska where AQD systems are installed. 

Specifically, it aims to evaluate the effectiveness of the AQD systems which are designed for the 

application in Nebraska work zones.  

The report will start with a comprehensive literature review on the engineering practices of the 

AQD systems applied in different states. Chapter 3 describes the data collection efforts at the selected 

work zone test sites, followed by data processing procedures. Crash analysis and modeling are 

conducted in Chapter 5, and the COVID influence on the traffic crashes is considered in Chapter 6. 

Results are summarized in Chapter 7 as evidence of the objectives proposed in this project. Finally, 

conclusions and recommendations are provided. 
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2. LITERATURE REVIEW 

 

Because of the dynamic nature of work zones, in terms of traffic volumes and continuous changes in 

lane or section locations, portable sensors that are integrated with portable dynamic message signs 

(PDMS) are often deployed for real-time ITS data collection and analysis (Luttrell et al. 2008) and 

provide actionable driver information. The integration is referred to as a smarter work zone (SWZ) or 

work zone ITS or Intelligent Work Zone (IWZ). The IWZs are often temporarily deployed to 

dynamically control traffic that is within or approaching the work zone, especially on high-speed 

highways (Paracha and Ostroff, 2018). 

The automatic queue detection system (AQD) is an essential component of the queue warning 

system to alert drivers of safety issues caused by slowed or stopped vehicles on freeways at the tapers 

of a work zone. Essentially, the AQD system measures the speed at various locations and relays real-

time information upstream to a portable dynamic message sign (PDMS). The goal of the system is to 

warn drivers about upcoming queues ahead. If no queues are detected, the PDMS simply informs 

drivers of road works ahead. The system is designed to reduce vehicle speeds as they approach the 

queue and/or work zone, and therefore reduce the risk of a rear-end crash (Hourdos, 2019). The 

following subsections summarize existing queue detection systems in some selected states in the 

Midwest. 

2.1. Work Zone Speed Management Systems 

Negative driver behavior including speeding, following too closely, and suddenly slowing or stopping, 

has been reported as the most common contributing factor for rear-end crashes in work zones (Raub, 

2001; Akepati and Dissanayake, 2011). It is assumed that if transportation agencies could reduce speed 

in the work zone and inform drivers of upcoming queues in real-time, it would reduce the number of 

rear-end crashes. This will make the work zone safer for both construction workers and the traveling 

public. 

There are various speed management techniques that can be used in work zones such as the 

presence of law enforcement (e.g., police vehicle), photo-enforcement, flaggers, rumble strips, and 

providing real-time variable speed advisories. Using dynamic message signs (DMS), which are also 

called changeable message signs (CMS) or variable message signs (VMS), to provide information to 
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drivers upstream of the work zones has been identified in the literature as one of the most effective 

techniques for reducing speeds (Lin et al., 2004). 

The use of the DMS to provide real-time information to drivers in order to reduce vehicle speeds 

can be roughly divided into two categories. In the first category, the general design involved a DMS 

connected to a radar unit generally in close proximity to the work zone. The radar unit was used to 

measure the instantaneous speeds of vehicles as they approached the work zone. The instantaneous 

speed was then displayed on the DMS so that the driver could see their speed and, more importantly, 

whether this speed was higher than the speed limit. The goal of the system was to inform drivers of 

their current speeds, warn drivers when they were exceeding the speed limit, and hopefully result in a 

lowering of the speeds of those drivers who had been exceeding the speed limit at or approaching the 

work zone (Wang et al., 2003).  

The second category uses a Portable DMS (i.e., PDMS) as an integral part of the AQD system. 

The PDMS provides information on real-time speeds of the traffic downstream from the PDMS rather 

than speed information on an individual vehicle at the PDMS. In this system, the PDMS is located 

upstream of where the instability in speed (e.g., slowing or stopped vehicles) is expected to occur. Note 

that the exact location of the PDMS depends on the characteristics of both the vehicle traffic and the 

work zone. This will be discussed in detail later. 

The AQD systems were first developed in the early 1970s (Kermode et al., 1970; Dudek et al., 

1978a; Dudek et al., 1978b) and in recent years have been adopted by many State Departments of 

Transportation including those of Michigan, Wisconsin, Texas, Minnesota, Illinois (Hallmark, et. al., 

2020). Their effectiveness was usually assessed by driver compliance, as measured by instantaneous 

speed, with the informational, advisory, or warning message that is displayed on the DMS/PDMS. In 

practice, a large number of studies have observed that work zone instantaneous speeds at specific 

locations were reduced as a result of DMS/PDMS implementation. Table 2.1 summarized the results of 

representative studies on the effectiveness of DMS/PDMS at high-speed intelligent work zones in 

literature. 
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Table 2.1. Studies of the Speed Management Techniques Using DMS/PDMS 

Research 
WZ Location 

&Type 

Site 

Informationa 

Message Sign 

Location 

Message 

Display 
Speedb 

Speed 

Variation 

Richards 

et al., 

1986 

I-10 in 

Texas, urban 

6-lane 

freeway 

Volume = 

1550 vph, 

Truck = 

20%, 

PSL=60mph, 

RSL=40 mph 

At the work 

zone taper 

Advisory 

speed and/or 

informational 

message 

3 - 9 

mph 

decrease 

No sig. 

change 

Garber 

and Patel, 

1995c 

I-81 in 

Virginia, 

urban 4-lane 

freeway 

Volume = 

24000 vpd, 

PSL = 65 

mph, RSL = 

55 mph 

At the work 

zone taper 

“High Speed, 

Slow 

Down”; 

“You Are 

Speeding, 

Slow Down” 

0.7 - 5.6 

mph 

decrease 

Decrease 

McCoy et 

al., 1995 

I-80 in 

Nebraska, 

urban 4-lane 

freeway 

Volume = 

38000 vpd, 

Truck = 

21%, PSL = 

75 mph, RSL 

= 55 mph 

At the work 

zone taper 

Current 

speed display 

4 - 5 

mph 

decrease 

No sig. 

change 

Fontaine 

and 

Carlson, 

2001 

US-62 in 

Texas, rural 

2-lane 

highway 

Volume = 

1000 vpd, 

PSL =70 

mph 

0.439 – 0.587 

mile upstream 

of the work 

zone taper 

Current 

speed display 

Car: 2 -  

9 mph 

decrease

; Truck: 

3 - 10 

mph 

decrease 

- 

Wang et 

al., 2003 

Georgia, 

rural 2-lane 

highway 

Truck% = 

35%, RSL= 

45 mph 

At the work 

zone taper 

“You Are 

Speeding, 

Slow Down 

Now”; 

“Active 

Work Zone, 

Reduce 

Speed” 

7 - 8 

mph 

decrease 

Decrease 
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King et 

al., 2004 

I-70 in 

Missouri, 

urban 4-lane 

highway 

PSL = 70 

mph 

2 and 5 miles 

upstream of 

the work zone  

“Actual 

Speeds 

Ahead/xx 

mph”; “Slow 

Traffic/xx 

miles 

Ahead”; etc. 

7 mph 

decrease 

Decrease 

Mattox III 

et al., 

2007 

SC219, 

SC290, SC72 

in South 

Carolina, 2-

lane highway 

Volume = 

122-250 vph; 

PSL = 45 

mph 

within work 

zone 

Speed-

activated 

sign: “You 

Are 

Speeding If 

Flashing” 

2 – 6 

mph 

decrease 

- 

Zech et 

al., 2008 

I-90 in New 

York, rural 

four-lane 

freeway 

PSL = 65 

mph RSL = 

45 mph 

0.29 – 0.857 

mile upstream 

of the work 

zone 

i. “Right 

Lane Closed, 

Keep Left”; 

ii. “WZ Max 

Speed 45 

MPH, 

Prepared to 

Stop”; iii. 

“Left Lane 

Closed, Keep 

Right” 

3.3 - 6.7 

mph 

decrease 

for ii; 

No sig. 

change 

for i and 

iii 

0.2 - 2.0 

mph 

increase 

for ii; −2 

to 1.13 

mph 

change 

for i and 

iii 

Li et al., 

2010 

US-36 and 

US-73 in 

Kansas, rural 

two-lane 

highway 

Volume = 

3400 – 3630 

vpd, PSL = 

65 mph, RSL 

= 45 mph 

0.284 mile 

upstream of 

the work zone  

“Road Work 

Ahead, Slow 

Down” 

4.7 mph 

decrease 

- 

Huang 

and Bai, 

2014 

K-13 in 

Kansas, rural 

two-lane 

highway 

Volume = 

1200 vpd, 

PSL = 65 

mph 

0.1 mile 

upstream of 

the work zone  

“Work Zone 

Ahead, Slow 

Down”; 

“Flagger 

Ahead 

Prepare to 

Stop” 

8 mph 

decrease 

- 
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Domenich

ini et al., 

2017d 

Four-lane 

highway 

using  

simulator 

PSL = 80 

mph 

0.43 mile 

upstream of 

the work zone  

“Reduce the 

Speed” 

5.7 mph 

decrease 

1.8 mph 

increase 

Bham and 

Leu, 2018 

I-44 in 

Missouri, 

rural 4-lane 

highway 

PSL = 70 

mph 

1.5, 2.3, 3.9, 

and 5.6 mi 

upstream of 

WZ 

Caution, WZ 

Ahead, 

Reduce 

Speed, etc. 

9.35 - 

48.91 

mph 

decrease 

Increase 

a PSL = post speed limit at non-work zone; RSL = Regulatory speed limit at work zone. 

b The speed evaluated in the literature refers to the time mean speed (spot speed). 

c Seven sites were tested in total at I-81 and I-64 with other messages of “Excessive Speed, Slow Down” 

and “Reduced Speed in Work Zone.” 

d The change of mean speed and speed variation is calculated using values at Site B minus values at 

Site A. 

 

Although extensive empirical research on the performance of PDMS has been done, there are still 

gaps in the literature. For example, while all of the studies listed in Table 1 reported a reduction in work 

zone time mean speeds, the magnitude of the speed reduction varied across the sites. More importantly, 

the few studies that did examine the variability of speeds in the work zone arrived at conflicting 

conclusions. In other words, it is still an open question on whether the use of PDMS to provide real-

time information impacts the variability of work zone speeds. 

Furthermore, studies in literature analyzed the effectiveness of the system by comparing the time 

mean speeds upstream and downstream from the PDMS locations. By definition, time mean speed, 

which is measured a particular point in the work zone, may not capture driver speed changes along the 

entire road segment. This is particularly true when traffic is congested (Kim et al., 2013). In this 

situation using space mean speed, which is taken over a definite length of roadway, may provide more 

meaningful results as it won’t be as susceptible to transitory effects that can occur when measuring the 

speed at one location. 

In addition, some studies found that the PDMS was no more effective than traditional speed 

management techniques (e.g., static signage) in reducing speeds (McCoy and Pesti, 2002; Huebschman 

et al., 2003). In these situations, the authors attributed this to a number of factors including PDMS 

location (e.g., too far from work zone), traffic flow conditions (e.g., uncongested), and/or road geometry 

restrictions. Therefore, while the AQD system has been shown to be effective, many authors have 

indicated that these systems have to be designed for the specific work zone conditions in order for them 

to achieve maximum effectiveness (Middleton et al., 2011; Ullman et al., 2014; Azimi et al., 2021). 

This study investigates AQD systems that have been implemented on Interstate Highway work 

zones in Nebraska. These AQD systems consist of a downstream speed detection system that feeds real-
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time speed estimates to upstream PDMS. First, the operation of the AQD system was verified by 

examining the measured space mean speeds at the AQD detector locations and ensuring that the 

associated PDMS messages were consistent with the underlying system logic. Second, the behavior of 

drivers, as a function of the message on the PDMS, was studied by comparing empirical travel times 

(e.g., space mean speed) of vehicles on the freeway segments immediately upstream and downstream 

of the PDMS. Note that individual vehicle travel time information is not collected as part of the AQD 

system. To the authors' knowledge, this is the first study that evaluates the effectiveness of an AQD 

system using travel time (e.g., reciprocal of space mean speed) over roadway segments rather than time 

mean speed at select locations. 

2.2. AQD Applications among DOTs 

Several state DOTs have deployed IWZ applications provided by the state themselves or through 

various private suppliers over the years. The characteristic features of the IWZ are that they should be 

portable, automated, and reliable to obtain and analyze traffic data in real-time. Examples of IWZ 

systems include but are not limited to the following: Traffic Information and Prediction System (TIPS), 

Advance Speed Information System (ASIS), Computerized Highway Information System (CHIPS), 

ITSWorkzone, Automated Data Acquisition and Processing of Traffic Information in Real-time 

(ADAPTIR), the Automated Information Management System (AIMS), etc. A detailed description of 

some of the existing IWZ can be found elsewhere (Pant, 2017). A review of the literature shows that all 

IWZ works with the objective of one or more of the following functions:  

 Construction Equipment Alerts – Intended to inform motorists about a construction vehicle in 

the traffic stream. 

 Travel Time Display – Provides travel time information to assist motorists to make informed 

route choice decisions.  

 Incident Detection and Surveillance – The objective is to provide incident information to 

motorists as they happen and enable faster response times to incidents.  

 Over-Height Vehicle Warning – Provides warning alerts to motorists in advance for work 

zones with low structures.  

 Speed Monitoring – To enhance the compliance of speed reductions and facilitate uniform 

speeds. 

 Queue Detection – The objective is to address the safety issues caused by slowed or stopped 

vehicles on freeways at the approaches to a work zone.  

 

Over the past two decades, there have been several studies on the benefits of IWZ applications. 

This section gives a review of the efforts by the Federal Highway Administration, state DOTs, and 

academia. The FHWA website describes IWZ applications and provides reports that overview concepts, 

guidance, and benefits of IWZ. According to Pant (Pant, 2017), these reports outline the characteristics 
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of an IWZ system and provide motorists with actionable information in real-time within a work zone 

(Scriba and Atkinson, 2014) outlined costs of deployment, troubleshooting, different ITS equipment in 

existence, and of course the variation of the needs of work zones. 

In 2014, the FHWA developed an IWZ Implementation Guide to assist in the design and 

implementation of IWZ (Ullman et al., 2014). This was followed by the IWZ initiative as part of round 

three of the Every-Day Counts program (Paracha and Ostroff, 2018). The FHWA launched the SWZ or 

IWZ initiative in 2015 to encourage and assist state DOTs/agencies to produce better work zone 

operating plans. According to the FHWA, this initiative has contributed to minimizing travel delays, 

enhancing safety, and maintaining access to business and residential facilities. Also, the FHWA has 

developed an IWZ implementation Tool as a software application to the Guide that supports 

independent decision-making on IWZ deployment. These documents can be accessed via the FHWA 

website (FHWA, 2022). 

Many state DOTs have undertaken studies to evaluate IWZs and produced guides to help achieve 

mobility and safety metrics in the implementation of IWZs. A good summary of the IWZ applications 

and results from case-by-case study efforts can be found in a project report completed by the Arizona 

DOT, where it may be seen that the installation of IWZs result in mobility and safety improvements 

(ADOT, 2019).  

Currently, many state DOTs are implementing IWZs in an integrated way to achieve two or more 

objectives within the same system implementation. For example, the Kansas DOT implemented an IWZ 

system that has both dynamic lane merge and queue warning systems at an approximate cost of $840 a 

day (KDOT, cited in ADOT, 2019). There is a growing recognition that one of the major safety 

measures in freeway work zones is to address the issue of the back of queue crashes by installing 

automatic queue warning systems. 

 

 Illinois DOT 

Illinois DOT (IDOT) began the installation of queue detection systems in the early 2000s because of 

the incidents of a severe crash on the I-57 (Hallmark et al., 2020). IDOT has two queue detection system 

approaches used for long-term and short-term projects. The latter is usually on-call and used for projects 

that span two weeks or less. It is a low-cost alternative to the long-term system setup. More importantly, 

the specific equipment for the queue detection systems is determined by the traffic control company 

that wins the bid and not by IDOT. The interstate or highway selection criteria for a queue detection 

system are based on conditions that cause more than five minutes of delay, a mile of the backup queue, 

and other traffic patterns. According to Ullman & Schroeder (Ullman & Schroeder, 2014), the 

evaluation of a queuing system in Illinois resulted in a 14% decrease in queuing crashes and an 11% 

decrease in injury crashes. Another study resulted in a 13.8% reduction in rear-end crashes (Roelofs 

and Brookes, 2014). 
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 Iowa DOT 

In Iowa, Traffic Management Centers (TMC) are used in the IWZ operations. Real-time travel data is 

collected using sensors and cameras and sent to the TMC via a machine learning algorithm 

(Kinckerbocker et al., 2018). The TMC Operators then sent actionable messages to PDMS, social media, 

and the 511 system. There are four levels of speed limits that the logic is being implemented: at 70 mph 

(normal conditions, no message), at 55 mph (advised), 45 mph (advised), and 35 mph (advised). Iowa 

uses the TransSuite transportation management system for queue alerts. A typical message displayed 

on the PDMS relating to the estimated speed is as follows - (1) below the free-flow speed at a given 

threshold - ‘Slow Traffic Ahead,’ (2) below the speed threshold - ‘Stopped Traffic Ahead,’ and (3) 

when speeds are regained – ‘Traffic Delays Possible for up to xx minutes’ depending on the conditions 

of the work zone (Hallmark et al., 2020). 

 

 Kansas DOT 

In addition to the actionable information on PDMS, traffic and video data are supplied to the Kansas 

City Traffic Management Center (http://www.kcscout.net/) to assist early incident detection and traffic 

flow conditions. In Kansas, the general public is able to obtain work zone real-time traffic information 

online using JamLogic’s platform (Bledsoe, 2014). According to (Hallmark et al., 2020), there was a 

50% traffic diversion when the PDMS displayed a delay of 7 minutes or more.   

 

 Michigan DOT 

Michigan DOT started implementing IWZ over a decade (ADOT, 2019). The study on the queue 

warning system in Michigan DOT started in 2012 and has then been standardized (Hallmark et al., 

2020). The placement of queue warning systems is based on the following roadway characteristics (e.g., 

peak hour lane closure, one or more-mile queue length) and at least an automatic queue advisory and 

speed-based IWZ systems are deployed. The evaluation of the impact of the queue warning systems in 

Michigan has resulted in a 60% to 40% percent reduction of total rear-end crashes (Hallmark et al., 

2020).  

 

 Minnesota DOT 

Minnesota DOT uses an IWZ Toolbox that provides the basis for various ITS work zone system 

selection (MnDOT, 2008). Similar to the operation of the queue warning systems in the other states, the 

MnDOT system provides congestion notifications and alerts motorists of a traffic stop or slow-moving 

traffic. The MnDOT system requires PDMSs to be incrementally spaced and automatically activated 

when the queue is within a mile away from the PDMS location. The messages on the PDMS switches 

from “Prepare to Stop” when queues are detected otherwise it stays blank or is used for other purposes. 

According to Hallmark et al., (2020), an evaluation of the system set up in Minneapolis showed that the 

queue detection was within ±5 seconds from when the empirical queue was observed. The overall true 

file:///C:/Users/14028/Desktop/Ernest_papers/WorkZone/Bledsoe,%20J.,%20Raghunathan,%20D.,%20&%20Ullman,%20J.%20(2014).%20Kansas%20Demonstration%20Project:%20Improvements%20to%20the%20Homestead%20Lane/I-35%20Interchange%20in%20Johnson%20County
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positive queue detection rate was 84% which ranges from 74% to 96.7%. Another study resulted in a 

22% and 54% decrease in crashes and near-crashes (Hourdos et al. 2017). 

 

 Missouri DOT 

In Missouri, queue length detectors in combination with other ITS equipment are used to monitor and 

provide actionable information to motorists via PDMS. The system uses the TransSuite software in 

combination with HERE probe speed data to monitor speeds and display information to motorists at 

varying speed thresholds. According to Clark et al. (2017), the system is effective in supporting smooth 

traffic flow, advising motorists, and providing warnings. 

 

 Texas DOT 

In Texas, an integrated system developed by the Texas Transportation Institute is used to monitor the 

work zone and disseminate motorist information. The system aims to automatically detect and predict 

queue formation and disseminate actionable information such as ‘slow and stopped traffic ahead.’ 

According to Habermann (2015), before the deployment of the system – there is an agreed concept of 

operations with stakeholders and the public. An evaluation of one of the queue warning systems set up 

in Houston resulted in a decrease in speed variance, a 55% reduction in forced lane changes, and a 2% 

to 3% reduction in erratic maneuvers (Pesti et al. 2008). 

 

 Wisconsin DOT 

The Wisconsin DOT completed a study to evaluate a work zone queue warning system in Manitowoc 

County along I-43. This study was initiated because of the spike in work zone crashes and fatalities in 

2015. The main objective was to collect and analyze speed data in and on the tapers of the work zone 

to determine driver behavior. The study compared crashes from a similar project without the queue 

warning system. According to the Wisconsin DOT cited in Hallmark et al. (2020), it was found that 

there were 15% and 65% decreases in queue-related crashes and injury crashes, respectively. 

2.3. Summary 

The literature review has shown that there is a growing interest in the use of smart work zones during 

road construction, especially on interstates. There are numerous settings employed by several state 

DOTs. However, the basic characteristics of these smart systems are that they need to be automated, 

reliable, and portable to obtain and analyze traffic data in real-time, and then communicate actionable 

information to motorists.  

Intelligent work zones are designed with the goal to enhance safety and mobility by employing 

sensors, estimation algorithms, and traffic management strategies. The evaluation of these intelligent 

work zones has resulted in considerable positive results on safety and mobility through the back of 
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queue management, safe lane merging, speed reductions, facilitating uniform speeds, route diversion, 

and other traffic control techniques. 

One of the major safety measures in freeway work zones is to address the issue of back of queue 

crashes. State DOTs have deployed automatic queue warning systems to provide visual warnings and 

actionable information to ideally help drivers to prepare for slow-moving or stopped traffic in and 

around the work zone.  

It is the hope of many state DOTs that, drivers comply and take the needed actions. However, 

drivers are often distracted and may fail to read alerts or recognize warning signs especially when signs 

are a few miles away from the tapers of the active work zone. In other cases, drivers just fail to comply 

with the warning signs they receive. This report evaluates the effectiveness of the automatic queue 

detection system and estimates the compliance rate of drivers approaching the work zone after 

displaying actionable information.   
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3. DATA COLLECTION 

 

To evaluate the effectiveness of the AQD system, one of the critical traffic conditions is there should 

be slow-moving traffic, or queues, in the work zone so that a type of warning message will be displayed 

and conveyed to upstream drivers. Therefore, on one hand, high-volume traffic is expected during the 

data collection period to form queues at the beginning of work zones. On the other hand, the queues 

should be far from reaching the upstream PDMS locations so drivers would see the warning message 

before seeing the end of the queue. This was not that difficult to reach in normal conditions since at 

least one lane will be closed at the test site, which will naturally generate a merging bottleneck, as 

shown in Figure 3.1.  

 

 

Figure 3.1 Data collection on queued traffic conditions at a test site 

 

However, under the influence of the COVID-19 pandemic and its interventions, traffic flow was 

dramatically reduced during the work zone activation seasons. Heavily congested traffic scenarios were 

rarely observed. Therefore, the data collection of travel times at PDMS has to be conducted in a two-

phase manner. Note the impact of COVID-19 on the traffic performance of the work zone test sites will 

also be studied later in this report. 

3.1. Preliminary Studies and Test Site Selection 

Before conducting holistic data collection, preliminary studies were performed to understand the 

function of the AQD systems and select the work zone test sites. AQD systems provided speed at the 

taper of the work zone merging area (i.e., beginning of the work zone) at a 1-min interval, which 

activates a warning message with the time and content information to the PDMS. Depending on 

different settings, more speed detectors at 1-mile and/or 2-mile upstream of the work zone may also be 
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available, although these speeds are not used to feed the warning message according to the AQD 

algorithm. In addition, the AQD systems also provided vehicle counts, large vehicle counts, etc.  

To this end, data from the AQD systems at Big Springs (Westbound I-80) test site was obtained. 

The traffic volume and heavy vehicle percentage data in the week of September 14 to September 20, 

2020, were compared to manually observed data from cameras on September 20, 2020. Figure 3.2 

shows the verification of the traffic counts. 

 

 

 

Figure 3.2. Data verification for the traffic counts at Big Spring (Shaded area indicates the data varies 

in a week from Sep. 14 to Sep. 20, 2020. Solid curve represents one-day data from Sep. 20, 2020, and 

the dotted points are field obseration at the same time and location) 

 

As the core algorithm of the AQD systems, average speed and warning messages are obtained and 

studied. Figure 3.3 provides an example of the AQD data with sporadic slow or stop traffic at the work 
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zone, which green, yellow, and red colored timeframes indicating the display content on the PDMS 

were STAR, SLOW, and STOP, respectively. 

 

 

Figure 3.3. Illustration of a speed and message matching example at Big Springs 

 

Intuitively, Figure 3.3 shows the released message matches the detected speed very well. There 

may be inconsistency (i.e., error) where the warning message was displayed however it shouldn’t, 

according to the calculated average speed, as arrows marked in Figure 3.3错误!未找到引用源。. In 

those cases, the speeds were above 45 mph, however, during these periods the PDMS displayed the 

SLOW warning message (timeframes were indicated in yellow color).  

Note all the speed and warning message data are provided from AQD systems. A further statistical 

study will report a quantitative result of the matching rate at different locations. The preliminary studies 

help to identify possible problems that need attention.  

It is anticipated that the criteria used to select the test sites will include: 

a) Work zone location (e.g., urban, rural), 

b) Number of lanes (e.g., 3-to-2, 2-to-1), 

c) Traffic density, 

d) Truck percentage, 

e) Road geometry (e.g., grade, curvature), and 

f) Presence of existing AQD systems. 

 

Although listed in the last, many time the presence of existing AQD systems that are avaible as 

test site is critical. This is due to the fact that NDOT has not widely installed AQD systems for the 

construction work on Interstate. Finally, all the study sites are identified in consultation with the TAC 

and NDOT traffic engineers.  
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3.2. AQD Speed and Warning Message Data Collection 

Based on the preliminary results of the AQD data from all available IWZs on I-80 in Nebraska, four 

test sites were selected to study the effectiveness of the functionality of the AQD systems. Specifically, 

the goal was to make sure the AQD systems work functionally as expected. Data from the four selected 

test sites, as shown in Figure 3.4, were obtained to analyze the system errors during the study period. 

Test site 1, located near Wood River, NE, involved a reduction from two lanes to one lane in the 

eastbound direction. As shown in Figure 3.4 (a), the AQD system consisted of a speed detector that was 

located at the taper of the lane closure. It also included two sets of PDMS. The first and second PDMS 

was located approximately 1 mile and 5 miles upstream of the speed detector, respectively. 

Test site 2, located near Ashland NE, had a reduction from three lanes to two lanes in the 

westbound direction. Similar to Test Site 1, the speed detector was located at the taper of the work zone. 

As shown in  Figure 3.4 (b), the test site also utilized two sets of PDMS, which were located 

approximately 1.5 miles and 2.5 miles upstream of the speed detector, respectively. 

 

 

(a) Wood River test site                   (b) Ashland test site 

 

(c) Waco test site                    (d) Big Springs test site 

Figure 3.4 Layout of the AQD systems at different test sites. The blue cross indicates lane closure. 

The AQD system made of speed detector and PDMS is in red triangle and rectangle, respectively. 

 

Figure 3.4 (c) shows the Waco test site. This work zone had a reduction from two lanes to one lane 

in the westbound direction. It also utilized two sets of PDMS located upstream of the speed detector. 
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The first was located approximately 1 mile upstream and the second was located approximately 3 miles 

upstream. 

The AQD systems at the Big Springs test site, as can be seen in  Figure 3.4 (d), were more complex 

because the work zone was located at the interchange of two Interstate highways (e.g., I-80 and I-76) 

and was approximately 5 miles long. This work zone had a reduction from two lanes to one lane in the 

westbound direction. Because this work zone included multiple construction activities, the designers 

chose to utilize two speed detectors. The first detector was installed at the taper of the Work Zone. The 

second detector was installed approximately 3.5 miles downstream from the first detector and was used 

to measure vehicle speed within the work zone.  

The AQD logic was such that the lowest rolling average speed from the two speed detectors was 

used at the input to the AQD algorithm. In other words, the lowest rolling average speed was used to 

identify which message to display on the upstream PDMS. This test site also utilized two sets of PDMS 

located upstream of the speed detector. The first and second PDMS sets were located approximately 1 

mile and 3 miles upstream of the work zone, respectively. Both sets of PDMS were designed to display 

the same message simultaneously. 

The summary of the AQD data collection at the four locations is shown in Table 3.1. 

 

Table 3.1 Summary of the AQD data collection 

 

Test site Wood River Ashland Waco Big Springs 

AADT (vpd)* 21811 43074 25245 15070 

Heavy vehicle percentage* 36.6% 17.4% 33.5% 47.1% 

Lane configuration 2-to-1 3-to-2 2-to-1 2-to-1 

Work zone length (mi) 5 6 4 11 

AQD data collection  

(0:00 am – 11:59 pm) 

8/14/2019 – 

11/15/2019 

4/15/2020 – 

7/22/2020 

4/8/2020 – 

9/11/2020 

6/16/2020 – 

10/19/2020 

*Annual Average Daily Traffic (AADT) and truck percentage were obtained from the NDOT website. 

NDOT conducted counts before the work zone construction in 2020 and the AADT from the nearest 

collection station on I-80 was used in this table. 

 

As mentioned previously, the AQD system is designed to capture speed data from the speed 

detectors as well as the message data posted on the PDMS. Each speed detector captured individual 

vehicle speeds and vehicle type information and all data had time stamps. From this, the vehicle 

volumes, disaggregated by vehicle type, could be estimated. Each PDMS stored the start time, end time, 

and text for each message displayed. All this data was available to the research team. 
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3.3. Travel Time Data Collection 

As introduced previously, a typical NDOT AQD system comprises a speed sensor located at the 

merging taper of the WZ, and two sets of PDMS that are one mile and two miles away from the speed 

sensor, respectively. The Miovision data collection system is a five Miovision Scouts which are roughly 

even spaced upstream and downstream of the PDMS locations. The relationship between the AQD 

system and the Miovision data collection system can be found in Figure 3.5. Note that the Miovision 

data collection system can only be in either one of the PDMS locations at a time. 

 

 

 

Figure 3.5. Relationship between the AQD system and Miovision data collection system 

 

The Miovision Scout portable units, as shown in Figure 3.6 (a), consist of two types of detectors 

(e.g., cameras and WiFi receivers), and both were used to capture traffic data. Cameras within the 

portable units were used to obtain video data of traffic traversing the roadway. The WiFi receivers were 

used to capture Media Access Control (MAC) addresses, and their associated time stamps, from passing 

vehicles. Any electronic unit in a passing vehicle that has (1) short-range communication capabilities, 

and (2) is enabled, would provide MAC addresses. These electronic units could include laptops, tablets, 

mobile/cell phones, and communication systems within the vehicle. 

 

 
 

Figure 3.6 The data collection system of (a) a Miovision Scout unit (b) the layout of the five 

Miovision stations (c) a field deployment example. 
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Five Miovision Scout units formed the travel time data collection system, as shown in  Figure 3.6 

(b). The five Miovision Scout stations, labeled stations 1 through 5 were placed at approximately 0.5 

mile spacing in the vicinity of the PDMS being analyzed. The goal was to place Station 3 as close to 

the PDMS, as was practical. Stations 1 and 2 were placed approximately 0.5 and 1 mile upstream of the 

PDMS. Stations 4 and 5 were placed approximately 0.5 and 1 mile downstream from the given PDMS. 

As shown in  Figure 3.6 (c), each Miovision Scout unit was attached to a mile-marker sign. The 

research team ensured the WiFi antenna was pointed perpendicular to passing traffic and the camera 

faced oncoming traffic.  

Because it was necessary to attach the devices to a mile-marker sign, the exact location of the 

Miovision units varied from work zone to work zone. After the research team placed the five Miovision 

Scout portable detectors in the field they measured the distances between them using the embedded 

GPS, which is accurate to within a 23 ft radius (Miovision Website). The measured distances were then 

compared to the distances on the mile-marker signs. The average difference between the distances 

measured by the GPS and the distances indicated on the mile-marker signs was 1.1%. Consequently, 

the measurements obtained from the GPS were used for all further calculations.  

It should be noted that before setting up the data collection systems at Waco-Utica and Big Springs, 

the AQD system had been operational for several weeks and had been well tested. Therefore, it was 

assumed any commuter drivers were familiar with the AQD system operating as part of the work zone.  

It was also assumed that the data collection system had minimal or no effect on driver behavior. 

This was because the data collection units are relatively small and are attached to existing mile-marker 

signs which help hide their profile as shown in Figure 3.6 (c). The data collection was scheduled for the 

same period each day from 8 AM to 8 PM. No information was collected when the research team was 

setting up the system or changing out the batteries. 

Data collection was conducted in two phases. The first phase was during September through 

November in 2020, and the second phase was in July 2021. Four work zone test sites were selected for 

travel time data collection. The speed limit at all four test sites was reduced from 75 mph to 55 mph in 

the work zone, which began about 2 miles upstream of the work zone and ended just past the end of the 

work zone. The deployment of the data collection systems at these four test sites is described below. 

 Waco test site 

Data were collected at the I-80 Waco work zone in September 2020 and lasted about 2 weeks. Five 

Miovision stations were attached to the mile marker poles. The deployment of the Miovision data 

collection system is shown in Figure 3.7. 
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(a) Work zone test site located between Waco and Utica 

 

 

(b) Data collection stations at PDMS 1 

 

 

(c) Data collection stations at PDMS 2 

 

Figure 3.7 The layout of the five Miovision units at the Waco test site 

 

 Big Springs at PDMS 1 

Data collection at Big Springs was conducted during September and October 2020 and lasted about 

3 weeks. The target PDMS (PDMS 1) is located at mile marker 108, WB I-80. Figure 3.8 showed the 

settings of the Miovision data collection system, which were located at mile markers 107, 107.5, 108, 

108.5, and 109, respectively. In other words, the five Miovision units were 0.5-mile spaced and covered 

1 mile upstream and 1 mile downstream of the PDMS.  
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Figure 3.8 The layout of the five Miovision units at the Big Springs test site 

 

Data were collected every day from 8 AM to 8 PM at each location. Table 3.2 listed the “SLOW” 

and “STOP” warning messages displayed on the PDMS. Other periods not listed are normal traffic 

conditions with a “STAR” message (four asterisks were displayed in the corners of the PDMS as 

placeholders). As indicated in Table 3.2, the slow/stop traffic duration is very short, and the majority of 

these durations occurred on weekends.  

 

Table 3.2. Records when PDMS displayed “SLOW” or “STOP” message 

Date Begin 
End Message Duration 

Thu, Sep 17, 2020  9:08 AM 9:12 AM slow 4 min 

Sat, Sep 19, 2020 4:01 PM 4:07 PM slow 6 min 

Sun, Sep 20, 2020 12:07 PM 12:11 PM stop 4 min 

Sun, Sep 20, 2020 3:59 PM 4:09 PM slow 10 min 

Sun, Sep 20, 2020 5:18 PM 5:23 PM slow 5 min 

Wed, Sep 23, 2020 11:48 AM 11:54 AM slow 6 min 

Sat, Sep 26, 2020 2:42 PM 2:58 PM slow 16 min 

Sun, Sep 27, 2020 2:08 PM 2:16 PM slow 8 min 

Sun, Oct 11, 2020 3:43 PM 5:05 PM slow 82 min 

 

Unfortunately, there is no queue and longer time of slow-moving traffic at the work zone during 

the entire data collection period. Thus, more data collection efforts may be required and will be 

conducted in a second phase.  
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 Big Springs at PDMS 2 

The second phase of data collection at the Big Springs test site was on July 3rd through 6th 2021 

at the same AQD settings as the first phase. Three Miovision units were installed 0.5-mile before, at, 

and 0.5-mile after the PDMS, as can be seen in Figure 3.9. 

 

 

Figure 3.9 Data collection system at Big Springs test site 

 

In Figure 3.10 (a), as the speed at the work zone merging area (Sensor # MW03) shows, up to 

seven hours of afternoon congestion from 11:30 AM to 6:30 PM was under slow-moving traffic. 

Meanwhile, the speed at 1-mile upstream of the work zone merging area (Sensor # RDR11) shows that, 

although slightly affected, the impact of the work zone slow traffic was diminished. A further check of 

the Miovision cameras at the PDMS2 location confirmed that no slow-moving or queued traffic was 

reached up to PDMS2. In other words, rather than being forced to slow down or stop due to the end-of-

queue, drivers are free to react to the warning message at PDMS2.  

 

 

          (a) Speeds at three locations               (b) traffic count from sensor MW03 

Figure 3.10 Data collected by sensors in the AQD systems at Big Springs test site 

 

Figure 3.10 (b) indicates the traffic volume during the day, which was counted by Sensor # MW03 

at the work zone merging area. The shaded area indicates the observed period of slow-moving traffic. 
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 Ogallala test site 

The work zone of westbound I-80 at Ogallala was a 2-to-1 test site (i.e., two lanes in mainline 

while one open lane in a work zone).  Data collection was conducted from July 3rd through 6th 2021. 

Three Miovision units were installed 0.5-mile before, at, and 0.5-mile after the PDMS, as can be seen 

in Figure 3.11.  

 

 

Figure 3.11 Data collection system at Ogallala test site 

 

The speed of the day at the work zone test site and the volume that the work zone experienced over 

the day can be found in Figure 3.12. 

 

 

(a) Speeds at three locations   (b) traffic count from sensor MW08 

Figure 3.12 Data collected by sensors in the AQD systems at Ogallala test site 

 

Note that the Miovision data collection system in Phase 2 at Big Springs test site and Ogallala test 

site was reduced from 5 units to 3 units for the purpose of reducing data collection efforts. It was found 

in previous studies in Phase 1 that the data (i.e., travel time) from first two stations, as well as the last 

two stations, do not show statistically significant differences. Therefore, the data collection systems can 

be simplified. 
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4. DATA PROCESSING 

 

4.1. Work Zone Speed and Message 

To verify the AQD system operated as designed, the correlation between the rolling average traffic 

speed estimated from the speed detector data and the message displayed on the PDMS was examined. 

Note the researchers only had access to the raw speed data, which is provided in a 1-minute average 

format. Consequently, Equation (4.1 was used to calculate the 3-minute rolling average speed as a 

function of time for each of the test sites. 

 

�̅�𝑡  =  
∑ 𝑣𝑖

𝑡−1
𝑖=𝑡−𝑘

𝑘
    ∀ 𝑖 = 1, . . . , 𝐼 (4.1) 

Where, �̅�𝑡 = 3-minute rolling average speed at time period t (mph) 

 𝑣𝑖 = instantaneous speed of vehicle i (mph) 

 i = count of vehicles when their front bumpers go through the detector 

 k = duration of rolling average speed (minute), e.g., 3 minutes 

 

It should be noted that if any of the 1-minute average speed values are missing, the algorithm uses 

the last three 1-minute average speed data points in Equation (4.1. If no speed values are measured for 

five minutes in a row, the speed detector is considered to be in a “No Data” condition. Under this 

condition, the AQD systems will continue to relesase the most recent traffic status as “message” 

displayed on the PDMS until additional 1-minute average speeds are obtained. These time durations are 

set based on engineering judgments. 

Figure 4.1 presents one day of sample data from each of the four test sites, which the instantaneous 

speed measured at the taper of the work zone as a function of time of day. Specifically, the left y-axis 

in Figure 4.1 represents the average speed detected at the work zone taper area. The dots are raw speed 

data at 1-min intervals, and the 3-min rolling average is calculated, as indicated in the black line. 

According to the AQD systems providers at this site (e.g., Salander), the 3-min rolling average speed is 

used to feed in the PDMS with the corresponding message (i.e., STAR, SLOW, and STOP) indicating 

the traffic status in work zone. 

It should be noted that, at the Big Springs test site, the speed below 20 mph (instead of a typical 

25 mph) is defined as stop traffic, and the slow traffic is when speed is between 20 mph and 45 mph. 

However, the rest three of the test sites follow the typical NDOT AQD systems settings, which adopted 

speed thresholds of 25 mph and 45 mph for defining the “STOP” and “SLOW” traffic conditions at 

work zones, respectively. 
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                    (a) Waco test site                                       (b) Big Springs at PDMS 1 test site 

 

 

(c) Big Springs at PDMS2 test site                                  (d) Ogallala test site 

Figure 4.1 AQD speed and warning message data 
 

The right y-axis in Figure 4.1 represents the message posted on the PDMS, which the green color 

represents the message of four “stars” at each corner of the PDMS (short for “STAR”); the yellow color 

represents the message of “Slow Traffic Ahead, Slow Down” (short for “SLOW”); and the red color 

represents the message of “Stopped Traffic Ahead, Prepare to Stop” (short for “STOP”).  

Statistical summaries and conclusions regarding the AQD system error are the evidence to the first 

objective of this project, which will be presented in the Results in Chapter 7. 

4.2. Travel Time Measure 

To verify the AQD system was operating correctly, segment travel time data at the Waco and Big 

Springs test sites were collected by the research team. The five Miovision Scouts record the MAC 

address of vehicles traveling through them. Therefore, travel time in four road segments can be obtained. 

They are Segment 12, Segment 23, Segment 34, and Segment 45 (e.g., Segment 12 measures from 

Miovision Scout 1 to Miovision 2). As an example, travel time measured at the Waco test site on 

September 9, 2020, is shown in Figure 4.2.  
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Figure 4.2. Travel time of vehicles (grey dots), 15 min average (black dashed line) with the standard 

deviation (red lines). 

 

The algorithm of data cleaning and MAC address matching is constructed in three steps as 

described below. Codes can be found in Appendix A. 

 The first step was to match MAC addresses across the different Miovision units. When a match 

was found, the time difference was calculated. Using the known distances and the time difference, 

the travel time and space mean speeds between Miovision unit locations were estimated. The MAC 

address matching algorithm was programmed using the R statistical software package. 

 In the second step, the resulting segment travel times were verified by manually matching 

randomly chosen vehicles from the cameras at each station. The video footage was played at a rate 

of 1/100 seconds, and a well-trained assistant identified a sampling of vehicles and then recorded 

the moment when a given vehicle from the sample passed each Miovision station. In addition, the 

video from the camera was used to visually verify vehicle types, speed reductions, precipitation 

conditions, and queuing conditions, on an “as needed” basis. 

 Once the samples of segment speeds were obtained, they were correlated to the messages being 

displayed on the PDMS. The goal was to identify whether drivers were responding to the messages 

(e.g., reducing their space mean speeds downstream of the PDMS units) and, if so, whether these 

reductions were statistically significant. 
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4.3. Travel Time Data Validation 

Miovision units collected the MAC address of vehicles and the timestamp when it travels through their 

detection range and video footage at each unit. The MAC address is unique to each vehicle. Algorithms 

are set up to clear the raw data and filter out outliers. Matching MAC address between two successive 

Miovision units and the time difference is the travel time on the segment. Video footage is used to verify 

the travel time calculation and check traffic status if any abnormal data were obtained.  

The camera at each Miovision Scout location recorded footage during the data collection time. 

Videos were used to verify the validity of the travel time automatically measured by the MAC address 

matching. Figure 4.3 and Figure 4.4 show the travel time obtained by automatically matching the MAC 

addresses (i.e., grey color) and the travel time obtained by manually checking the corresponding video 

(i.e., blue color) for uncongested and congested traffic conditions, respectively.  

Note that September 9, 2020, at the Waco test site, is selected as an example to show the travel 

time patterns of the day as the queue accumulated. Unfortunately, the camera of the Miovision Scout 1 

was not functioning during the data collection, therefore, the comparison of the Segment 12 was missing 

in Figure 4.4. 

 

 

(a) travel time at Waco test site 

 

(b) travel time at Big Springs test site 

 

Figure 4.3. Travel time obtained by MAC matching vs manual observation – no queue. 
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Figure 4.4. Travel time obtained by MAC matching vs manual observation – with queues. 

 

The accuracy of travel times obtained from the MAC data were manually validated using three 

days of video data collected from three test sites. Figure 4.4 shows the relationship between travel time 

and time of day for three segments (Segments 23, Segment 34, and Segment 45) on the Waco-Utica test 

site for September 9, 2020. are shown in Figure 4.4. Unfortunately, the manual travel time on Segment 

12 could not be obtained because the camera at Station 1 had technical issues during the data collection 

period. The grey dots represent the vehicle travel times estimated using the matching algorithm with 

MAC address data input from the Miovision Scout devices. A total of 2216, 2640, and 2363 travel times 

were obtained for Segments 23, 34, and 45, respectively. The blue dots represent the manual travel 

times, which were collected by randomly selecting three vehicles during every 15-min interval and 

estimating their travel times as described earlier. For this example, a total of 144 vehicles during the 

data collection period (e.g., 8 am - 8 pm) were matched using the video data.  

It may be seen from Figure 4.4 that traffic at I-80 around the tested PDMS was relatively congested. 

More importantly, it may be seen that the vehicle travel times developed from the MAC addresses and 

those developed manually track each other relatively well in that both capture the variability in travel 

time as a function of time of day. Intuitively, if the mean travel time as a function of time of day from 

one system was considerably higher or lower than from the other system, it would indicate a discrepancy 

in one of the systems. 

While the travel time data passed the visual test, it was important to test whether there were 

statistical differences in the data. A Shapiro-Wilk of normality (significant level = 0.05) was conducted. 

It indicated the travel times were not normally distributed. Therefore, a non-parametric two-samples 

Wilcoxon rank test was used to compare the distributions of the travel time obtained from the MAC 

address and Video for each segment. The p-values from the Wilcoxon test for Segment 23, Segment 34, 

and Segment 45 are 0.168, 0.249, 0.490, respectively. These are greater than the significance level for 

alpha = 0.05. Therefore, it was concluded that for this site the travel times derived from the MAC 

process and that from the manual process are not statistically different.  

Note that the same statistical comparison procedure was followed using data obtained from 

September 3, 2020, at the Waco-Utica test site and from September 20, 2020, at the Big Springs test 

site. These sites did not experience congestion. It was found the differences in the travel time 
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distribution derived from the MAC addresses and the travel time distributions derived manually from 

the video were not statistically different at the 5% level of confidence. Specifically, Welch Two Sample 

t-test is conducted to test the following null hypothesize: 

H0: true difference in means between the travel time obtained using MAC and the travel time 

obtained manually is equal to 0. 

Thus, the alternative hypothesis is that the true difference in means is not equal to 0, with the 

significance level alpha = 0.05. Statistic results are shown in Table 4.1 for the Waco-Utica test site and 

in Table 4.2 for the Big Springs test site, respectively. 

 

Table 4.1 t-test of the travel time at Waco-Utica on Sep. 3rd, 2020 

 Segment_23 Segment_34 Segment_45 

MAC 

Match 

Video 

Observation 

MAC 

Match 

Video 

Observation 

MAC 

Match 

Video 

Observation 

Mean (s) 28.7 27.4 31.5 28.8 20.1 17.4 

Adjust (s) -1 0 -2.5 0 -2.5 0 

t statistic 1.3959 0.96077 0.32433 

df 323.8 316.69 401 

p-value 0.1637 0.3374 0.7459 

95% CI (-0.139, 0.816) (-0.280, 0.815) (-0.288, 0.401) 

 

Table 4.2 t-test of the travel time at Big Springs on Sep. 20th, 2020 

 Segment_23 Segment_34 Segment_45 

MAC 

Match 

Video 

Observation 

MAC 

Match 

Video 

Observation 

MAC 

Match 

Video 

Observation 

Mean (s) 26.7 25.4 27.1 24.5 27.7 24.7 

Adjust (s) -1 0 -2.5 0 -2.5 0 

t statistic 1.2776 0.18215 1.7991 

df 86.178 73.069 73.011 

p-value 0.2048 0.856 0.07613 

95% CI (-0.182, 0.839) (-0.538, 0.646) (-0.054, 1.055) 

 

Based on the above analyses, the larger and more comprehensive travel time data set from the 

Miovision system was used for all further analyses. Note that it would be simply too expensive to 

replicate the manual travel time process on a large scale. This was why the automatic data collection 

system was used to collect travel times and the manually calculated times were used only to validate 

the accuracy of the automatic system. 
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4.4. Speed Reduction 

The Waco test site, September 3, 2020, was selected for data analysis on the speed reduction 

because there was slow-moving traffic at work zones. On this day, there were 7 periods that the PDMS 

was activated and a “SLOW TRAFFIC AHEAD, SLOW DOWN” message (short for “SLOW”) was 

posted on the PDMS. During the PDMS activation periods, the number of vehicles that traveled through 

the road segments where the Miovision sensors were installed was extracted. The start and end times 

of the 7 periods of the “SLOW” message and the corresponding vehicles are provided in Table 4.3. 

 

Table 4.3 Waco Sep. 3rd, 2020 PDMS activation periods and vehicles captured 

No Message 
Start 

time 

End 

time 

Duration 

(minutes) 

Number of vehicles captured 

Segment_12 Segment_23 Segment_34 Segment_45 

1 SLOW 9:52 10:09 17 15 12 23 52 

2 SLOW 10:11 11:18 67 67 46 81 209 

3 SLOW 11:32 12:46 74 87 68 105 289 

4 SLOW 14:47 15:11 24 20 16 28 86 

5 SLOW 15:15 16:31 76 75 55 93 279 

6 SLOW 16:32 17:03 31 62 23 41 76 

7 SLOW 17:05 18:06 61 76 43 83 280 

Total 350 402 263 454 1271 

 

The travel time of each vehicle is obtained. The distances of Segment_12, Segment_23, 

Segment_34, and Segment_45 are 2112 ft, 2981 ft, 2998 ft, and 1856 ft, respectively. Hence, a vehicle’s 

travel speed can be calculated. The travel speed before and after the PDMS for the seven activation 

periods is shown in Figure 4.5. It should be noted that the Miovision travel times were measured at the 

PDMS which is 3 miles away from where the queue was not reached to the detection segments. 

 

 

Figure 4.5. Travel time in different road segments at Waco-Utica 
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Similarly, data collected on October 11, 2020, at Big Springs (PDMS 1) was selected for speed 

analysis at this test site. On this day, there are 3 periods that the PDMS was activated and a “SLOW 

TRAFFIC AHEAD, SLOW DOWN” message (short for “SLOW”) was posted on the PDMS. During 

the PDMS activation periods, the number of vehicles that traveled through the road segments where the 

Miovision sensors were installed was extracted. The start and end times of the 3 periods of the “SLOW” 

message and the corresponding vehicles are provided in Table 4.4. 

 

Table 4.4 PDMS activation periods and samples at Big Springs test site on Oct. 11, 2020 

No Message 
Start 

time 

Start 

time 

Duration 

(minutes) 

Number of vehicles captured 

Segment_12 Segment_23 Segment_34 Segment_45 

1 SLOW 7:33 7:39 6 0 0 0 0 

2 SLOW 15:16 17:15 119 150 89 151 381 

3 SLOW 19:09 19:24 15 6 7 13 10 

Total 140 156 96 164 391 

 

The travel time of each vehicle passing through the PDMS 1 at Big Springs was obtained. The 

Miovision stations at the Big Springs test site were equally spaced at a distance of 0.5-mile when 

attaching the device to the roadside mile-markers. Therefore, the distances of Segment_12, Segment_23, 

Segment_34, and Segment_45 are all 2640 ft. The travel speed before and after the PDMS for the seven 

activation periods is shown in Figure 4.6.  

 

 

Figure 4.6. Travel time in different road segments at Big Springs 

 

It should be noted that the data processing for data collected in Phase 2 (on July 5th, 2021) at Big 

Springs and Ogallala test sites follows the same procedure as that in Phase 1. The statistical results of 

the speed reduction at different test sites are evidence of the second objective of this project, which will 

be summarized and discussed in the Results in Chapter 7.  

0

10

20

30

40

50

60

70

80

90

Segment_12 Segment_23 Segment_34 Segment_45

T
ra

v
el

 S
p
ee

d
 (

m
p
h

)

Big Springs_PDMS 1_10/11

Mean CI_high CI_low



 

50 

5. CRASH ANALYSIS 

 

The purpose of the crash analysis was to compare crash data from the freeway work zones where the 

AQD systems are operational to those work zones that are not equipped with AQD systems. The 

hypothesis was that the frequency of crashes, and in particular rear-end crashes, will be significantly 

reduced when the AQD system is installed. Unfortunately, due to the lack of sample size and missing 

information (e.g., the time and location of the AQD systems), the crash models are developed using the 

crash data from all work zones (without differentiating the AQD work zones) on I-80 to study the 

characteristics of work zone crashes in Nebraska.  

It should be noted that when the sample size of crashes at AQD equipped work zones becomes 

large and readily available, the methods used in this section can be easily repeated, and the results can 

be compared to those traditional work zones (i.e., without AQD systems) to verify the effectiveness of 

AQD systems in safety improvement at freeway work zones. 

5.1. Work Zone Areas 

The Manual on Uniform Traffic Control Devices (MUTCD, 2009) divided the temporary traffic control 

zone, i.e.,  the work zone, into four areas in the traffic direction: (1) advance warning area, (2) transition 

area, (3) activity area, including a buffer space and a workspace, and (4) termination area. These four 

areas can be found in Figure 5.1. 

 

Figure 5.1 Component Parts of a Temporary Traffic Control Zone (MUTCD 6C-1). 

 

According to the accident locations in the work zone, there are five areas that a crash is recorded 

in the NDOT crash dataset, which are (1) the area before the first sign of the work zone; (2) the advance 
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warning area, which starts at the first message sign of work zone ahead and ends at the start of the lane 

taper; (3) the transition area, which covers the lane taper of work zone merging; (4) the activity area, 

which starts from the end of lane taper to the end of the workspace; (5) the termination area; which 

starts at the end of workspace and ends at the last message sign of work zone. These five areas are 

marked as A to E in the model for simplicity purposes, which is shown in Figure 5.2. 

 A - area before the first sign,  

 B - advance warning area, 

 C - transition area,  

 D - activity area, and 

 E - termination area.  

 

 

Figure 5.2. The five areas that a crash takes place in a work zone in the NDOT crash dataset 

 

Note that it was assumed that the NDOT crash dataset has the same definition as the MUTCD for 

B to E areas, as can be seen in Figure 5.1. However, the start point of the first area A was not defined 

anywhere. It was assumed that the “before the first sign” area, labeled in the NDOT crash dataset, covers 

the road segment that is close to the work zone. Whether the crash occurrence location is associated 

with area A. depends on the judgment of the police officer who filled the crash report form. A reasonable 

guess for the distance of the “before the first sign” area is the sight distance from upstream (indicated 

as the question mark in Figure 5.2) to the first warning sign where drivers are noticed with work zone 

ahead for the first time. 

5.2. Work Zone Crashes 

NDOT traffic crash data used in this study ranged from 2002 to 2020. Crashes that occurred on the I-

80 work zone are extracted, as indicated in Figure 5.3 (crashes are marked as red points). As expected, 

most of the crashes occurred near the urban area (e.g., City of Omaha, City of Lincoln). 
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Figure 5.3 I-80 work zone crashes from 2002 to 2020 (denoted by red points). Blue points are 

the NDOT automatic traffic recorder (ATR) locations. 

 

In the 19 years NDOT crash dataset, 3095 crashes occurred in work zones. The distribution of the 

crashes locations in the five areas is shown in Figure 5.4. Note among the five areas, A and B are areas 

that the PDMS may be installed in an IWZ system. 

 

 

Figure 5.4 Crash locations in the five work zone areas 

 

Meanwhile, the proportion of crashes locations in the five work zone areas is shown in the first pie 

chart in Figure 5.5. Other types of the composition of the work zone crashes are also shown in Figure 

5.5. Specifically, the proportion of injuries is 71% for non-injury crashes, 18% for one injury crashes, 

and the rest 11% crashes are for two or more injuries. Also, the crashes are grouped according to their 

severity, from property damage only (54%), different levels of injury, all the way to fatal (2%). For the 

freeway crashes involving two vehicles, the main types are rear-end crashes (41%) resulting from car-

following behavior and sideswipe (25%) resulting from, for example, lane-changing behavior. 
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Figure 5.5 Crash composition (3095 crash samples from 2002 to 2020) 

 

The temporal distributions of crashes, i.e., year, month of year, day of week, and hourof day, are 

shown in Figure 5.6.  

 

 

 

Figure 5.6 Distribution of the crashes from 2002 to 2020. Note crash location 1 – 5 represents work 

zone area A – E, respectively. 
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As can be seen in Figure 5.6, despite escalating safety measures at Interstate WZ, traffic crashes 

did not continuously decrease but fluctuated over years. Crashes increased in construction activity 

seasons of the year, usually from April to October in Nebraska. In addition, Fridays and afternoon rush 

hours (4-6 PM) are those times when crashes are more frequent. 

5.3. Variable Selection 

Considering the sample size, data in each category is divided into limited levels for each variable 

used in the model, as listed below. 

 Six types of traffic accidents in the crash records are grouped into three levels according to 

their severity: 1) property damage only, which includes no people are injured, 2) minor injury, 

which includes possible injury and visible injury, and 3) serious injury, which includes 

suspicious serious injury and fatal. 

 The crash type is categorized into sideswipe and rear-end types. 

 The crash location is grouped into urban (including municipal) and rural areas. 

 The crash time is labeled either on a weekday or a weekend. 

 Driving behavior is grouped into either normal driving, which is labeled as no improper 

driving in the crash report, or improper driving such as driving distracted, driving too fast, 

followed too closely, operating vehicles erratically, etc. 

 Driver age is grouped into 25 years or younger, between 25 and 65 years, and 65 years or 

older. 

 Vehicle type is divided into passenger cars, which include sedan, van, and motorcycle, and 

pickup truck; and large trucks, which include single-unit truck, truck trailer, and multi-unit 

truck trailer, etc. 

 Light conditions are divided into daylight which illuminates with natural light, and darkness 

(including dark, dawn, and dusk) that may illuminate with auxiliary light. 

 Weather conditions are labeled as favorable weather (e.g., clear and cloudy) and adverse 

weather (e.g., fog, rain, snow, etc.). 

 

The variable selection is conducted using the random forest method. In total, of the 33 variables 

examined, there are 18 vehicles that showed importance on both MSE and Node Purity, as can be seen 

in Figure 5.7. These variables generally cover six types of data, which are: 

 Road condition: road class, numberof lanes, road grade, pavement type, median type 

 Traffic condition: speed limit, AADT 

 Vehicle condition: vehicle type, airbag ejection, total vehicles and trucks involved 

 Driver condition: driver age, mental condition 

 Environmental condition: weather, light 

 Work Zone condition: WZ area, WZ type, WZ person present 
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Figure 5.7 Variable selection for crash modeling 
 

All the selected variables are used in developing the crash models, given different model structures, 

which will be described in the next section. 

5.4. Model Development  

Firstly, a Generalized Linear Model (GLM) is used to estimate the number of injuries as a function of 

various contributory factors such as traffic conditions, road conditions, driver conditions, and vehicle 

conditions. The factor “work zone areas” (i.e., approaching advance warning area, transition area, 

activation area, termination area) where the crash occurred act as a “moderator” or an intersection term 

in the GLM model. 

Second, an Ordinal Logistic Regression (OLR) is used to estimate the crash severity, which is 

categorized into No injury, Minor injury, and Sever injury. Similarly, the work zone area is an 

intersection of the selected contributory factors in the OLR model.  

Model results and conclusions regarding the crash data on all the Nebraska I-80 work zones will 

be presented in the Results in Chapter 7.  
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6. COVID IMPACT 

 

Since the first case reported at the end of January 2020, coronavirus disease 2019 (COVID) has been 

swept across the United States and abroad. This still ongoing pandemic is unprecedented in modern 

history. Its impact is not only measured by the number of cases and deaths, but also overloaded health 

services, undesirable quality of life, and interrupted social and economic activities. In response to this 

public health crisis, the states responded quickly to formulate and enact various appropriate orders. 

Without exception, these orders were designed to discourage non-essential travel, practice social 

distancing, and ultimately expect to slow down the spread of the virus. 

To this end, Nebraska issued a series of policies to restrain the spread of the pandemic. Rather than 

implement a statewide stay-at-home order, Nebraska employed a framework named "Directed Health 

Measures" (DHM) to minimize in-person interactions during COVID in 2020 [Nebraska DHHS, 2020]. 

As anti-epidemic strategies, DHM benefits from its flexibility that they were phased in the county by 

county based on active infections. It is, therefore, hypothesized to affect the population of the 

jurisdictional counties at different stages. Specifically, the critical timeline for the affected population 

is below. 

• 3/19, 2020 – 41.5% affected – 3 counties: Douglas, Cass, Sarpy 

• 3/25, 2020 – 62.3% affected – 4 counties: Lancaster, Dodge, Saunders, Washington 

• 4/03, 2020 – 100% affected – All counties 

• 5/31, 2020 – 0% affected – All DHM lifted 

The immediate impact of the DHM intervention was a sharp drop in traffic demand on I-80. 

Because of this, the number of traffic crashes has decreased, especially at those I-80 work zones. Figure 

6.1 shows the crash locations (marked as yellow dots). For example, there were 57 crashes that occurred 

at I-80 work zones in the first half of 2020 (week 1 to week 27), which is more than twice lower than 

the number of crashes that occurred during the same period in 2018 (crashes = 108) and 2019 (crashes 

= 132). 

 

 

Figure 6.1 Traffic crashes at I-80 Work Zones in 2020. ATR numbers are marked. I-80 runs through 

fifteen counties that are shown.  
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To know the impact of COVID restrictions on essential travels. Traffic volumes on Interstate 80 

are collected at the NDOT Automatic Traffic Recorder (ATR) stations, as can be seen in Figure 6.1. It 

is hypothesized that these ten ATR measure the traffic demands of I-80 in both urban areas and rural 

areas in Nebraska. 

6.1. The Impact on Traffic Volumes and Traffic Crashes  

Figure 6.2 (a) shows the weekly traffic volume, accumulated using all the ten ATR data, as a function 

of time from Week 1 to Week 27 in 2020. As for comparisons, traffic volumes are identified using the 

same period of data in 2018 and 2019. 

 

 

Figure 6.2 Traffic volume and the crashes as a function of the week in 20202, and the 

comparison to the similar period in 2018 and 2019. 

 

As can be seen in Figure 6.2 (a), the overall trends of the weekly traffic volume for 2018 and 2019 

consistently increase, while the volume for 2020 drastically dropped and then rebounded. Specifically, 

traffic volume in 2020 (1) was seen a significant decrease starting from Week 9, (2) kept reducing about 

7 weeks (Week 9 -15), at the time when the entire Nebraska counties were put into DHM restrictions, 

(3) reached the lowest on Week 15 (i.e., 30%-35% lower compared to the levels of 2018 and 2019), and 

(4) continued to rebound since after. Until Week 22 when all the DHM are lifted, traffic volume had 

returned to about 85% of its full capacity, compared to the traffic levels at the same time in 2018 and 

2019. Note that it took 4 more weeks (week 23-27) for the traffic volume in 2020 to get back to roughly 

similar levels (as of 2018 and 2019), presumably due to residual fears after the reopening of the 

community (Ghader et al., 2020), 
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Naturally, the week of March 19, 2020, when the Nebraska governor’s first major DHM 

intervention was implemented, as marked by the blue dot line in Figure 6.2, cuts the 27 weeks (7 days 

a week) into 11 weeks pre-intervention and 16 weeks post-intervention. As comparison groups, data 

are prepared using the same treatment as if the DHM order was issued on March 19 (Week 12) in 2018 

and 2019.  

Figure 6.2 (b) shows the number of weekly crashes in 2018, 2019, and 2020. They were at a similar 

level during the pre-COVID intervention period (i.e., Week 1 to Week 11). During the post-COVID 

intervention period (i.e., Week 12 to Week 27), the number of weekly crashes in 2018 and 2019 

maintained a slight increase, while decreasing in 2020.  

Statistical test results show that there are no statistically significant differences in the number of 

crash counts between 2018 and 2019. This implies that the traffic crash pattern did not change over a 

year. Thus, it may be safe to assume that if there was no special event, the traffic crash pattern will 

remain the same from 2019 to 2020. However, when compared the number of weekly crashes in 2020 

to 2019, it was significantly lower at a 5% significance level (t-stat = 4.028, p < 0.001). It is 

hypothesized that the reduction in the number of crashes is a result of the impact of COVID 

interventions. 

A count of the number of crashes is often inadequate when comparing multiple roadways of 

varying levels of traffic exposure. Based on the assumption that the more exposure to road traffic, the 

greater chances a crash occurs, this study used crash rate as an effective metric for relative safety 

measures when it is exposed to traffic at a given location. The crash rate is defined as the quotation of 

crash frequency (crashes per week) and vehicle exposure (e.g., traffic volumes) at the location where 

the crashes occurred. (6.1 shows the calculation of the crash rate defined in this study. 

 

 
𝑟𝑐,𝑖 = 106 ∗  

∑ 𝑁𝑐,𝑙,𝑑(𝑡)𝑑∈𝑖

∑ 𝑉𝑐,𝑙,𝑑(𝑡−1)𝑑∈𝑖
 (6.1) 

 

Where rc,t represents the crash rate for a certain category c of interest at week i. Nc,d(t) represents 

the number of crashes for a certain category c of interest occurred at location l and on date d associated 

with a specific hour t. Vc,d(t-1) represents the traffic volume, veh/h, on hour (t-1) of date d at location 𝑙, 

the nearest ATR station on I-80. To facilitate the readability and interpretability of the model outcome, 

the crash rate is calculated per million vehicles, indicating the number of crashes that occurred per 10^6 

traffic volume exposure.  

6.2. Crash Modeling under COVID Influence 

The purpose of this study is to understand the influence of the COVID restrictive interventions 

implemented in Nebraska (i.e., phased DHM) on the rate of traffic crashes that occurred on I-80. To 

this end, the changes of distributive patterns of crash rates and the main contributing factors are modeled 
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using the comparative interrupted time series (CTIS) method. Specifically, the CTIS model is applied 

to evaluate the impacts of COVID by looking at whether the treatment group deviates from 

its “baseline” by a significant amount than the comparison group. In other words, in developing the 

CITS model of the 2020 crash data, crash data in 2019 are used as the baseline. The CITS can be 

specified in Equation (6.2. 

 

 𝑌𝑖 = 𝛽
0

+ 𝛽
1

𝑇 + 𝛽
2
𝐷𝑖 + 𝛽

3
𝑇 ∗ 𝐷𝑖 + 𝛽

4
𝑃 + 𝛽

5
𝑇 ∗ 𝑃 + 𝛽

6
𝐷𝑖 ∗ 𝑃 + 𝛽

7
𝑇

∗ 𝐷𝑖 ∗ 𝑃 + 𝜀𝑖 

(6.2) 

Where,  

Yi Outcome of interest at time i (i.e., crash rate per million veh/h for the week i)  

T Continuous variable representing time by week 

Di Dummy variable indicating untreated and treated groups, i.e., prior (code = 0) and post 

(code = 1) enact of the DHM intervention. 

P Categorical variable indicating the comparison year or treatment year (i.e., 2018, 2019, 

or 2020). 

ɛi Error term capturing the residual variation not explained by time 

 

In this study, ß0 is the interception that represents the initial level of the outcome. ß1 is the pre-

intervention slope. ß2 is the immediate level change when the intervention is issued. ß3 is the sustained 

trend change which is the difference in slopes between pre-intervention and post-intervention. ß4 – ß7, 

represents similar meaning as ß0– ß3, respectively, except the comparison group data, is referred to as 

the baseline. In other words, ß0– ß3 are coefficients describing the initial level, pre-intervention trend, 

immediate effect, and sustained effect for the comparison group (crash data in 2018, 2019), while ß4 – 

ß7 are coefficients indicating the differences of the initial level, pre-intervention trend, immediate effect, 

and sustained effect between the treated group and the comparison group, respectively. In this regard, 

the interested coefficients are ß6 and ß7. 

Some hypotheses are made beforehand. For example, reports speculated that traffic crashes have 

become severer during the pandemic (Camille Kamga et al., 2020; Vingilis et al., 2020). Given the 

sharply reduced traffic demand, which means lane became emptier, both lane-changing and car-

following tasks are assumed to be more efficient and less risky. The changes in crash rate patterns may 

also be reflected in different locations. Intuitively, I-80 through urban areas is mostly affected because 

the restrictive measures have the greatest impact on the drop of traffic demand. The demand for large 

trucks to transport essential supplies during COVID may not necessarily decrease, instead, it may 

increase to meet the supply needs (Maoh and Anderson. 2021). All these hypotheses will be verified 

through the model output, which will be presented next. 
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6.3. Interpretation of COVID Influence on Traffic Crash 

The above concerns are examined through the significance of the factor coefficients of each CITS model. 

In other words, a significantly positive estimate of the coefficient indicates that this factor is positively 

correlated with, or has increased, the crash rate, and vice versa. The model outcomes are given in Table 

6.1 and are interpreted one by one subsequently. 

 

Table 6.1 Model Results from Crash Rate 

Model Variable Est. S.E. t value Pr(>|t|) Model significance 

Serious injury 

(N=236) 

ß6:2018 96.6 194.1 0.50 0.620 
Residual SE: 0.168 

Adjusted R2: 0.048 

F-statistic: 0.869 

p-value: 0.574 

ß7:2018 19.3 27.6 0.70 0.487 

ß6:2020 248.9 190.6 1.31 0.196 

ß7:2020 40.4 26.0 1.55 0.125 

Minor injury 

(N=1440) 

ß6:2018 38.4 32.5 1.18 0.242 Residual SE: 0.029 

Adjusted R2: 0.391 

F-statistic: 5.66 

p-value: 2.1e-06*** 

ß7:2018 -1.4 4.4 -0.31 0.761 

ß6:2020 61.0 32.5 1.88 0.065` 

ß7:2020 -12.8 4.4 -2.89 0.005** 

Property damage 

only 

(N=3593) 

ß6:2018 28.5 23.1 1.23 0.222 Residual SE: 0.020 

Adjusted R2: 0.642 

F-statistic: 14.05 

p-value: 1.1e-13*** 

ß7:2018 2.3 3.2 0.74 0.460 

ß6:2020 136.1 23.1 5.89 <0.001*** 

ß7:2020 -4.9 2.7 -1.82 0.074` 

Rear-end 

(N=2396) 

ß6:2018 7.1 22.0 0.32 0.749 Residual SE: 0.019 

Adjusted R2: 0.456  

F-statistic: 7.013 

p-value: 8.8e-08*** 

ß7:2018 -1.4 3.0 -0.48 0.632 

ß6:2020 76.1 22.0 3.46 0.001** 

ß7:2020 -5.5 3.0 -1.83 0.072` 

Rural Area 

(N=2962) 

ß6:2018 44.5 27.9 1.59 0.116 Residual SE: 0.025 

Adjusted R2: 0.498 

F-statistic: 8.211 

p-value: 5.6e-09*** 

ß7:2018 2.0 3.8 0.54 0.595 

ß6:2020 129.3 27.9 4.63 <0.001*** 

ß7:2020 -5.6 3.8 -1.48 0.144 

Large Truck 

(N=1824) 

ß6:2018 18.9 34.5 0.55 0.587 Residual SE: 0.030 

Adjusted R2: 0.329 

F-statistic: 4.557 

p-value: 3.5e-05*** 

ß7:2018 -2.4 4.7 -0.51 0.613 

ß6:2020 87.0 34.5 2.52 0.014* 

ß7:2020 -7.1 4.7 -1.52 0.134 

Reference year = 2019. Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘`’ 0.1 ‘ ’ 1 
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The significance of the model specification is firstly checked. As shown in the last column in Table 

6.1, the model for serious injury crash rate does not show statistical significance (p-value = 0.574), due 

to the small sample size (N=236 for three years). In addition, model for sideswipe crash is also not 

significant (p-value = 0.192). Therefore, these two models and the corresponding hypotheses are 

excluded from this study. The rest of the models are accepted as they all have the lower residual standard 

error, higher adjusted R-square, higher F-statistic, and p-value below the significance level 0.05. 

As shown in Table 6.1, none of the 2018 coefficients in all models, i.e., ß6 for the immediate effect 

and ß7 for the sustained effect, are significant, indicating that there is no significant in crash contributing 

factors of 2019 compared to 2018. The purpose of examining the historical data in the comparison of 

2018 and 2019 is that it provides evidence of the crash trend in Nebraska. It can be assumed that if there 

is no special event (e.g., COVID pandemic), the crash pattern and distribution in 2020 may not be 

significantly different compared to 2019. 

Importantly, it is found in Table 6.1 that, compared to the previous years, crash rates in 2020 have 

been greatly altered as a result of the anti-COVID policy intervention. Specifically, each research 

hypothesis and the corresponding model result are interpreted as below. 

 

 During the COVID intervention, the increase in minor injury crash rate is marginal significant 

(ß6 = 61.0, p = 0.065), however the trend was decreasing significant (ß7 = -12.8, p = 0.005). 

similarly, the increase in property damage-only crash rate is significantly increased by the 

COVID intervention (ß6 = 136.1, p < 0.001) while the increased levels decreased as time passed 

by (ß7 = -4.9, p = 0.074). Unfortunately, the serious injury crash rate is unclear due to the 

insufficient sample size. These together indicate that under the intervention of COVID, the 

severity of the crashes on Nebraska I-80 may or may not have worsened. 

 The main affected crash type was the rear-end, which has significantly increased (ß6 = 76.1, p 

< 0.001) and gradually flat off (ß7 = -5.5, p = 0.072) after the COVID intervention. 

 The increases in crash rate levels in rural areas were significant (ß6 = 129.3, p < 0.001) 

immediately after the COVID intervention is released. 

 Large trucks are increased in crash rate levels significantly (ß6 = 87.0, p = 0.014) immediately 

after the start of the DHM. 

The model results can be visually seen in Figure 6.3. 
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Figure 6.3 Comparisons of CITS model result  

 

In general, results show that the decrease in traffic volumes outpaced the reduction in crashes, 

resulting in a higher crash rate. Therefore, the COVID intervention, for most cases, increased the crash 

rate (i.e., positive effects) as concluded from modeling the Nebraska I-80 crash data, rather than 

lowering the crash rate (i.e., negative effects) as hypothesized based on existing studies.  
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7. RESULTS 

 

Results in response to the three objectives proposed in this project and the correspond discussions are 

presented below. 

7.1. Investigate whether the AQD System is Performing Adequately 

The error rate of the AQD system was calculated using a week of data (i.e., 10080 minutes) at each test 

site to study the first objective in this project: H0: The AQD system displays the correct message within 

an acceptable range (e.g., X percent of the time). Table 7.2 summarizes the total error rate and sources 

of the error rate from different traffic conditions (i.e., free-flow and congested traffic) and under 

different warning statuses. 

 

Table 7.1 Error rate of the AQD system operation 

  Wood River Ashland Waco-Utica Big Springs 

Total examined time 10080 min 10080 min 10080 min 10080 min 

Total time in SLOW status 333 min 173 min 847 min 227 min 

Total time in STOP status 631 min 155 min 0 min 4 min 

Total error time (all types) 232 min 166 min 66 min 92 min 

Total error rate 2.3% 1.6% 0.7% 0.9% 

 

It can be seen from Table 7.2 that the Wood River test site has the highest error rate (2.3%), and 

Waco-Utica has the lowest error rate (0.7%). The total error rate may be further disaggregated based on 

the severity of the error in Table 7.2 and are explained below. 

 

Table 7.2 Source and types of the AQD system errors 

  Wood River Ashland Waco-Utica Big Springs 

Error in traffic conditions 

Free-flow traffic  

(Category 1 error) 
44.0% 8.7% 97.3% 36.9% 

Congested traffic  

(Category 2 error) 
56.0% 91.3% 2.7% 63.1% 

Sum 100% 100% 100% 100% 

Error in congested traffic condition 

SLOW status 95.4% 88.1% 100% 100% 

STOP status 4.6% 11.9% 0% 0% 

Sum 100% 100% 100% 100% 
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For example, at the Wood River test site, 44% of the 2.3% total errors occurs when the work zone 

experienced free-flow traffic. In other words, the PDMS displayed a warning message when it should 

not have. This situation is known as a category 1 error. In the long-term, the category 1 error may cause 

drivers to have less confidence in the AQD system because the drivers were told they needed to slow 

down due to slow traffic ahead (which did not exist). However, these errors do not put the driver at 

immediate risk. They merely encourage drivers to slow down as they approach the work zone. 

Another situation is a category 2 error which may be considered much more problematic. This 

error occurs when the PDMS does not display a warning message even though the systems identified 

there is congested traffic and/or queuing downstream from the PDMS. While category 2 errors are rare, 

there was variability across all four sites as evidenced by the fact that category 2 errors ranged from 

0.02% (i.e., 2.7%*0.7%) at Waco-Utica to 1.46% (i.e., 91.3%*1.6%) at Ashland. The low error rates 

indicate the system performed well. 

Category 2 errors may be further analyzed by concentrating on the times when there are congested 

traffic conditions in the work zone, as listed in Table 7.2. In these situations, the errors tend to take 

place during the SLOW status, rather than STOP status, condition. When average across the four test 

sites, the error rates in the SLOW status and the STOP status account for 96% and 4% shares, 

respectively. This result is not surprising due to the fact that the average time of the work zone traffic 

examined in SLOW status (e.g., 1580/4=395 minutes) is twice as great as the average time of the work 

zone traffic examined in STOP status (e.g., 790/4=198 minutes).  

 Various factors may account for the category 1 and category 2 errors identified above. First, the 

complexity of the work zone and its associated AQD system may play a part. It is hypothesized that 

larger distances may cause errors in system operation due to potential signal loss. Second, if the traffic 

volumes are low, there will be a lower number of speed samples. In this situation, the PDMS may be 

sensitive to switching between two different message displays when the speed is approximately the 

same as the predefined thresholds, i.e., 25 mph and 45 mph for the STOP and SLOW status, respectively. 

Third, the rolling average calculation may be different in this study from the AQD application in the 

field. However, a detailed analysis of the root causes of the errors was beyond the scope of the report. 

7.2. Ascertain How the Drivers React to the Messages on the PDMS 

By definition, the effectiveness of the AQD system is directly related to whether it has a positive impact 

on driver speed. Therefore, the critical questions that need to be answered are (1) do drivers slow down 

when they see a SLOW or STOP warning message on the PDMS and, (2) if so, how much? The 

hypothesis associated with the second objective of this project is as follows. 

 

H0: A statistically significant decrease in average speed will occur when the PDMS indicates that 

the drivers should be prepared to stop because a queue has been detected ahead. 
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To analyze these questions, the space mean speeds on the roadway segments upstream of the 

PDMS were compared to the space mean speeds on the roadway segments downstream of the PDMS. 

In addition, the speeds of segments upstream and downstream of a PDMS were compared when there 

is a change in the message on the PDMS. The sample data of the space mean speed from all the four 

test sites used in this analysis is shown in Table 7.3. 

 

Table 7.3 Sample size of speed data collected at each test site 

Test site 
Data collection 

duration 

Warning time 

(accumulated) 

Sample sizes (veh) under warning 

vs. no-warning conditions 

Waco 9/2/2020 – 9/11/2020 350 minutes 1229 vs 6473 

Big Springs at PDMS 1 9/15/2020 – 10/11/2020 120 minutes 614 vs 11551 

Big Springs at PDMS 2 7/3/2021 – 7/6/2021 180 minutes 1088 vs 1708 

Ogallala 7/3/2021 – 7/6/2021 420 minutes 1742 vs 912 

 

Figure 7.1 provides a summary box plot of the speed profile changes along with the road segments 

(i.e., from Segment 12 to Segment 45) for a warning scenario (e.g., PDMS displayed SLOW/STOP 

warning message) and a non-warning scenario (e.g., PDMS displayed NONE), respectively. The 

location of PDMS is also marked. 

 

 
 

Figure 7.1. Reduction of speeds along with the road segments. Solid lines represent the average and 

shaded areas represent the 95% confidence intervals. 

 

As shown in Figure 7.1, there is a general pattern that space mean speeds decrease as the vehicles 

approach the work zone. It should be noted that due to the sight distance at both test sites, drivers cannot 
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see the work zone ahead when they read the message on the PDMS. However, there is static advisory 

signage along with the road segments, in addition to the PDMS, indicating that there is a work zone 

ahead. This may be the key reason for the continuous decrease in speed along with the segments 

regardless of which message is displayed on the PDMS. It may also be seen that when the PDMS 

displays a warning message, the reduction in space means is much greater when the PDMS does not 

display a warning message. 

A statistical summary of the speed reduction is listed in Table 7.4, where the significances (alpha 

= 0.05) of the speed changes are tested using Welch’s t-test for the mean equality and F-test for the 

variance equality between two adjacent road segments. 

 

Table 7.4. Statistics summary of the speed changes 

 

Welch Two Sample t-test* Two variances F-test** 

Avg.  

Diff. 

(mph) 

Avg. 

Diff. (%) 
t-stat. p-value 

Std. Dev. 

Diff. 

(mph) 

Std. Dev. 

Diff. (%) 
F-stat. p-value 

Waco-Utica (Warning) 

Seg12-Seg23 0.6 0.8% -0.893 0.372 -0.1 -1.2% 1.024 0.852 

Seg23-Seg34 -7.0 -11.0% 10.72 <2.2e-16 2.5 26.5% 0.54 1.2e-07 

Seg34-Seg45 -1.5 -2.4% 2.06 0.039 1.1 10.2% 0.80 0.038 

Waco-Utica (NoWarning) 

Seg12-Seg23 -0.3 -0.5% 1.08 0.279 -0.1 -1.2% 1.03 0.626 

Seg23-Seg34 -3.6 -5.5% 12.49 <2.2e-16 -1.0 -13.2% 1.28 9.0e-07 

Seg34-Seg45 0.7 1.2% -3.18 0.002 -0.9 -14.3% 1.31 8.8e-08 

Big Springs at PDMS 1 (Warning) 

Seg12-Seg23 -2.6 -3.9% 2.31 0.024 -1.6 -28.9% 1.66 0.024 

Seg23-Seg34 -3.5 -5.7% 4.87 1.9e-06 1.2 17.3% 0.68 0.025 

Seg34-Seg45 -2.2 -3.6% 2.65 0.008 1.5 18.4% 0.67 0.011 

Big Springs at PDMS 1 (NoWarning) 

Seg12-Seg23 -1.0 -1.5% 5.08 3.7e-07 -1.2 -17.5% 1.02 < 2.2e-16 

Seg23-Seg34 -1.9 -3.0% 10.97 <2.2e-16 -0.2 -5.4% 0.81 0.004 

Seg34-Seg45 0.6 0.8% -3.25 0.001 -0.3 -2.3% 0.54 0.212 

*Alternative hypothesis: true difference in means is not equal to 0. 

**Alternative hypothesis: true ratio of variances is not equal to 1. 
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It may be seen in Table 7.4 under the warning scenario, the speed reductions from segment 23 to 

segment 34 are 7.0 mph and 3.5 mph at Waco-Utica and Big Springs, respectively. These are, on 

average, 90% greater than the speed reductions of 3.6 mph and 1.9 mph compared to the same segments 

under the scenario where the PDMS does not display a warning message. It may also be seen in Table 

7.4 that a reduction in space mean speed for both of these scenarios is statistically significant. A 

summary of the mean speed reduction trend can be found in Figure 7.2 (a). 

 

 

Figure 7.2 comparison of the mean (a) and standard deviation (b) for speeds with and without warning 

message. 

 

Interestingly, it may be found in Figure 7.2 (b) that the speed reduction standard deviation is greater 

when the PDMS displays a warning message as compared to when it does not. As also shown in Table 

7.4, the difference in the standard deviation is statistically significant between segment 23 and segment 

34. It should be noted there are two distinct trends: 

 When the PDMS displays a warning message, the space mean speed standard deviation 

increases by 2.5 mph and 1.2 mph (26.5% and 17.3%), respectively, at the two sites. The 

increase in variability in speed after the PDMS indicates there is a wide range of driver 

behavior upstream of the work zone. While the average space mean speed decreases, there is 

correspondingly more variability in speed indicating some drivers may not be responding to 

the sign and/or some drivers are reducing their speed below the speed limit.  

 In contrast, when the PDMS does not display a warning message, the speed standard deviation 

decreases by 1.0 mph and 0.2 mph (13.2% and 5.4%) at the two sites, respectively. This 

indicates the various drivers are much more homogeneous in their speed choices when no 

warning is given. 
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Further study on the Phase 2 data supports the above driver behavior with regard to the speed 

reduction at the PDMS when the warning message was displayed, the comparison results are listed in 

Table 7.5. 

 

Table 7.5 Speed comparisons upstream and downstream of the PDMS 

 Speed (mph) 
Big Springs at PDMS 2 Ogallala 

Segment 12 Segment 23 Segment 12 Segment 23 

Star 

Sample size 529 559 833 909 

Mean (mph) 61.0 61.9 65.8 66.2 

P-value (t.test) 0.176 0.488 

Slow 

Sample size 644 682 414 435 

Mean (mph) 58.8 54.9 63.6 61.7 

P-value (t.test) <0.001 0.016 

Stop 

Sample size 181 201 30 33 

Mean (mph) 56.1 54.0 59.6 56.4 

P-value (t.test) 0.005 0.216* 

*data due to small sample size 

7.3. Crash Rates at Work Zones 

The number of crashes and crash severity are modeled using data from all work zone on I-80 (including 

both with and without AQD systems) due to missing information about the time and location of the 

AQD installation. Model results are shown in Table 7.6 and Table 7.7, respectively. Note that the values 

are color-coded to indicate their significances. The dark orange indicates significance at 0.05. The light 

orange indicates marginal significance at 0.1. In the ordered logistitic regression model result, the dark 

pink color indicates the significance of the ordered model. 

 

Table 7.6 Generalized Linear Model - Number of injuries 

  Approaching Advance Transition Activity Termination 

(Intercept) 0.183 0.144 0.177 0.291 0.056 

RoadCharacterCurved 0.106 -0.07 0.143 0.029 -0.017 

RoadSurfaceCondIce/Slush -0.332 0.44 -0.026 -0.044 -0.003 

RoadSurfaceCondWet 0.458 0.159 -0.061 -0.079 -0.041 

DirRear-end 0.627 0.685 0.742 0.625 0.076 

PopGroupUrban -0.106 -0.035 -0.142 -0.128 0.014 

AlcoholYes 0.459 0.168 0.169 0.094 0.264 
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Driverless20Yes -0.157 0.005 0.164 0.037 0.098 

HVPercent -0.181 0.102 -0.101 0.028 -0.064 

ContribCir2_RoadYes 0.124 -0.133 0.164 0.058 0.007 

WZTypeLaneclosure 0.184 0.056 0.1 0.01 0.094 

WZTypeLaneshift 0.346 -0.078 0.019 0.048 0.046 

WZTypeOnShoulder 0.366 -0.158 0.117 0.008 0.005 

WorkerPresentYes -0.481 -0.268 -0.48 -0.356 -0.083 

AADT (nearest ATR site) 0.26 0.61 0.281 0.17 0.032 

PeakhourYes -0.139 -0.167 -0.025 -0.069 -0.026 

DaytimeYes 0.251 0.243 0.099 0.012 -0.013 

WeekendYes -0.082 -0.022 0.005 -0.017 -0.075 

 

Table 7.7 Ordinal Logistic Regression – Crash Severity 

  Approaching Advance Transition Activity Termination 

RoadCharacterCurved -0.102 -0.084 0.41 0.231 0.133 

RoadSurfaceTypeConcrete -0.411 0.294 0.838 0.19 -0.008 

AlcoholYes 1.281 0.854 0.715 1.094 1.463 

Driverless20Yes -0.905 -0.103 0.924 0.144 0.298 

TotVeh 0.644 0.227 -0.736 0.102 0.314 

TotHev 0.148 0.14 -0.191 0.167 0.164 

ContribCir1_EnvirNo -0.6 -0.181 0.891 -0.015 -0.24 

ContribCir2_RoadYes 0.825 -0.362 0.9 0.037 0.161 

PopGroupUrban 0.267 -0.544 -0.5 -0.487 -0.381 

PeakhourYes -0.509 -0.406 0.201 -0.374 -0.566 

WeekendYes -0.129 -0.063 -0.178 -0.203 -0.306 

DaytimeYes 1.393 0.448 -0.193 0.221 -0.526 

DirRear-end 1.251 1.619 1.68 1.646 0.911 

WorkerPresentYes -2.08 -0.816 -2.687 -1.372 -0.498 

WZTypeLaneclosure -0.333 0.001 1.001 0.201 -0.224 

WZTypeLaneshift -0.443 -0.572 0.799 -0.397 -0.674 

AADT (nearest ATR site) 0.13 0.406 0.829 0.115 -0.493 

      
None|Property -1.078 -1.572 -1.272 -1.505 -1.591 

Property|Minor 1.514 1.69 2.141 1.702 2.731 

Minor|Serious 5.534 3.596 4.236 3.756 4.338 
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As can be seen from Table 7.6, most crashes occurred in the activity area and are rear-ended. In 

addition, a crash is more likely to occur at: (1) Weekday, (2) Daytime, (3) No worker present, (4) Rural 

work zone, (5) Off-peak hour. 

As can be seen from Table 7.7, a crash is severer when driving drunk, during the daytime, on 

weekdays, and more vehicles are involved. 

(1) Advance warning/Transition areas need to pay attention to road conditions (e.g., worn, 

obstruction, debris), AADT, heavy vehicles, rural areas, and driver age younger than 25 years. 

(2) Activity areas need to pay attention to work zone type, heavy vehicle, and curvature. 

(3) Termination areas need to pay attention to nighttime, weekend, driving impaired (alcohol), 

young driver, and road conditions. 
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8. CONCLUDING REMARKS 

 

The effectiveness of the Nebraska AQD system was examined in two ways. First, the system 

performance was investigated with respect to whether the PDMS correctly displayed the appropriate 

warning message for the given traffic conditions (i.e., “NONE”, “SLOW”, and “STOP”). The results 

indicate that, overall, the AQD system performed well, with an overall error rate of 0.7% – 2.3%.  

The types of errors were also analyzed. Intuitively, providing warning messages when they are not 

required (e.g., category 1 error) would reduce drivers’ trust in the AQD system. In contrast, not 

providing a warning message or providing the wrong message (e.g., category 2 error) could reduce 

driver safety. On the surface, category 1 errors that occur in a free-flow condition are, arguably, not as 

severe as category 2 errors that occur during congested conditions. It was found that the occurrence of 

the latter was greatest at the Ashland test site (1.6*91.3% = 1.46%) and was the smallest at the Waco-

Utica test site (0.7*2.7% = 0.02%). More importantly, all four test sites had relatively low error rates 

which indicated that the AQD system was operating correctly. 

To the authors' best knowledge, this was the first study to examine the efficacy of AQD systems 

using space mean speed rather than instantaneous speed. This approach reduced the probability that any 

effects found were transitory in nature (e.g., drivers slowing down because of the sign and subsequently 

speeding up). The space mean speed was analyzed using a measure of central tendency (e.g., mean) and 

a measure of dispersion (e.g., standard deviation). These were analyzed as a function of the message 

that was displayed on the PDMS.  

It was found that, when drivers pass by a PDMS that does not have a warning message, their space 

mean speeds were reduced in the range of 1.9 to 3.6 mph. It was found that this reduction is statistically 

significant at the 0.05 level. More importantly, it was found that when the PDMS displayed a warning 

message, the space mean speeds were reduced in the range of 3.5 to 7 mph. These reductions were also 

statistically significant. On average, it was found that the average speed reduction when the PDMS 

displayed a warning message was 90% higher as compared to the speed reduction when the PDMS did 

not display a warning message. It was concluded that the AQD systems were very effective at reducing 

space mean speeds, the reduction in speed was not transitory, and the reductions were statistically 

significant at the 95% confidence level.  

Interestingly, there was no definitive relationship found between the message on the PDMS and 

the standard deviation of travel time. It was found that the standard deviation increased when there was 

a warning message on the PDMS. Conversely, when no warning message was displayed, the standard 

deviation decreased. Given the average speed of all vehicles decreased regardless of a warning message, 

the reason for the change in speed deviation may be due to the different levels of the vehicles’ response 

to a warning display on PDMS. Considering the truck percentage (including single unit, single truck 

trailer, and multiple truck trailer) was up to 62% on the work zones during the data collection, this may 

indicate that passenger cars and trucks have appreciably different degrees of speed reduction when 
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confronted with a message on the PDMS. Because the space mean speed measurements were not 

disaggregated by vehicle type it was impossible to test this hypothesis.  

Results from the crash analysis show that most crashes occurred in the activity area and are rear-

ended. In addition, a crash is more likely to occur on weekdays, off-peak hour, in the daytime, no worker 

present at rural work zones. A crash is severer when drivers driving drunk, during the daytime, on 

weekdays, and more vehicles are involved. 

For crash occurred work zone areas, according to the model results, advance warning and transition 

areas need to pay attention to road conditions (e.g., worn, obstruction, debris), AADT, heavy vehicles, 

rural areas, and driver age younger than 25 years. Activity areas need to pay attention to work zone 

type, heavy vehicle, and curvature. Lastly, termination areas need to pay attention to nighttime, weekend, 

driving impaired (alcohol), young driver, and road conditions. 

  



 

73 

REFERENCES 

 

Abaza, O., & Chowdhury, T. D. Effectiveness of VSL Signs in Reducing Crash Rates on Roadway 

Construction Work Zones in Alaska. Conference Paper, New York City: 19th International 

Conference on Traffic Guidance and Transportation, 2017.  

Akepati, S. R., & Dissanayake, S. (2011). Characteristics and contributory factors of work zone crashes. 

Proceedings of the 90th Annual Meeting, Transportation Research Board, Washington, DC. 

Arizona Department of Transportation, ADOT. (2019). Smart Work Zone Technical Concept Study 

Phase No. 1 Final Working Paper 1 – Nationwide Review of SWZ Technologies. 

https://azdot.gov/sites/default/files/media/2020/09/ADOT-SWZ-Study-WP-1-Nationwide-

Review-of-SWZ-Tech.pdf  

Azimi, M., I. Oyelade, A.M. Aremu, and et al. (2021). Selection and implementation of intelligent 

transportation systems for work zone construction projects. Future Transportation. 1, 169–187. 

Bham, G. H. & M.C. Leu (2018) A driving simulator study to analyze the effects of portable changeable 

message signs on mean speeds of drivers, Journal of Transportation Safety & Security, 10:1-2, 45-

71, DOI: 10.1080/19439962.2017.1314398 

Bledsoe, J., Raghunathan, D., & Ullman, J. (2014). Kansas Demonstration Project: Improvements to 

the Homestead Lane/I-35 Interchange in Johnson County. 

Camille Kamga et al., 2020. Mobility Trends in New York City during COVID-19 Pandemic: 

Analyses of Transportation Modes throughout April 2020. 

Clark, J., Neuner, M., Sethi, S., Bauer, J., Bedsole, L., & Cheema, A. (2017). Transportation Systems 

Management and Operations in Action (No. FHWA-HOP-17-025). United States. Federal 

Highway Administration. 

Domenichini, L. Francesca La Torre, Valentina Branzi, Alessandro Nocentini. Speed behaviour in work 

zone crossovers. A driving simulator study. Accident Analysis & Prevention. Volume 98, 2017, 

Pages 10-24. 

Dudek, C.L., R.D. Huchingson. R.D., R.J. Koppa, and M.L. Edwards. (1978a). Human Factors 

Requirements for Real-Time Motorist Information Displays, Vol. 10 – Evaluation of Traffic State 

Descriptor Variables. Report No. FHWA-RD-78-14. FHWA, U.S. Department of Transportation. 

Dudek, C.L., G.D. Weaver, D.R. Hatcher, S.R. Richards. (1978b). Field Evaluation of Messages for 

Real-Time Diversion of Freeway Traffic for Special Events. Transportation Research Record 682, 

37-45. 

Edara, Praveen, Carlos Sun, and Andrew Robertson. Effectiveness of Work Zone Intelligent 

Transportation Systems. Final Report, Midwest Smart Work Zone Deployment Initiative, 2013. 

FHWA website. https://ops.fhwa.dot.gov/wz/resources/publications/publications.htm. Accessed on 

February 18, 2022. 



 

74 

FMCSA, 2007. Federal Motor Carrier Safety Administration, Office of Research and Analysis. 

Publication No. FMCSA-RRA-07-017, July 2007. https://www.fmcsa.dot.gov/safety/research-

and-analysis/large-truck-crash-causation-study-analysis-brief. Accessed on November 21, 2021. 

Fontaine, M.D., Paul J. Carlson. Evaluation of Speed Displays and Rumble Strips at Rural-Maintenance 

Work Zones. TRR, 2001. DOI: 10.3141/1745-04 

Garber, N.J., and S.T. Patel. Control of Vehicle Speeds in Temporary Traffic Control Zones (Work 

Zones) Using Changeable Message Signs with Radar. Transportation Research Record, No. 1509, 

1995, pp. 73–81. 

Ghader, S., Zhao, J., Lee, M., Zhou, W., Zhao, G., Zhang, L., 2020. Observed mobility 

behavior data reveal social distancing inertia. arXiv preprint arXiv:2004.14748. 

Habermann, J. (2015). I-35 smart work zone update. Texas Department of Transportation Short Course 

Slides. ftp.dot.state.tx.us/pub/txdot-info/cst/conference/washto-jhabermann.pdf.  

Hallmark, S., A. Sharma, B. Lawton, et al. (2020). Assessing Driver Behavior at Back of Queues: 

Implications for Queue Warning System in Work Zones. Final Report. No. InTrans Project 19-

686. 

https://intrans.iastate.edu/app/uploads/2020/07/wz_back_of_queue_driver_behavior_assessment

_w_cvr.pdf 

Hourdos, J., Liu, Z., Dirks, P., Liu, H. X., Huang, S., Sun, W., & Xiao, L. (2017). Development of a 

queue warning system utilizing ATM infrastructure system development and field-testing. No. 

MN/RC 2017-20. Minnesota. Dept. of Transportation. Research Services & Library, 2017. 

Hourdos, J., Parikh, G., Dirks, P., Lehrke, D., & Lukashin, P. (2019). Evaluation of the Smart Work 

Zone Speed Notification System. (No. MN/RC 2019-21). Minnesota Traffic Observatory 

Laboratory. 

Huang and Bai. (2014). Effectiveness of graphic-aided portable changeable message signs in reducing 

vehicle speeds in highway work zones. TR Part C. 

Huebschman, C.R., C. Garcia, D.M. Bullock, and D.M. Abraham. Construction work zone safety. 

Report No. FHWA/IN/JTRP-2002/34. Purdue University, Joint Transportation Research Program., 

2003. 

Kermode, R.H. and Myyra, W.A. (1970). Freeway Lane Closure. Traffic Engineering, 40, 14–18. 

Kim, H., S. Kim, S. Park, and K. Jang, “Assessment of travel time estimates based on different vehicle 

speed data: Spot speed vs. sampled journey speed in South Korean expressways,” in Proc. 10th 

Int. Eastern Asia Soc. Transp. Stud., Taipei, Taiwan, 2013. 

King, Tyson W., Carlos C. Sun, and Mark R. Virkler. Evaluation of a freeway work zone advance speed 

advisory system using multiple measures. Transportation Research Board, Washington, 

DC (2004). 

Knickerbocker, S., Wang, S., Hawkins, N., Sharma, A., & Hans, Z. (2018). Analysis of Dynamic 

Advisory Messaging–Phase II (No. InTrans Project 16-591). 

https://www.fmcsa.dot.gov/safety/research-and-analysis/large-truck-crash-causation-study-analysis-brief
https://www.fmcsa.dot.gov/safety/research-and-analysis/large-truck-crash-causation-study-analysis-brief


 

75 

Li, Y., and Y. Bai. (2009). Highway work zone risk factors and their impact on crash severity. 

Journal of Transportation Engineering, 135 (10), pp. 694-701. 

Li, Y., Y. Bai, and U. Firman. Determining the Effectiveness of PCMS on Reducing Vehicle Speed in 

Rural Highway Work Zones. Presented at 89th Annual Meeting of the Transportation Research 

Board, Washington, D.C., 2010. 

Li, Y., Martinez Mori, J. C., & Work, D. B. (2016). Improving the effectiveness of smart work zone 

technologies. Illinois Center for Transportation/Illinois Department of Transportation. 

Lin, P.W., K.P. Kang & G.L. Chang. (2004). Exploring the Effectiveness of Variable Speed Limit 

Controls on Highway Work-Zone Operations, Intelligent Transportation Systems, 8(3), 155-168. 

Luttrell, T., Robinson, M., Rephlo, J., Haas, R., Srour, J., Benekohal, R., ... & Scriba, T. (2008). Benefits 

of using intelligent transportation systems in work zones: a summary report (No. FHWA-HOP-

08-021). United States. Federal Highway Administration. Office of Transportation Operations. 

Maoh, Hanna, and William Anderson. 2021. “The Impact of COVID-19 on the Movement of Trucks 

Between Canada and the US: Evidence from the Ambassador Bridge.” Findings, 

June. https://doi.org/10.32866/001c.24958. Accessed on February 14, 2022 

Massachusetts Department of Transportation, MassDOT. (2014). Smarter Work Zones Technology 

Applications Case Study: Technology Applications on the Callahan Tunnel Project.  

Mattox III, J. H., Sarasua, W. A., Ogle, J. H., Eckenrode, R. T., & Dunning, A. (2007). Development 

and evaluation of speed-activated sign to reduce speeds in work zones. Transportation research 

record, 2015(1), 3-11. 

McCoy, P.T., J.A. Bonneson, and J.A. Kollbaum. Speed Reduction Effects of Speed Monitoring 

Displays with Radar in Work Zones on Interstate Highways. Transportation Research Record, No. 

1509, 1995, pp. 65–72.  

McCoy, P. T., & Pesti, G. (2002). Effectiveness of condition-responsive advisory speed messages in 

rural freeway work zones. Transportation Research Record, 1794, 11–18. 

Middleton, D., R. Brydia, G. Pesto, P. Songchitruska, K. Balke, G. Ullman. Use of intelligent 

transportation systems in rural work zones; Report No. FHWA/TX-11/0-6427-1. Texas 

Department of Transportation, 2011. 

Minnesota Department of Transportation, MnDOT. (2008). Minnesota IWZ Toolbox: Guideline for 

Intelligent Work Zone System Selection. https://www.workzonesafety.org/publication/minnesota-

iwz-toolbox-guideline-for-intelligent-work-zone-system-selection/  

Miovision Scout Website. https://help.miovision.com/s/article/Scout-Connect---

FAQ?language=en_US. Accessed date: June 6, 2021. 

MUTCD (2009). Manual on Uniform Traffic Control Devices for Streets and Highways, 2009 Edition, 

Chapter 6C. United States Department of Transportation. 

Nebraska DHHS (Department of Health and Human Services). https://dhhs.ne.gov/Pages/COVID-19-

Directed-Health-Measures.aspx. Accessed on  December 11, 2020. 

https://doi.org/10.32866/001c.24958
https://help.miovision.com/s/article/Scout-Connect---FAQ?language=en_US
https://help.miovision.com/s/article/Scout-Connect---FAQ?language=en_US
https://dhhs.ne.gov/Pages/COVID-19-Directed-Health-Measures.aspx
https://dhhs.ne.gov/Pages/COVID-19-Directed-Health-Measures.aspx


 

76 

Pant, P. D. (2017). Smart Work Zone Systems. FHWA, verkkosivu, päivitetty, 5, 2017. 

Paracha, J., & Ostroff, R. (2018). Improving Work Zones Every Day, in Every Way. Public Roads, 82(2). 

Pesti, G., Wiles, P., Cheu, R. L. K., Songchitruksa, P., Shelton, J., & Cooner, S. (2008). Traffic control 

strategies for congested freeways and work zones (No. FHWA/TX-08/0-5326-2). Texas 

Transportation Institute. 

Radwan, E., Harb, R., & Ramasamy, S. (2009). Evaluation of safety and operational effectiveness of 

dynamic lane merge system in Florida: final report, April 2009. 

Raub, R. A., O. B. Sawaya, J. L. Schofer, and A. Ziliaskopoulos. 2001. Enhanced Crash Reporting to 

Explore Work Zone Crash Patterns. Northwestern University Center for Public Safety, Evanston, 

IL 

Richards, S.H., R.C. Wunderlich, and C.L. Dudek. Field Evaluation of Work Zone Speed Control 

Techniques. Transportation Research Record, No. 1035, 1986, pp. 66–78. 

Roelofs, T., & Brookes, C. (2014). Synthesis of intelligent work zone practices (No. ENT-2014-1). 

Scriba, T., & Atkinson, J. (2014). Creating Smarter Work Zones. Public Roads, 77(5). 

Shauna Hallmark, Anuj Sharma, Brianna Lawton, Guillermo Basulto-Elias, Anna Bilek, Nicole 

Oneyear, and Theresa Litteral. (2020). Assessing Driver Behavior at Back of Queues: Implications 

for Queue Warning System in Work Zones.  

Texas A&M Transportation Institute. (2018). Facilitating Deployment Decisions of Highly Portable 

End-of-Queue Warning Systems. https://tti.tamu.edu/featured-project/facilitating-deployment-

decisions-of-highly-portable-end-of-queue-warning-systems/  

Ullman, G. L., Schroeder, J. L., & Gopalakrishna, D. (2014). Use of technology and data for effective 

work zone management: Work zone ITS implementation guide (No. FHWA-HOP-14-008). United 

States. Federal Highway Administration. Office of Operations. 

Ullman, G., & Schroeder, J. (2014). Mitigating work zone safety and mobility challenges through 

Intelligent Transportation Systems: Case Studies (No. FHWA-HOP-14-007). 

USDOT Federal Highway Administration. (2004). ITS in Work Zones: Using an Automated Traffic 

Information System to Reduce Congestion and Improve Safety During Reconstruction of the I-55 

Lake Springfield Bridge in Illinois. Case Study, Washington DC: USDOT Federal Highway 

Administration. 

USDOT Federal Highway Administration. (2008). Benefits of Using Intelligent Transportation Systems 

in Work Zones. Summary Report, Washington DC: US Department of Transportation Federal 

Highway Administration. 

Van Jura, J., Haines, D., & Gemperline, A. (2018). Use of portable and dynamic variable speed limits 

in construction zones. Transportation research record, 2672(16), 35-45. 

Vingilis et al., 2020. Coronavirus disease 2019: what could be the effects on road safety? 

Wang, C., K.K. Dixon, and D. Jared. (2003). Evaluating Speed-Reduction Strategies for Highway Work 

Zones. Transportation Research Record 1824 Paper No. 03- 4099. 



 

77 

Zech, W. C., B. Mohan, and J. Dmochowski. Evaluation of Messages on Changeable Message Signs as 

a Speed Control Measure in Highway Work Zones. Practice Periodical on Structural Design and 

Construction, Vol. 13, No. 1, 2008, pp. 11–18. https://doi.org/10.1061 /(ASCE)1084-0680(2008) 

13:1 (11). 

Zwahlen, H. T., & Russ, A. (2001). Evaluation of a real-time travel time prediction system in a freeway 

construction work zone: final report, March 2001. 

  



 

78 

APPENDICES  

 

A. Algorithm and Codes for Travel Time Collection and Measure  

library(tidyverse) 

library(data.table) 

 

day <- "9-9" 

loc <- "WACO_WB_PCMS" 

SENSOR <- "RDR02" 

PCMS <- "MB10";  

 

Station1<-"SCU6UB_Sta1"; Station2<-"SCU6TZ_Sta2"; 

Station3<-"SCU6T2_Sta3"; Station4<-"SCU6T1_Sta4"; 

Station5<-"SCU6VA_Sta5" 

dist12 = 2112; dist23 = 3167; 

dist34 = 2112;dist45 = 3151;#ft 

 

stp<-as.numeric(as.POSIXct(paste("2020-",day0," 00:00:00",sep=""))) 

edp<-as.numeric(as.POSIXct(paste("2020-",day0," 23:59:59",sep=""))) 

bins <- seq(as.numeric(as.POSIXct(paste("2020-",day0," 08:00:00",sep=""))), 

as.numeric(as.POSIXct(paste("2020-",day0," 20:00:00",sep=""))),by=3600) 

bin <- data.frame(start.bin=bins[-length(bins)],end.bin=lead(bins)[-length(bins)]) 

########################################################################### 

setwd("C:/Users/Liz/Desktop/Data Collection/Waco-Utica/Miovision_Data/") 

day <- "09-09" 

sta1 <- read.csv(paste(loc,p,"_",day,"_",Station1,".csv",sep=""),sep=",")  ## need to change 

sta2 <- read.csv(paste(loc,p,"_",day,"_",Station2,".csv",sep=""),sep=",") 

sta3 <- read.csv(paste(loc,p,"_",day,"_",Station3,".csv",sep=""),sep=",") 

sta4 <- read.csv(paste(loc,p,"_",day,"_",Station4,".csv",sep=""),sep=",") 

sta5 <- read.csv(paste(loc,p,"_",day,"_",Station5,".csv",sep=""),sep=",") 

sta1$Time <- gsub("[ T ]", " " , sta1$Time, perl=TRUE) 

sta2$Time <- gsub("[ T ]", " " , sta2$Time, perl=TRUE) 

sta3$Time <- gsub("[ T ]", " " , sta3$Time, perl=TRUE) 

sta4$Time <- gsub("[ T ]", " " , sta4$Time, perl=TRUE) 

sta5$Time <- gsub("[ T ]", " " , sta5$Time, perl=TRUE) 
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sta1 <- sta1 %>% filter(as.numeric(as.POSIXct(Time))>as.numeric(as.POSIXct(paste("2020-",day," 

08:00:00",sep="")))& 

 

as.numeric(as.POSIXct(Time))<as.numeric(as.POSIXct(paste("2020-",day," 20:00:00",sep=""))))%>% 

                 mutate(Uni_time = as.numeric(as.POSIXct(Time))) %>% separate(Time, c("Date", 

"Time")," ") %>% separate(Time, c("Time", NA),"-")  

sta2 <- sta2 %>% mutate(Uni_time = as.numeric(as.POSIXct(Time))) %>% separate(Time, c("Date", 

"Time")," ") %>% separate(Time, c("Time", NA),"-")  

sta3 <- sta3 %>% mutate(Uni_time = as.numeric(as.POSIXct(Time))) %>% separate(Time, c("Date", 

"Time")," ") %>% separate(Time, c("Time", NA),"-")  

sta4 <- sta4 %>% mutate(Uni_time = as.numeric(as.POSIXct(Time))) %>% separate(Time, c("Date", 

"Time")," ") %>% separate(Time, c("Time", NA),"-")  

sta5 <- sta5 %>% mutate(Uni_time = as.numeric(as.POSIXct(Time))) %>% separate(Time, c("Date", 

"Time")," ") %>% separate(Time, c("Time", NA),"-")  

 

dt<-ifelse(day=="09-03",1599109200,1599627600) 

sta1$Time0<-(sta1$Uni_time-dt)/86400 

sta2$Time0<-(sta2$Uni_time-dt)/86400 

sta3$Time0<-(sta3$Uni_time-dt)/86400 

sta4$Time0<-(sta4$Uni_time-dt)/86400 

sta5$Time0<-(sta5$Uni_time-dt)/86400 

############################################################# 

 

##### data when star message is displayed (free traffic) ##### 

msg_star <- data.frame(code = msg$Msg_code,begin = msg$Time, end = lead(msg$Time)) 

msg_star <- msg_star[-nrow(msg_star),] %>% filter(code == 3|code == 4)  

star_sta1 = star_sta2 = star_sta3 = star_sta4 = star_sta5 <- NULL 

if(nrow(msg_star)!=0){ 

for(k in 1:nrow(msg_star)){star_sta1<-rbind(star_sta1,sta1 %>% filter(Time0 %between% 

msg_star[k,-1]))} 

for(k in 1:nrow(msg_star)){star_sta2<-rbind(star_sta2,sta2 %>% filter(Time0 %between% 

msg_star[k,-1]))} 

for(k in 1:nrow(msg_star)){star_sta3<-rbind(star_sta3,sta3 %>% filter(Time0 %between% 

msg_star[k,-1]))} 

for(k in 1:nrow(msg_star)){star_sta4<-rbind(star_sta4,sta4 %>% filter(Time0 %between% 

msg_star[k,-1]))} 
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for(k in 1:nrow(msg_star)){star_sta5<-rbind(star_sta5,sta5 %>% filter(Time0 %between% 

msg_star[k,-1]))}} 

 

##### data when slow message is displayed (slow traffic) ##### 

msg_slow <- data.frame(code=msg$Msg_code,begin=msg$Time,end=lead(msg$Time)) 

msg_slow <- msg_slow %>% filter(code==2) 

slow_sta1=slow_sta2=slow_sta3=slow_sta4=slow_sta5<-NULL 

if(nrow(msg_slow)!=0){ 

for(k in 1:nrow(msg_slow)){slow_sta1<-rbind(slow_sta1,sta1 %>% filter(Time0 %between% 

msg_slow[k,-1]))} 

for(k in 1:nrow(msg_slow)){slow_sta2<-rbind(slow_sta2,sta2 %>% filter(Time0 %between% 

msg_slow[k,-1]))} 

for(k in 1:nrow(msg_slow)){slow_sta3<-rbind(slow_sta3,sta3 %>% filter(Time0 %between% 

msg_slow[k,-1]))} 

for(k in 1:nrow(msg_slow)){slow_sta4<-rbind(slow_sta4,sta4 %>% filter(Time0 %between% 

msg_slow[k,-1]))} 

for(k in 1:nrow(msg_slow)){slow_sta5<-rbind(slow_sta5,sta5 %>% filter(Time0 %between% 

msg_slow[k,-1]))}} 

 

##### data when stop message is displayed (stop traffic) ##### 

msg_stop <- data.frame(code = msg$Msg_code,begin = msg$Time, end = lead(msg$Time)) 

msg_stop <- msg_stop%>%filter(code == 1) 

stop_sta1 = stop_sta2 = stop_sta3 = stop_sta4 = stop_sta5 <- NULL 

if(nrow(msg_stop)!=0){ 

for(k in 1:nrow(msg_stop)){stop_sta1<-rbind(stop_sta1,sta1 %>% filter(Time0 %between% 

msg_stop[k,-1]))} 

for(k in 1:nrow(msg_stop)){stop_sta2<-rbind(stop_sta2,sta2 %>% filter(Time0 %between% 

msg_stop[k,-1]))} 

for(k in 1:nrow(msg_stop)){stop_sta3<-rbind(stop_sta3,sta3 %>% filter(Time0 %between% 

msg_stop[k,-1]))} 

for(k in 1:nrow(msg_stop)){stop_sta4<-rbind(stop_sta4,sta4 %>% filter(Time0 %between% 

msg_stop[k,-1]))} 

for(k in 1:nrow(msg_stop)){stop_sta5<-rbind(stop_sta5,sta5 %>% filter(Time0 %between% 

msg_stop[k,-1]))}} 

 

 

####################################### 
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############# msg_star ################ 

####################################### 

par(mfrow=c(2,3)) 

s_lo <- 0 

s_hi <- 100 

##### from Station 1 to Station 2 #### 

star_sta12 <- merge(star_sta1, star_sta2, by = "Object.Identification") 

names(star_sta12)[c(5,6,11,12)] <- c( "Time.s", "Uni_time.s", "Time.e", "Uni_time.e") 

star_sta12 <- star_sta12[!duplicated(star_sta12),c("Object.Identification", "Time.s", "Uni_time.s", 

"Time.e", "Uni_time.e")] 

star_sta12 <- transform(star_sta12,id=as.numeric(factor(star_sta12$Object.Identification))) 

 

star_t12 <- NULL 

for(k in unique(star_sta12$id)){ 

  star_temp_t12 <- star_sta12[star_sta12$id == k,] 

  if(diff(range(star_temp_t12$Uni_time.s)) > 10){star_temp_t12 <- star_temp_t12 %>% 

filter(Uni_time.s > min(Uni_time.s) & Uni_time.s < max(Uni_time.s))} 

  if(nrow(star_temp_t12) > 0){if(diff(range(star_temp_t12$Uni_time.e)) > 10){star_temp_t12 <- 

star_temp_t12 %>% filter(Uni_time.e > min(Uni_time.e) & Uni_time.e < max(Uni_time.e))}} 

  if(nrow(star_temp_t12) > 0){star_temp_t12 <- star_temp_t12 %>% mutate(diff = max(Uni_time.e) - 

max(Uni_time.s)) 

  star_t12 <- rbind(star_t12, 

star_temp_t12[star_temp_t12$Uni_time.e==max(star_temp_t12$Uni_time.e)&star_temp_t12$Uni_ti

me.s==max(star_temp_t12$Uni_time.s),]) 

  }} 

star_s12 <- data.frame(star_t12,sms=0.681818*dist12/star_t12$diff) ## convert ft/s to mph 

star_s12 <- star_s12%>%filter(sms < s_hi & sms> s_lo) 

 

d_star_s12<-hist(star_s12$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 1 - 2") 

abline(v = median(star_s12$sms), col= "red", lty="dashed", lwd=2) 

text(median(star_s12$sms), max(d_star_s12$density), paste("M=", round(median(star_s12$sms),1),", 

N=", nrow(star_s12),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(star_s12$Object.Identification[star_s12$Uni_time.1 >= bin[i,1] 

& star_s12$Uni_time.1 <= bin[i,2]])} 
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star_sta12_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

##### from Station 2 to Station 3 #### 

star_sta23 <- merge(star_sta2, star_sta3, by = "Object.Identification") 

names(star_sta23)[c(5,6,11,12)] <- c( "Time.s", "Uni_time.s", "Time.e", "Uni_time.e") 

star_sta23 <- star_sta23[!duplicated(star_sta23),c("Object.Identification", "Time.s", "Uni_time.s", 

"Time.e", "Uni_time.e")] 

star_sta23 <- transform(star_sta23,id=as.numeric(factor(star_sta23$Object.Identification))) 

 

star_t23 <- NULL 

for(k in unique(star_sta23$id)){ 

  star_temp_t23 <- star_sta23[star_sta23$id == k,] 

  if(diff(range(star_temp_t23$Uni_time.s)) > 10){star_temp_t23 <- star_temp_t23 %>% 

filter(Uni_time.s > min(Uni_time.s) & Uni_time.s < max(Uni_time.s))} 

  if(nrow(star_temp_t23) > 0){if(diff(range(star_temp_t23$Uni_time.e)) > 10){star_temp_t23 <- 

star_temp_t23 %>% filter(Uni_time.e > min(Uni_time.e) & Uni_time.e < max(Uni_time.e))}} 

  if(nrow(star_temp_t23) > 0){star_temp_t23 <- star_temp_t23 %>% mutate(diff = max(Uni_time.e) - 

max(Uni_time.s)) 

  star_t23 <- rbind(star_t23, 

star_temp_t23[star_temp_t23$Uni_time.e==max(star_temp_t23$Uni_time.e)&star_temp_t23$Uni_ti

me.s==max(star_temp_t23$Uni_time.s),]) 

}} 

star_s23 <- data.frame(star_t23,sms=0.681818*dist23/star_t23$diff) ## convert ft/s to mph 

star_s23 <- star_s23%>%filter(sms < s_hi & sms> s_lo) 

 

d_star_s23<-hist(star_s23$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 2 - 3") 

abline(v = median(star_s23$sms), col= "red", lty="dashed", lwd=2) 

text(median(star_s23$sms), max(d_star_s23$density), paste("M=", round(median(star_s23$sms),1),", 

N=", nrow(star_s23),sep="") ) 

 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(star_s23$Object.Identification[star_s23$Uni_time.2 >= bin[i,1] 

& star_s23$Uni_time.2 <= bin[i,2]])} 

star_sta23_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 
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##### from Station 3 to Station 4 #### 

star_sta34 <- merge(star_sta3, star_sta4, by = "Object.Identification") 

names(star_sta34)[c(5,6,11,12)] <- c( "Time.s", "Uni_time.s", "Time.e", "Uni_time.e") 

star_sta34 <- star_sta34[!duplicated(star_sta34),c("Object.Identification", "Time.s", "Uni_time.s", 

"Time.e", "Uni_time.e")] 

star_sta34 <- transform(star_sta34,id=as.numeric(factor(star_sta34$Object.Identification))) 

 

star_t34 <- NULL 

for(k in unique(star_sta34$id)){ 

  star_temp_t34 <- star_sta34[star_sta34$id == k,] 

  if(diff(range(star_temp_t34$Uni_time.s)) > 10){star_temp_t34 <- star_temp_t34 %>% 

filter(Uni_time.s > min(Uni_time.s) & Uni_time.s < max(Uni_time.s))} 

  if(nrow(star_temp_t34) > 0){if(diff(range(star_temp_t34$Uni_time.e)) > 10){star_temp_t34 <- 

star_temp_t34 %>% filter(Uni_time.e > min(Uni_time.e) & Uni_time.e < max(Uni_time.e))}} 

  if(nrow(star_temp_t34) > 0){star_temp_t34 <- star_temp_t34 %>% mutate(diff = max(Uni_time.e) - 

max(Uni_time.s)) 

  star_t34 <- rbind(star_t34, 

star_temp_t34[star_temp_t34$Uni_time.e==max(star_temp_t34$Uni_time.e)&star_temp_t34$Uni_ti

me.s==max(star_temp_t34$Uni_time.s),]) 

}} 

star_s34 <- data.frame(star_t34,sms=0.681818*dist34/star_t34$diff) ## convert ft/s to mph 

star_s34 <- star_s34%>%filter(sms < s_hi & sms> s_lo) 

 

d_star_s34<-hist(star_s34$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 3 - 4") 

abline(v = median(star_s34$sms), col= "red", lty="dashed", lwd=2) 

text(median(star_s34$sms), max(d_star_s34$density), paste("M=", round(median(star_s34$sms),1),", 

N=", nrow(star_s34),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(star_s34$Object.Identification[star_s34$Uni_time.3 >= bin[i,1] 

& star_s34$Uni_time.3 <= bin[i,2]])} 

star_sta34_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

##### from Station 4 to Station 5 #### 

star_sta45 <- merge(star_sta4, star_sta5, by = "Object.Identification") 

names(star_sta45)[c(5,6,11,12)] <- c( "Time.4", "Uni_time.4", "Time.5", "Uni_time.5") 
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star_sta45 <- star_sta45[!duplicated(star_sta45),c("Object.Identification", "Time.4", "Uni_time.4", 

"Time.5", "Uni_time.5")] 

star_sta45 <- transform(star_sta45,id45=as.numeric(factor(star_sta45$Object.Identification))) 

 

star_t45 <- NULL 

for(k in unique(star_sta45$id)){ 

  star_temp_t45 <- star_sta45[star_sta45$id == k,] 

  if(diff(range(star_temp_t45$Uni_time.4)) > 10){star_temp_t45 <- star_temp_t45 %>% 

filter(Uni_time.4 > min(Uni_time.4) & Uni_time.4 < max(Uni_time.4))} 

  if(nrow(star_temp_t45) > 0){if(diff(range(star_temp_t45$Uni_time.5)) > 10){star_temp_t45 <- 

star_temp_t45 %>% filter(Uni_time.5 > min(Uni_time.5) & Uni_time.5 < max(Uni_time.5))}} 

  if(nrow(star_temp_t45) > 0){ star_temp_t45 <- star_temp_t45 %>% mutate(diff = max(Uni_time.5) - 

max(Uni_time.4)) 

  star_t45 <- rbind(star_t45, 

star_temp_t45[star_temp_t45$Uni_time.5==max(star_temp_t45$Uni_time.5)&star_temp_t45$Uni_ti

me.4==max(star_temp_t45$Uni_time.4),]) 

}} 

star_s45 <- data.frame(star_t45,sms=0.681818*dist45/star_t45$diff) ## convert ft/s to mph 

star_s45 <- star_s45%>%filter(sms < s_hi & sms> s_lo) 

 

d_star_s45<-hist(star_s45$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 4 - 5") 

abline(v = median(star_s45$sms), col= "red", lty="dashed", lwd=2) 

text(median(star_s45$sms), max(d_star_s45$density), paste("M=", round(median(star_s45$sms),1),", 

N=", nrow(star_s45),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(star_s45$Object.Identification[star_s45$Uni_time.4 >= bin[i,1] 

& star_s45$Uni_time.4 <= bin[i,2]])} 

star_sta45_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

####################################### 

############# msg_slow ################ 

####################################### 

 

##### from Station 1 to Station 2 #### 

slow_sta12 <- merge(slow_sta1, slow_sta2, by = "Object.Identification") 
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names(slow_sta12)[c(5,6,11,12)] <- c( "Time.s", "Uni_time.s", "Time.e", "Uni_time.e") 

slow_sta12 <- slow_sta12[!duplicated(slow_sta12),c("Object.Identification", "Time.s", "Uni_time.s", 

"Time.e", "Uni_time.e")] 

slow_sta12 <- transform(slow_sta12,id=as.numeric(factor(slow_sta12$Object.Identification))) 

 

slow_t12 <- NULL 

for(k in unique(slow_sta12$id)){ 

  slow_temp_t12 <- slow_sta12[slow_sta12$id == k,] 

  if(diff(range(slow_temp_t12$Uni_time.s)) > 10){slow_temp_t12 <- slow_temp_t12 %>% 

filter(Uni_time.s > min(Uni_time.s) & Uni_time.s < max(Uni_time.s))} 

  if(nrow(slow_temp_t12) > 0){if(diff(range(slow_temp_t12$Uni_time.e)) > 10){slow_temp_t12 <- 

slow_temp_t12 %>% filter(Uni_time.e > min(Uni_time.e) & Uni_time.e < max(Uni_time.e))}} 

  if(nrow(slow_temp_t12) > 0){slow_temp_t12 <- slow_temp_t12 %>% mutate(diff = max(Uni_time.e) 

- max(Uni_time.s)) 

  slow_t12 <- rbind(slow_t12, 

slow_temp_t12[slow_temp_t12$Uni_time.e==max(slow_temp_t12$Uni_time.e)&slow_temp_t12$Un

i_time.s==max(slow_temp_t12$Uni_time.s),]) 

  }} 

slow_s12 <- data.frame(slow_t12,sms=0.681818*dist12/slow_t12$diff) ## convert ft/s to mph 

slow_s12 <- slow_s12%>%filter(sms < s_hi & sms> s_lo) 

 

d_slow_s12<-hist(slow_s12$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 2 - 3") 

abline(v = median(slow_s12$sms), col= "red", lty="dashed", lwd=2) 

text(median(slow_s12$sms), max(d_slow_s12$density), paste("M=", 

round(median(slow_s12$sms),1),", N=", nrow(slow_s12),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(slow_s12$Object.Identification[slow_s12$Uni_time.1 >= 

bin[i,1] & slow_s12$Uni_time.1 <= bin[i,2]])} 

slow_sta12_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

##### from Station 2 to Station 3 #### 

slow_sta23 <- merge(slow_sta2, slow_sta3, by = "Object.Identification") 

names(slow_sta23)[c(5,6,11,12)] <- c( "Time.s", "Uni_time.s", "Time.e", "Uni_time.e") 

slow_sta23 <- slow_sta23[!duplicated(slow_sta23),c("Object.Identification", "Time.s", "Uni_time.s", 

"Time.e", "Uni_time.e")] 
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slow_sta23 <- transform(slow_sta23,id=as.numeric(factor(slow_sta23$Object.Identification))) 

 

slow_t23 <- NULL 

for(k in unique(slow_sta23$id)){ 

  slow_temp_t23 <- slow_sta23[slow_sta23$id == k,] 

  if(diff(range(slow_temp_t23$Uni_time.s)) > 10){slow_temp_t23 <- slow_temp_t23 %>% 

filter(Uni_time.s > min(Uni_time.s) & Uni_time.s < max(Uni_time.s))} 

  if(nrow(slow_temp_t23) > 0){if(diff(range(slow_temp_t23$Uni_time.e)) > 10){slow_temp_t23 <- 

slow_temp_t23 %>% filter(Uni_time.e > min(Uni_time.e) & Uni_time.e < max(Uni_time.e))}} 

  if(nrow(slow_temp_t23) > 0){slow_temp_t23 <- slow_temp_t23 %>% mutate(diff = max(Uni_time.e) 

- max(Uni_time.s)) 

  slow_t23 <- rbind(slow_t23, 

slow_temp_t23[slow_temp_t23$Uni_time.e==max(slow_temp_t23$Uni_time.e)&slow_temp_t23$Un

i_time.s==max(slow_temp_t23$Uni_time.s),]) 

  }} 

slow_s23 <- data.frame(slow_t23,sms=0.681818*dist23/slow_t23$diff) ## convert ft/s to mph 

slow_s23 <- slow_s23%>%filter(sms < s_hi & sms> s_lo) 

 

d_slow_s23<-hist(slow_s23$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 2 - 3") 

abline(v = median(slow_s23$sms), col= "red", lty="dashed", lwd=2) 

text(median(slow_s23$sms), max(d_slow_s23$density), paste("M=", 

round(median(slow_s23$sms),1),", N=", nrow(slow_s23),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(slow_s23$Object.Identification[slow_s23$Uni_time.1 >= 

bin[i,1] & slow_s23$Uni_time.1 <= bin[i,2]])} 

slow_sta23_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

##### from Station 3 to Station 4 #### 

slow_sta34 <- merge(slow_sta3, slow_sta4, by = "Object.Identification") 

names(slow_sta34)[c(5,6,11,12)] <- c( "Time.s", "Uni_time.s", "Time.e", "Uni_time.e") 

slow_sta34 <- slow_sta34[!duplicated(slow_sta34),c("Object.Identification", "Time.s", "Uni_time.s", 

"Time.e", "Uni_time.e")] 

slow_sta34 <- transform(slow_sta34,id=as.numeric(factor(slow_sta34$Object.Identification))) 

 

slow_t34 <- NULL 
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for(k in unique(slow_sta34$id)){ 

  slow_temp_t34 <- slow_sta34[slow_sta34$id == k,] 

  if(diff(range(slow_temp_t34$Uni_time.s)) > 10){slow_temp_t34 <- slow_temp_t34 %>% 

filter(Uni_time.s > min(Uni_time.s) & Uni_time.s < max(Uni_time.s))} 

  if(nrow(slow_temp_t34) > 0){if(diff(range(slow_temp_t34$Uni_time.e)) > 10){temp_t34 <- 

slow_temp_t34 %>% filter(Uni_time.e > min(Uni_time.e) & Uni_time.e < max(Uni_time.e))}} 

  if(nrow(slow_temp_t34) > 0){slow_temp_t34 <- slow_temp_t34 %>% mutate(diff = max(Uni_time.e) 

- max(Uni_time.s)) 

  slow_t34 <- rbind(slow_t34, 

slow_temp_t34[slow_temp_t34$Uni_time.e==max(slow_temp_t34$Uni_time.e)&slow_temp_t34$Un

i_time.s==max(slow_temp_t34$Uni_time.s),]) 

  }} 

slow_s34 <- data.frame(slow_t34,sms=0.681818*dist34/slow_t34$diff) ## convert ft/s to mph 

slow_s34 <- slow_s34%>%filter(sms < s_hi & sms> s_lo) 

 

d_slow_s34<-hist(slow_s34$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 2 - 3") 

abline(v = median(slow_s34$sms), col= "red", lty="dashed", lwd=2) 

text(median(slow_s34$sms), max(d_slow_s34$density), paste("M=", 

round(median(slow_s34$sms),1),", N=", nrow(slow_s34),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(slow_s34$Object.Identification[slow_s34$Uni_time.3 >= 

bin[i,1] & slow_s34$Uni_time.3 <= bin[i,2]])} 

slow_sta34_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

##### from Station 4 to Station 5 #### 

slow_sta45 <- merge(slow_sta4, slow_sta5, by = "Object.Identification") 

names(slow_sta45)[c(5,6,11,12)] <- c( "Time.4", "Uni_time.4", "Time.5", "Uni_time.5") 

slow_sta45 <- slow_sta45[!duplicated(slow_sta45),c("Object.Identification", "Time.4", "Uni_time.4", 

"Time.5", "Uni_time.5")] 

slow_sta45 <- transform(slow_sta45,id45=as.numeric(factor(slow_sta45$Object.Identification))) 

 

slow_t45 <- NULL 

for(k in unique(slow_sta45$id)){ 

  slow_temp_t45 <- slow_sta45[slow_sta45$id == k,] 
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  if(diff(range(slow_temp_t45$Uni_time.4)) > 10){slow_temp_t45 <- slow_temp_t45 %>% 

filter(Uni_time.4 > min(Uni_time.4) & Uni_time.4 < max(Uni_time.4))} 

  if(nrow(slow_temp_t45) > 0){if(diff(range(slow_temp_t45$Uni_time.5)) > 10){slow_temp_t45 <- 

slow_temp_t45 %>% filter(Uni_time.5 > min(Uni_time.5) & Uni_time.5 < max(Uni_time.5))}} 

  if(nrow(slow_temp_t45) > 0){ slow_temp_t45 <- slow_temp_t45 %>% mutate(diff = max(Uni_time.5) 

- max(Uni_time.4)) 

  slow_t45 <- rbind(slow_t45, 

slow_temp_t45[slow_temp_t45$Uni_time.5==max(slow_temp_t45$Uni_time.5)&slow_temp_t45$U

ni_time.4==max(slow_temp_t45$Uni_time.4),]) 

  }} 

slow_s45 <- data.frame(slow_t45,sms=0.681818*dist45/slow_t45$diff) ## convert ft/s to mph 

slow_s45 <- slow_s45%>%filter(sms < s_hi & sms> s_lo) 

 

d_slow_s45<-hist(slow_s45$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 2 - 3") 

abline(v = median(slow_s45$sms), col= "red", lty="dashed", lwd=2) 

text(median(slow_s45$sms), max(d_slow_s45$density), paste("M=", 

round(median(slow_s45$sms),1),", N=", nrow(slow_s45),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(slow_s45$Object.Identification[slow_s45$Uni_time.4 >= 

bin[i,1] & slow_s45$Uni_time.4 <= bin[i,2]])} 

slow_sta45_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

####################################### 

############# msg_stop ################ 

####################################### 

 

##### from Station 1 to Station 2 #### 

stop_sta12 <- merge(stop_sta1, stop_sta2, by = "Object.Identification") 

names(stop_sta12)[c(5,6,10,11)] <- c( "Time.1", "Uni_time.1", "Time.2", "Uni_time.2") 

stop_sta12 <- stop_sta12[!duplicated(stop_sta12),c("Object.Identification", "Time.1", "Uni_time.1", 

"Time.2", "Uni_time.2")] 

stop_sta12 <- transform(stop_sta12,id12=as.numeric(factor(stop_sta12$Object.Identification))) 

 

stop_t12 <- NULL 

for(k in unique(stop_sta12$id)){ 
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  stop_temp_t12 <- stop_sta12[stop_sta12$id == k,] 

  if(diff(range(stop_temp_t12$Uni_time.1)) > 10){stop_temp_t12 <- stop_temp_t12 %>% 

filter(Uni_time.1 > min(Uni_time.1) & Uni_time.1 < max(Uni_time.1))} 

  if(nrow(stop_temp_t12) > 0){if(diff(range(stop_temp_t12$Uni_time.2)) > 10){stop_temp_t12 <- 

stop_temp_t12 %>% filter(Uni_time.2 > min(Uni_time.2) & Uni_time.2 < max(Uni_time.2))}} 

  if(nrow(stop_temp_t12) > 0){stop_temp_t12 <- stop_temp_t12 %>% mutate(diff = max(Uni_time.2) 

- max(Uni_time.1)) 

  stop_t12 <- rbind(stop_t12, 

stop_temp_t12[stop_temp_t12$Uni_time.2==max(stop_temp_t12$Uni_time.2)&stop_temp_t12$Uni_

time.1==max(stop_temp_t12$Uni_time.1),]) 

  }} 

stop_s12 <- data.frame(stop_t12,sms=0.681818*dist12/stop_t12$diff) ## convert ft/s to mph 

stop_s12 <- stop_s12%>%filter(sms < s_hi & sms> s_lo) 

 

d_stop_s12<-hist(stop_s12$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 2 - 3") 

abline(v = median(stop_s12$sms), col= "red", lty="dashed", lwd=2) 

text(median(stop_s12$sms), max(d_stop_s12$density), paste("M=", round(median(stop_s12$sms),1),", 

N=", nrow(stop_s12),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(stop_s12$Object.Identification[stop_s12$Uni_time.1 >= bin[i,1] 

& stop_s12$Uni_time.1 <= bin[i,2]])} 

stop_sta12_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

##### from Station 2 to Station 3 #### 

stop_sta23 <- merge(stop_sta2, stop_sta3, by = "Object.Identification") 

names(stop_sta23)[c(5,6,10,11)] <- c( "Time.2", "Uni_time.2", "Time.3", "Uni_time.3") 

stop_sta23 <- stop_sta23[!duplicated(stop_sta23),c("Object.Identification", "Time.2", "Uni_time.2", 

"Time.3", "Uni_time.3")] 

stop_sta23 <- transform(stop_sta23,id23=as.numeric(factor(stop_sta23$Object.Identification))) 

 

stop_t23 <- NULL 

for(k in unique(stop_sta23$id)){ 

  stop_temp_t23 <- stop_sta23[stop_sta23$id == k,] 

  if(diff(range(stop_temp_t23$Uni_time.2)) > 10){stop_temp_t23 <- stop_temp_t23 %>% 

filter(Uni_time.2 > min(Uni_time.2) & Uni_time.2 < max(Uni_time.2))} 
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  if(nrow(stop_temp_t23) > 0){if(diff(range(stop_temp_t23$Uni_time.3)) > 10){stop_temp_t23 <- 

stop_temp_t23 %>% filter(Uni_time.3 > min(Uni_time.3) & Uni_time.3 < max(Uni_time.3))}} 

  if(nrow(stop_temp_t23) > 0){stop_temp_t23 <- stop_temp_t23 %>% mutate(diff = max(Uni_time.3) 

- max(Uni_time.2)) 

  stop_t23 <- rbind(stop_t23, 

stop_temp_t23[stop_temp_t23$Uni_time.3==max(stop_temp_t23$Uni_time.3)&stop_temp_t23$Uni_

time.2==max(stop_temp_t23$Uni_time.2),]) 

  }} 

stop_s23 <- data.frame(stop_t23,sms=0.681818*dist23/stop_t23$diff) ## convert ft/s to mph 

stop_s23 <- stop_s23%>%filter(sms < s_hi & sms> s_lo) 

 

d_stop_s23<-hist(stop_s23$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 2 - 3") 

abline(v = median(stop_s23$sms), col= "red", lty="dashed", lwd=2) 

text(median(stop_s23$sms), max(d_stop_s23$density), paste("M=", round(median(stop_s23$sms),1),", 

N=", nrow(stop_s23),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(stop_s23$Object.Identification[stop_s23$Uni_time.2 >= bin[i,1] 

& stop_s23$Uni_time.2 <= bin[i,2]])} 

stop_sta23_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

##### from Station 3 to Station 4 #### 

stop_sta34 <- merge(stop_sta3, stop_sta4, by = "Object.Identification") 

names(stop_sta34)[c(5,6,10,11)] <- c( "Time.3", "Uni_time.3", "Time.4", "Uni_time.4") 

stop_sta34 <- stop_sta34[!duplicated(stop_sta34),c("Object.Identification", "Time.3", "Uni_time.3", 

"Time.4", "Uni_time.4")] 

stop_sta34 <- transform(stop_sta34,id34=as.numeric(factor(stop_sta34$Object.Identification))) 

 

stop_t34 <- NULL 

for(k in unique(stop_sta34$id)){ 

  stop_temp_t34 <- stop_sta34[stop_sta34$id == k,] 

  if(diff(range(stop_temp_t34$Uni_time.3)) > 10){stop_temp_t34 <- stop_temp_t34 %>% 

filter(Uni_time.3 > min(Uni_time.3) & Uni_time.3 < max(Uni_time.3))} 

  if(nrow(stop_temp_t34) > 0){if(diff(range(stop_temp_t34$Uni_time.4)) > 10){stop_temp_t34 <- 

stop_temp_t34 %>% filter(Uni_time.4 > min(Uni_time.4) & Uni_time.4 < max(Uni_time.4))}} 
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  if(nrow(stop_temp_t34) > 0){stop_temp_t34 <- stop_temp_t34 %>% mutate(diff = max(Uni_time.4) 

- max(Uni_time.3)) 

  stop_t34 <- rbind(stop_t34, 

stop_temp_t34[stop_temp_t34$Uni_time.4==max(stop_temp_t34$Uni_time.4)&stop_temp_t34$Uni_

time.3==max(stop_temp_t34$Uni_time.3),]) 

  }} 

stop_s34 <- data.frame(stop_t34,sms=0.681818*dist34/stop_t34$diff) ## convert ft/s to mph 

stop_s34 <- stop_s34%>%filter(sms < s_hi & sms> s_lo) 

 

d_stop_s34<-hist(stop_s34$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 2 - 3") 

abline(v = median(stop_s34$sms), col= "red", lty="dashed", lwd=2) 

text(median(stop_s34$sms), max(d_stop_s34$density), paste("M=", round(median(stop_s34$sms),1),", 

N=", nrow(stop_s34),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(stop_s34$Object.Identification[stop_s34$Uni_time.3 >= bin[i,1] 

& stop_s34$Uni_time.3 <= bin[i,2]])} 

stop_sta34_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 

 

##### from Station 4 to Station 5 #### 

stop_sta45 <- merge(stop_sta4, stop_sta5, by = "Object.Identification") 

names(stop_sta45)[c(5,6,10,11)] <- c( "Time.4", "Uni_time.4", "Time.5", "Uni_time.5") 

stop_sta45 <- stop_sta45[!duplicated(stop_sta45),c("Object.Identification", "Time.4", "Uni_time.4", 

"Time.5", "Uni_time.5")] 

stop_sta45 <- transform(stop_sta45,id45=as.numeric(factor(stop_sta45$Object.Identification))) 

 

stop_t45 <- NULL 

for(k in unique(stop_sta45$id)){ 

  stop_temp_t45 <- stop_sta45[stop_sta45$id == k,] 

  if(diff(range(stop_temp_t45$Uni_time.4)) > 10){stop_temp_t45 <- stop_temp_t45 %>% 

filter(Uni_time.4 > min(Uni_time.4) & Uni_time.4 < max(Uni_time.4))} 

  if(nrow(stop_temp_t45) > 0){if(diff(range(stop_temp_t45$Uni_time.5)) > 10){stop_temp_t45 <- 

stop_temp_t45 %>% filter(Uni_time.5 > min(Uni_time.5) & Uni_time.5 < max(Uni_time.5))}} 

  if(nrow(stop_temp_t45) > 0){ stop_temp_t45 <- stop_temp_t45 %>% mutate(diff = max(Uni_time.5) 

- max(Uni_time.4)) 
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  stop_t45 <- rbind(stop_t45, 

stop_temp_t45[stop_temp_t45$Uni_time.5==max(stop_temp_t45$Uni_time.5)&stop_temp_t45$Uni_

time.4==max(stop_temp_t45$Uni_time.4),]) 

  }} 

stop_s45 <- data.frame(stop_t45,sms=0.681818*dist45/stop_t45$diff) ## convert ft/s to mph 

stop_s45 <- stop_s45%>%filter(sms < s_hi & sms> s_lo) 

 

d_stop_s45<-hist(stop_s45$sms, freq = FALSE, xlab = "Average Speed (mph)", main = 

"Freeflow_Stations 2 - 3") 

abline(v = median(stop_s45$sms), col= "red", lty="dashed", lwd=2) 

text(median(stop_s45$sms), max(d_stop_s45$density), paste("M=", round(median(stop_s45$sms),1),", 

N=", nrow(stop_s45),sep="") ) 

 

count<-NULL 

for(i in 1:nrow(bin)) {count[i]<-length(stop_s45$Object.Identification[stop_s45$Uni_time.4 >= bin[i,1] 

& stop_s45$Uni_time.4 <= bin[i,2]])} 

stop_sta45_count<-data.frame(from_hour=seq(8,19,1),to_hour=seq(9,20,1),count=count) 
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B. Distributions of the Travel Speed 

 

Figure B_1. Travel speed during warning message at Waco-Utica test site 

 

 

Figure B_2. Travel speed during non-warning at Waco-Utica test site 



 

94 

 

Figure B_3. Travel speed during warning message at Big Springs test site 

 

 

Figure B_4. Travel speed during no warning message at Big Springs test site  
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C. Technical Memorandum 

 

Technical Memorandum 1 

Intelligent Work Zone Using Automatic Queue Detection Systems (FY21 (007)) 

 

To Matt Neemann, Lead TAC Member - NDOT Traffic 

Matt Baker Lead TAC Member - NDOT Operations 

From L.R. Rilett, Ph.D., P.E. 

Li Zhao, Ph.D. 

Ernest Tufuor 

Date: July 15, 2020 

Re: Proposed Data Collection Plan 

 

1. Background 

The research team analyzed data from three potential candidate sites and seven total locations: 

1. Waco-Utica (WB I-80 / EB I-80)  

2. Mahoney (WB I-80 / EB I-80) 

3. Big Springs (WB I-80 / EB I-80 / EB I-76) 

A synopsis of each site, including map and a speed – day of week graph, is provided in Appendix 

A.  Note that the Goehner-Milford (WB I-80 / EB I-80) site has yet been activated and therefore was 

not considered in this document.  When it becomes activated it will also be considered for data 

collection.   

 

2. Recommendation 

Because Waco-Utica has the most congestion, the research team recommends that this site be used for 

the first data collection. This was based on the data analysis described in Appendix A. 

The team proposes collecting data on the westbound location first. Once this is complete, it is 

proposed that data on the eastbound location be collected next. 

 

3. Waco-Utica Data Collection Plan 

3.1 Waco-Utica: Westbound I-80  

The data collection will be conducted in two phases in order to capture behavior at both of the 

PDMSs. Both phase 1 and phase 2 will consist of data collection over 10 weekdays (e.g. 20 days in 

total). Five (5) Miovision sensors will be placed upstream and downstream of the target PDMS at 0.5-

mile intervals as shown in Figure C1_1 below. The data will be monitored to see if the Miovision 

spacing plan should be modified. 
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Figure C1_1. Data Collection Plan: Westbound 1-80 Waco-Utica 

 

3.2 Waco-Utica: Eastbound I-80 location 

The eastbound I-80 data collection will be conducted in two phases in order to capture behavior at 

both of the PDMS signs. Both phase 1 and phase 2 will consist of data collection over 10 weekdays 

(e.g. 20 days in total). Five (5) Miovision sensors will be placed upstream and downstream of the target 

PDMS at 0.5-mile intervals as shown in Figure C1_2 below. The data will be monitored to see if the 

Miovision spacing plan should be modified.  

 

 

Figure C1_2. Data Collection Plan: Eastbound 1-80 Waco-Utica 

 

In addition to the Miovision data, the video data, if available, will be collected from the 

subcontractor. The travel data from the Regional Integrated Transportation Information System (RITIS) 

will also be collected. Note that research team is still working with the RITIS team to obtain the relevant 

data.  The HCM/WZQ-Pro tool will also be used, prior to the data collection, to estimate the max queue 

length accumulated upstream of WZ. 

 

4. Questions for NDOT Technical Advisory Committee 

 The research team would like to know 1) the start date and 2) the tentative end date for of 

every SWZ project listed in Appendix A. 
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 If possible, the research team would like to know the work schedule (Weekdays/weekends? 8 

am – 5 pm?) for each smart work zone listed in Appendix A so that we can better plan the 

data collection. 

 The research team would like to record the video from the field cameras in each of the SWZ 

systems.  Is it possible for the contractors to provide this data? At a minimum the research 

team would like the video records for the days the team is collecting data. Ideally, we would 

like all video data when the work zone is active. 

 Is the recommended data collection plan acceptable? If so, we will contact the NDOT contact 

for the site and begin to coordinate the data collection process. 

 

5. Concluding Remarks 

The research team will continue to monitor the sites remotely. If traffic increases such that queues begin 

to form on a regular basis the team will revisit their data collection plan. This will be particularly true 

for the Mahoney site as it is scheduled to end in August, and it is the only three-lane SWZ active in 

2020 (to the team’s best knowledge). 

 

6. Potential Data Collection Sites 

(1) Waco-Utica (2 locations: Westbound I-80 and Eastbound I-80)  

 

 

Figure C1_3. Site Map at Waco-Utica 

 

 Data Sources: Salander - Total traffic counts (at 1-min interval), Average speed (at 1-min interval), 

Vehicle count by type (at 1-min interval), PDMS posted messages, Camera 

 NDOT Contact:  District 4 Construction Engineer: Eric Klein eric.klein@nebraska.gov 

 

mailto:eric.klein@nebraska.gov
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Figure C1_4. Westbound I-80: Travel speed versus Day – June 14, 2020 - July 12, 2020 

 

 WB Synopsis: Speeds have dropped below 45 mi/h on a number of days during the past month.  

These mainly occur on weekdays. Good candidate for collecting data. 

 

 

Figure C1_5. Eastbound I-80: Travel speed versus Day – June 14, 2020 - July 12, 2020 

 

 EB Synopsis: Speeds have dropped below 45 mi/h on a number of days during the past month.  

These mainly occur on weekdays. Good candidate for collecting data. 
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(2) Mahoney (Two locations: Westbound I-80 and Eastbound I-80) Site Map 

 

Figure C1_6. Site Map at Mahoney 

 

 Data Sources: Ver-Mac, Total traffic counts (at 1-min interval), Average speed (at 1-min interval), 

Occupancy (at 1-min interval), Gap/Headway (at 1-min interval), Vehicle count by type (at 1-min 

interval), PDMS posted messages, Camera 

 NDOT Contact: District 1 Construction Engineer: Curt Mueting curt.mueting@nebraska.gov 

 

 

Figure C1_7. Westbound I-80: Travel speed versus Day – June 14, 2020 - July 12, 2020 

 

 Synopsis:  Speeds have dropped below 45 mi/h on only two days during the past month.  Both 

times were for less than one hour. Currently not a very good candidate for collecting data. Will 

continue to monitor site as the Mahoney WZ is the only three lane work zone that is currently 

active. 

mailto:curt.mueting@nebraska.gov
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Figure C1_8. Eastbound I-80: Travel speed versus Day – June 14, 2020 - July 12, 2020 

 

 Synopsis: Speeds have dropped below 45 mi/h on only two days during the past month.  Both 

times were for less than one hour. The occurrences appeared to be random over the month. At no 

time were the speeds less than 25 mi/h. Currently not a very good candidate for collecting data. 

Will continue to monitor site as the Mahoney WZ is the only three lane work zone that is 

currently active. 

 

(3) Big Springs (Three locations: Eastbound I-80, Westbound I-80, Eastbound I-76) 

 

Figure C1_9. Site Map at Big Springs 

 

 Data Sources: Salander, Total traffic counts (at 1-min interval), Average speed (at 1-min 

interval), Vehicle count by type (at 1-min interval), PDMS posted messages, Camera 

 NDOT Contact:  District 6 Construction Engineer: Cameron 

Craig Cameron.craig@nebraska.gov 

mailto:Cameron.craig@nebraska.gov
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Figure C1_10. Westbound I-80: Travel speed versus Day – June 14, 2020 - July 12, 2020 

 

 Synopsis: Speeds have dropped below 45 mi/h on only three days during the past month.  All 

three days were Sundays and the queues lasted for several hours. It is unsure if this patter will 

continue in the future. Currently not a very good candidate for collecting data as the congestion 

only appears to occur 1 day per week. Will continue to monitor site. 

 

 

Figure C1_11. Eastbound I-80: Travel speed versus Day – June 14, 2020 - July 12, 2020 

 

 Synopsis: Speeds have dropped below 45 mi/h on only three days during the past month.  Both 

times were for less than one hour. Occurrences were random over the month. On only two 

occasions was the speed less than 25 mi/h. Each time the speed drop was only for 30 minutes or 

less (15 min aggregate data). Currently not a very good candidate for collecting data. Will 

continue to monitor site. 
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Figure C1_12. Eastbound I-76: Travel speed versus Day – June 14, 2020 - July 12, 2020 

 

 Synopsis: Speeds have not dropped below 45 mi/h during the past month. Currently not a very 

good candidate for collecting data. Will continue to monitor site. 

 

7. Data Collection System Contact 

 

Table C1_1. Technical Consultation Contact 

Contractor Project 
Online data operated 

by subcontractor 
Contact 

SmartStreets  Grand Island  Transnomis 
Tim Jackson 

tjackson@streetsmartrental.com 

SmartStreets  Mahoney  JamLogic 
Tim Jackson 

tjackson@streetsmartrental.com 

Salander 
Big Springs, 

Waco-Utica 
 Salander 

JP Story 

jp@slndrtech.com 

 

 

  

mailto:tjackson@streetsmartrental.com
mailto:tjackson@streetsmartrental.com
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Technical Memorandum 2 

Intelligent Work Zone Using Automatic Queue Detection Systems (FY21 (007)) 

 

To Matt Neemann, Lead TAC Member - NDOT Traffic  

Matt Baker Lead TAC Member - NDOT Operations  

Josh R. Willard, Highway Project Manager, NDOT District 6, North Platte 

Cameron Craig, Construction Engineer, NDOT District 6, North Platte 

Kurt Snider, Inspector, NDOT District 6, North Platte 

From L.R. Rilett, Ph.D., P.E. 

Li Zhao, Ph.D. 

Ernest Tufuor, Ph.D. 

Date: September 16, 2020 

Re: Data Collection at Big Springs Work Zone – Miovision Battery Replacement 

 

1. Background 

 

The research team has installed five Miovision detectors on the westbound section of I-80 at the NDOT 

work zone at Big Springs, Nebraska. A map showing the approximate locations is shown below in 

Figure C2_1. 

 

 

Figure C2_1.  Map showing approximate Miovision locations. 
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The Miovision units are attached to mile marker signs at five locations. These mile markers are: 

109, 108.5, 108, 107.5 and 107 on the westbound section of I-80. Figure C2_2 shows a typical setup 

of the Miovision unit at Big Springs. 

 

     

Figure C2_2.  Miovision set up 

 

2. Battery Replacement Plan 

 

NDOT has agreed to help with the recharging of the Miovision batteries. This will be done every seven 

days. Over the next two weeks the plan would be to charge the batteries twice. The required charging 

days and periods are as follows: 

 On September 22:  Batteries are removed in the afternoon of September 22, charged 

overnight (>12hrs), and placed back in the morning of September 23. 

 On September 29:  Batteries are removed in the afternoon of September 29, charged 

overnight (>12hrs), and placed back in the morning of September 23. 

 

3. Battery Removal and Replacement Process 

 

On the side of the Miovision unit, there are Video portal and Battery portal, see Figure 3. They will be 

used in the following process. 

 

Figure C2_3. Miovision Unit with Video Portal and Battery Portal 
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3.1. Battery Replace Procedure 

 

 Disconnect the Video Portal 

The Video cable needs to be disconnected first, as seen in Figure C2_4. The video portal is indicated in 

Figure C2_3. Note: Each Miovision unit should be marked with the location so that when they can be 

replaced to the same location next time. 

 

 

Figure C2_4. Disconnect the video cable 

 

 Battery Removal 

The battery removal consists of two steps as shown in Figure C2_5. The first step is to unlock the battery 

box as shown in Figure C2_5a. The key was provided to Kurt Snider. The second step is to remove the 

battery. This is done by sliding the unit upwards and out as shown in Figure C2_5b. 

 

  

Figure C2_5a. Unlock the unit Figure C2_5b. Remove the battery 
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 Battery Charging 

Once all five batteries have been removed, they can then be charged. The battery charger is connected 

directly to the battery portal (as indicated in Figure C2_3). The five battery chargers were provided to 

Kurt Snider. 

 

 Battery Replacement 

The charged battery is placed back in the reverse order that they were removed. See Figure C2_6. 

 

  

Figure C2_6a. place the battery back Figure C2_6b. Lock the unit 

 

 Connect the Video Portal 

Put back the video cable to the video portal as shown in Figure C2_7. The video portal is indicated in 

Figure C2_3. Note: Make sure the Miovision unit is the same one that was been replaced. 

 

Figure C2_7. Connect the video cable  
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Technical Memorandum 3 

Intelligent Work Zone Using Automatic Queue Detection Systems (FY21 (007)) 

To Matt Neemann, Lead TAC Member - NDOT Traffic  

Matt Baker, Lead TAC Member - NDOT Operations 

From L.R. Rilett, Ph.D., P.E. 

Li Zhao, Ph.D. 

Ernest Tufuor, Ph.D. 

Date: February 19, 2021 

Re: NDOT AQD System 

 

Overview 

The research team studied the AQD data from two test sites: 

4. Waco-Utica, WB I-80 

5. Big Springs, WB I-80 

A synopsis of each site, including the layout of the AQD system and the speed-warning message 

data on selected congestion days, and the analysis work is provided below followed by a number of 

questions to the TAC. 

 

AQD System at Waco-Utica WB I-80 

As can be seen in Figure C3_1, the AQD system at the Waco-Utica WB I-80 consists of a sensor (i.e., 

RDR02) at the beginning of the work zone, and two sets of PCMSs at 1 mile (i.e., MB07 and MB08) 

and 3 miles (i.e., MB09 and MB10) upstream. The RDR02 detects speed to feed the PCMS with 

corresponding messages. 

 

 

Figure C3_1. AQD System installed at Waco-Utica WB I-80 
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The speed raw data and its 3-min average are shown in Figure C3_2 (black dots and line 

corresponding to the left y axis). The PCMS message durations are also shown in Figure C3_2 (red, 

yellow, and green shades corresponding to the right y axis). 

 

 

Figure C3_2. AQD speed detected from sensor RDR02 and message released on PCMSs 07-10. 

 

It can be seen from Figure C3_2 that, when the average speed dropped below 45 mph, the PCMSs 

displayed warning message for “Slow Traffic”. This verifies the functionality of the AQD system 

according to its algorithm. There was no warning message for “Stop Traffic” as no speed below 25 mph 

was detected. 

 

AQD System at Big Springs WB 1-80 

As can be seen in Figure C3_3, the AQD system at the Big Springs WB I-80 consists of two sensors 

(i.e., RDR13 and MW03), and three sets of PCMSs (i.e., MB02, MB17&18, and MB11&12). Both the 

RDR13 and the MW03 detect speeds to feed the PCMS with corresponding messages together.  

 

 

Figure C3_3. AQD System installed at Big Springs WB I-80 
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Due to the complexity of this test site, the algorithm of the AQD system is slightly different from 

the previous settings. For example, the jam speed threshold is 20 mph instead of 25 mph, and the average 

speed is calculated using a three (3) minute window instead of a five (5) minute window. However, the 

most notable difference is that information from two speed sensors (e.g., RDR13 located in the work 

zone and MW03 located at the beginning of work zone) are both used in deciding the activation of the 

warning message. The sensors are approximately 3.5 miles apart. The data collection components used 

in the algorithm of the AQD system at this test site are listed in Figure C3_4. 

 

 

Figure C3_4. The list of the AQD system devices at WB I-80 test site, Big Springs. 

 

To illustrate, the speeds and the posted message collected from the AQD system, and data from 

two example days are shown in Figure C3_5. Note the speeds collected from RDR13 in the work zone 

are indicated using a blue circle, and the speeds collected from MW03 at the beginning of the work 

zone are indicated using a black circle. In general, the latter speed value are lower than the former. This 

makes sense because the speed limits at the two sections are 65 mph and 55 mph, respectively. The 

latter is the merge location. 

 

 

Figure C3_5. AQD speed detected from sensors MW03 & RDR13 and message released on 

PCMSs 02, 11, 12, 17, and 18. 
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On 2020-09-20, sensor MW03 at the beginning of work zone (black color) detected a 4-min speed 

drop below 20 mph after 12 pm. At this point, a “stop traffic” warning message was posted on the 

PCMSs. Similarly, there were a sporadic time that the RDR13 (blue color) detected slow speeds and 

activated the “slow traffic” warning message in the afternoon. 

On 2020-10-11, the sensor RDR13 in the work zone (blue color) detected a 2-hour speed reduction 

below 45 mph during 3 – 5 pm. Sensor MW03 (black color) also detected slow speeds at 7 pm for a 

couple of minutes. They also activated the corresponding “slow traffic” warning message as expected. 

In summary, it was concluded that the algorithm works as designed, in that either one of the speed 

sensors, i.e., RDR13 in work zone or MW03 at beginning of work zone, will activate the PCMS with 

the predefined warning messages corresponding to speed thresholds. 

 

Questions for NDOT Technical Advisory Committee 

 

(1) As shown in Figure C3_3 at the Waco-Utica test site, there seems a cut-off speed of 26.3 mph. It 

seems problematic as the lowest detected speed is always 26.3 mph during the entire data collection 

period at this test site. 

In fact, the data collected by NTC research team at the same time, as can be seen in Figure 

C3_6, showed a significant queue accumulated most of the day and the average speeds was as low 

as 7 mph. A queue accumulated longer than 2 miles and lasted longer than 6 hours was observed in 

both speed data and from video.  

 

 
Figure C3_6. Data collected by the research team in 2 miles upstream of the work zone. 
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It confirms that, therefore, “stop traffic” (instead of “slow traffic”) warning messages should 

be released on the PCMSs upstream. We would like to know if there were any changes to the 

algorithm during this time period because the results disagree with the validation of the AQD 

system functionality using our data. 

 

(2) At Big Springs test site, the algorithm using two sensors a few miles apart. One of these is in the 

work zone and one is not. Is this a concern to NDOT?    

For example, when the sensor MW03 at the beginning of work zone detected a slow/stop speed 

and posted warning message on all the PCMSs. Note the PCMS-MB02 in the work zone displayed 

the warning message as well. However, drivers traveled around PCMS-02 in the work zone may 

not experience any slow traffic. 

Alternatively, when the sensor in the work zone detected a slow/stop speed and posted warning 

message at all PCMSs, whilst the traffic at the beginning of the work zone was free flow, it may 

also cause confusion and driver’s decreased trust in the AQD warning system. 

 

(3) To conduct the crash analysis at the work zone, we need NDOT to help to identify at least 10 

locations of AQD system and their activation dates. This data should be from the past few years.   

 

Concluding Remarks 

The research team will continue to monitor the construction activities remotely through the Salander 

portal in the Spring and Summer in hoping to find two more new test sites for data collection. Any 

assistance from NDOT on identifying collection sites will be appreciated. 

The research team will also keep working with StreetSmarts contractors (see Table C3_1) to find 

out the exact algorithms that was used at the different test sites. Any assistance from NDOT on 

identifying the logic of the algorithms will be appreciated. 

 

Table C3_1. Project contractor contact 

Contractor Project 
Online data operated by 

subcontractor 
Contact 

SmartStreets  
Waco-Utica, 

Big Springs  

 Transnomis 
Tim Jackson 

tjackson@streetsmartrental.com 

Salander  Salander 
JP Story 

jp@slndrtech.com 

 

 

  

mailto:tjackson@streetsmartrental.com
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Technical Memorandum 4 

Intelligent Work Zone Using Automatic Queue Detection Systems (FY21 (007)) 

 

To Matt Neemann, Lead TAC Member - NDOT Traffic  

Matt Baker, Lead TAC Member - NDOT Operations 

From L.R. Rilett, Ph.D., P.E. 

Li Zhao, Ph.D. 

Ernest Tufuor, Ph.D. 

Date: May 2, 2022 

Re: NDOT AQD System 

 

Overview 

This tech memo intended to conduct a brief cost-benefit analysis. The cost would be the payment for 

the service of the AQD systems. The benefit would be the number of vehicles exposed to the AQD 

systems, which provide warning information of the work zone traffic conditions when needed. 

The traffic volume data are obtained using the AQD count data at each test site. The device cost 

breakdown information is provided by NDOT. With these data, the unit price of the system (dollar per 

vehicle) is used as a measure of the cost-benefit analysis. Sensitivity analysis is also conducted in the 

end to examine the changes of the unit price as a function of traffic volumes, totally system costs, and 

the service time periods. 

 

Traffic Volume 

Daily traffic volumes at seven (7) I-80 work zone test sites are listed in Table C4_1. To compare 

among different test sites, the traffic volume is converted into passenger car unit (pcu) using a PCE = 

2 for trucks. Given a six-month period, the total traffic counts in pcu are also given in Table C4_1. 

Table C4_1. Traffic volume at all test sites 

Site Location Direction Truck Daily Traffic (pcu*/24 h) 6-month Traffic (pcu*) 

1 Waco WB 35.2% 13838 2490840  

2 Ogallala WB 31.7% 19205 3456900  

3 Ashland WB 18.4% 39671 7140780  

4 Big Springs WB 31.6% 18878 3398040  

5 Henderson EB 44.2% 19610 3529800  

6 Shelton EB 44.6% 19448 3500640  

7 Wood River EB 33.0% 23432 4217760  

* PCE = 2 
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System Cost 

 AQD System at one test site 

As can be seen in Figure C4_1, take test site at Westbound I-80 in Ogallala for example, a typical 

AQD system includes one (1) CCTV camera, three (3) non-intrusive detection, and two pairs (4) of 

PDMS. 

 

 

Figure C4_1. AQD system at one test site 

 

When the construction work became complicated, the AQD system may also be adjusted to fit 

the traffic at work zone. For example, to accommodate the long queue traffic in Westbound I-80 work 

zone in Big Springs, two additional pairs of PDMS were added to upstream to cover longer distances. 

 System cost at one test site 

Based on an estimation of 6 months, the cost of a typical AQD system, take Ogallala as example, is 

calculated in Table C4_2. 

 

Table C4_2. System cost at one test site 

Device Unit Price$ Count Month Sum$ 

Portable Queue Detection System Lump sum 15000 1 - 15000  

Central Computer Lump sum 18250 1 - 18250  

Closed Circuit Television Camera Each 13000 1 - 13000  

Portable Dynamic Message Signs Each/day 156.62 4 6 112766  

Portable Non-intrusive Traffic Sensors Each/day 13.35 3 6 7209  

Total$       166225  
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 Cost benefit analysis  

The system costs for seven test sites are calculated, together with the traffic volumes (pcu), the unit 

price per vehicle (pcu) is estimated as shown in Table C4_3. 

 

Table C4_3. System costs for all test sites 

Site Location System Cost for 6-month period ($) 6-month Volume (pcu) $/pcu 

1 Waco 166225  2490840  0.067  

2 Ogallala 166225  3456900  0.048  

3 Ashland 166225  7140780  0.023  

4 Big Springs 309586  3398040  0.091  

5 Henderson 163822  3529800  0.046  

6 Shelton 163822  3500640  0.047  

7 Wood River 163822  4217760  0.039  

 

Figure C4_2 show the plot of unit price of the system cost per vehicle (pcu) at different test sites 

using data from Table C4_3. 

 

 

 

Figure C4_2. Unit price of the system cost 

Waco

Ogallala

Ashland

Big Springs

Henderson

Shelton

Wood River

0.00

0.02

0.04

0.06

0.08

0.10

0 100 200 300 400

$
/p

cu

System Cost ($k)

Waco

Ogallala

Ashland

Big Springs

Henderson

Shelton

Wood River

0.00

0.02

0.04

0.06

0.08

0.10

0 2 4 6 8

$
/p

cu

6-month Volume (10^6 pcu)



 

115 

Sensitivity Analysis 

 Volume  

Given a 6-month period, assume traffic volumes varies from 1 million pcu to 9 million pcu at the 

locations where the AQD systems could be applied, the sensitivity of the unit price of the system as a 

function of traffic volume can be found in Figure C4_3. The dots on the curves represent the actual 

unit price given the field traffic volume at the corresponding test sites. 

 

Figure C4_3. Unit cost as a function of volume 

It is intuitive that the system is more cost-effective when it serves at the location where the traffic 

volume is higher.  

 Cost 

The sensitivity of the unit price as a function of the total system cost can be found in Figure C4_4. 

Assume the cost of the AQD systems in a 6-month period varies from $30k to $300k (the cost may 

vary depending on the complexity of the AQD system). The dots on the curves in Figure C4_4 

represent the actual unit price given the total system cost at the corresponding test sites. 

 

Figure C4_4. Unit cost as a function of system cost 

Waco

Ogallala
Ashland

Big Springs

HendersonShelton

Wood River

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8 10

$
/p

cu

6-month Volume (10^6 pcu)

WacoOgallala

Ashland

Big Springs

Henderson

Shelton

Wood River

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400

$
/p

cu

System Cost $k

Waco
Wood River
Ashland
Henderson
Ogallala
Shelton
Big Springs



 

116 

 Service Time 

The unit price is also sensitive to the service time that the AQD systems in operation. This is because 

as time passes, the system costs increase due to some of the devices are paid at a daily rate (e.g., 

cameras, detectors, PDMS). At the same time, the traffic volume is also accumulated. The resulting 

relationship at each test site is shown in Figure C4_5. The dots on the curves in Figure C4_5 represent 

the actual unit price estimated based on a six-month service time period at the corresponding test sites. 

 

 

Figure C4_5. Unit cost as a function of time (months) 

 

As time passes by, the increase of the system cost and the increase of the traffic volume that the 

system served will reach to a balance. In other words, the unit price goes down to a steady level after a 

certain service time of the AQD systems. 

 

Concluding Remarks 

 

In the analysis, several assumptions were made: 

1. One-day (24 hours) traffic volume was collected at each test site and was projected to 6-month 

(180 days), assume that traffic volume does not change over time. 

2. The lump sum of the Portable Queue Detection Systems and the Centre Computer are given 

as $15k and $18.25k (in Table C4_2). It was assumed that this price works for all the test sites, 

regardless of the complexity of the AQD systems that was actually in operation. 
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