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Adverse weather conditions are responsible for millions of vehicular crashes, 

thousands of vehicular deaths and billions of dollars in economic and congestion costs. 

Many transportation agencies utilize a performance or mobility metric to assess how well 

they are maintaining road access. This research focuses on the development of a winter 

severity index for the State of Nebraska (NEWINS). NEWINS is an event-driven index 

that was derived for the Nebraska Department of Transportation (NDOT) and its districts 

across the state. The NEWINS framework includes a categorical storm classification 

framework and climatological aspect to capture atmospheric conditions more accurately 

across diverse spatial regions.  

A ten-year (2006-2016) winter season database of meteorological variables for 

Nebraska was obtained from the National Centers for Environmental Information. 

Meteorological parameters were grouped into categories that subsequently provided a 

storm classification database. The NEWINS was based on a weighted linear combination 

to the collected database to measure severity statewide and across individual districts. 

The NEWINS results were compared to meteorological variables previously used in 

winter severity indices. This comparison verified the NEWINS differences observed in 

the ten-year period. To further validate the developed NEWINS, cluster analyses were 



 
 

 
 

performed on the weather variables and storm classifications. An assessment of the 

difference between days with observed snowfall versus days with accumulated snowfall 

revealed a 39% average reduction in days. The NEWINS results for the ten-year period 

highlight the greater number of events during the 2009-2010 winter season, and the lack 

of events during the 2011-2012 drought year. The NEWINS also shows strong 

differences among NDOT districts across the state with the general decrease in events 

from the western to eastern districts. Furthermore, storm classifications were compared to 

NDOT winter maintenance operations performance data for a sample winter season. Last, 

the 2016-17 winter season was computed to provide a testbed for the NEWINS 

procedure. It is expected that the NEWINS could help transportation personnel to 

efficiently allocate resources during adverse weather events, while balancing safety, 

mobility, and available budget. Further, the theoretical and practical contributions 

provided by the NEWINS can be used by other agencies to assess their weather 

sensitivity. 
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1. Introduction  

Adverse cold weather conditions, most notably snow and ice, threaten surface 

transportation nationwide and impact roadway safety, mobility and maintenance costs 

(Pisano et al. 2008; RWMP 2018). During the period from 2005-2014, weather-related 

vehicular crashes accounted for 22% (1,258,978 crashes) of all reported crashes, resulting 

in 16% (5,897) of crash fatalities and 19% (445,303) of crash injuries. The United States 

Department of Transportation (USDOT) National Highway Traffic Safety Administration 

(NHTSA) estimates the total economic and societal cost of all vehicular crashes in 2010 

in the United States was $836 billion (Blincoe et al. 2015; NHTSA 2018). This total 

includes $242 billion in maintenance and congestion costs and $594 billion from injuries 

and loss of life. Weather-related vehicular crashes alone may account for approximately 

$180 billion nationwide, given the relative percentage of such crashes. 

  Snow and ice reduce pavement friction and vehicle maneuverability, causing 

slower speeds and reducing roadway capacity. In fact, on snowy or slushy pavement, 

average arterial speeds decline by 30-40% (RWMP 2018). Highway speeds are reduced 

by 3-13% in light snow and by 5-40% in heavy snow. In addition to reduction in speed, 

lanes and roads can be obstructed by snow accumulation, which reduces capacity 

(i.e., traffic counts; Call 2011) and increases travel time delay. Snow and ice also increase 

road maintenance costs. Winter road maintenance accounts for roughly 20% of state 

departments of transportation (DOTs) maintenance budgets. Annually, state and local 

agencies spend more than $2.3 billion on snow and ice control operations and millions of 

dollars to repair infrastructure damage caused by snow and ice (RWMP 2018). Given the 

nature of adverse cold weather events (e.g., snowstorms, ice storms), it is prudent to 
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mitigate the impacts of such events on roadways and allocate resources to reduce their 

severity. 

  Evaluating the performance of mitigation strategies implemented as part of winter 

maintenance operations requires consideration of weather conditions, the state of the road 

network, the maintenance efforts undertaken for a given storm, the resulting road 

conditions and the interactions among these factors. The main challenge in evaluating 

this performance is that weather is inherently variable, and its variability complicates 

assessments of the relative efficiency and effectiveness of different winter maintenance 

operations (e.g., meeting levels of service standards, salt reduction, budget targets). 

Therefore, in pursuit of an evaluation metric for winter maintenance operations, a critical 

need is to assess the severity of individual storms through a winter severity index (WSI). 

  This analysis allowed development of a WSI for the Nebraska Department of 

Transportation (NDOT). This Nebraska Winter Severity Index (NEWINS) incorporates 

various surface and atmospheric data statewide across a ten-year period from July 2006 

through June 2016. Given the intended use of the NEWINS by NDOT, all units used 

throughout the analysis are English Engineering units and the International System of 

Units is included for comparison where appropriate. From these data and subsequent 

analyses, a single, statewide value for each of the ten winter seasons was computed. A 

winter season is defined as any snowfall occurring between 1 July of the first year and 

30 June of the subsequent year. For example, snowfall occurring between 1 July 2006 

through 30 June 2007 would represent the 2006-07 winter season. The NEWINS is 

unique in that it is a meteorologically-based WSI, rather than related to transportation 

variables (e.g., accident rate) which may or may not be associated with weather 
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conditions; however, the NEWINS framework is developed with consideration of road 

impacts and winter maintenance operations. The NEWINS was computed for the entire 

state of Nebraska and individual transportation maintenance districts within the state. 

Further, the NEWINS is compared to other indices to provide a more robust assessment 

of its use.  
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2. Background 

The available literature documenting existing WSIs is described in the following 

section. First, transportation specific WSIs (Table 2.1) are considered followed by 

discussion of additional meteorological WSIs. The transportation WSIs are organized 

based on their developmental similarities. Then, weather classification schemes are 

considered for the framework of the NEWINS. Last, winter maintenance operations and 

meteorological data sets used in existing WSIs and their limitations are considered. 

 

a. Existing State Department of Transportation Winter Severity Indices 

The literature documenting existing WSIs depicts a highly variable myriad of 

approaches typically developed for specific state DOTs.  Table 2.1 summarizes the 

documented state DOT WSIs. In total, 19 states have made available documentation 

regarding their WSI. The remaining 31 state DOTs have either not made available 

documentation regarding their WSIs or do not have a WSI. Connecticut and Vermont 

have winter severity indices presently in development (Kipp and Sanborn 2013; Mahoney 

et al. 2015). Existing WSIs were often developed with relatively small data sets (e.g., less 

than six locations) and/or limited time frames (e.g., single month and/or winter season) 

with some noteworthy exceptions (Strong et al. 2005). Few WSIs have considered a 

winter storm classification framework, though several weather classification schemes 

exist (e.g., Fujita 1971; Simpson 1974; Kocin and Uccellini 2004; Cerruti and Decker 

2011; Edwards et al. 2013). Automated Surface Observing System (ASOS) stations serve 

as the primary source for many WSIs in addition to Road Weather Information System  
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Table 2.1. Summary of known documented state DOT WSIs. 

         

WSI / 

States 

Air 

Temp. 

Road 

Temp.  

Snowfall Freezing 

Rain 

Wind Storm-

Based 

Sub-

Regions 

Dependent 

Variable 

Strategic 

Highway 

Research 

Program 

(SHRP), 

KS, NH 

 

X  X     None 

IN, MN, 

WI 

 

X  X X   X None 

IL, MA, 

ME, PA, 

WA 

 

X  X X    None 

NY, OK, 

UT 

 

X X X X X X  None 

CA, MT, 

OR 

 

X  X  X  X Accident 

Rate 

CO, ID 

 

 X X  X X  Grip 

IA 

 

 X X  X X  None 
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(RWIS) stations (Strong et al. 2005). As such, air and road temperatures, snowfall, wind 

and freezing rain data are the most common/important variable inclusions in WSI 

development. Given the literature, it is important for most of these variables to be 

included, or at least considered, for the NEWINS.  

  One of the earliest WSIs was developed by the Strategic Highway Research 

Program (SHRP; Boselly et al. 1993) and has been implemented in Kansas (McCullouch 

et al. 2004; Farr and Sturges 2012) and New Hampshire (New Hampshire DOT 2012). 

These studies developed WSIs to help highway agencies efficiently allocate their 

resources (i.e., labor, equipment and materials) to ensure safety in all weather conditions. 

The SHRP WSI considers the following variables: temperature, snowfall and likelihood 

of frost. The parameters in the SHRP WSI are calculated by collecting daily records from 

the National Weather Service (NWS) and assume that the impact of temperature, 

snowfall and frost likelihood on maintenance costs are 35%, 35% and 30%, respectively. 

The SHRP WSI has been widely adopted by other state DOTs for more than two decades 

(Farr and Sturges 2012), since previous research studies found strong relationships 

between snow and ice control costs and WSI values. However, one of the major 

limitations of the SHRP WSI is that it was developed as a general WSI to be used in 

multiple states. Therefore, this model does not consider the local characteristics that 

might impact winter maintenance operations in different states. Spatial and temporal 

examination of the SHRP WSI across the United States has also shown that for a similar 

latitude, the SHRP WSI provides different values in east, west and central regions that do 

not always represent the actual conditions on roads. Considering this limitation, some 

transportation agencies have modified the SHRP WSI to better represent their local 
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weather conditions. One of the prominent examples is the Ontario Ministry of 

Transportation (MOT) that has substituted freezing rain (number or days recording 

freezing rain) for likelihood of frost (Andrey et al. 2001). Other transportation agencies, 

such as Utah DOT, have gone even further to develop their own WSI that consider other 

meteorological variables rather than use the SHRP WSI (McCullouch et al. 2004; Farr 

and Sturges 2012). 

  Wisconsin DOT developed a WSI that included the number of snow events, the 

number of freezing rain events, the number of incidents (e.g., drifting of snow, cleanup, 

and frost mitigation), total snow accumulation and total storm duration over the course of 

an entire season (Cohen 1981; McCullouch et al. 2004; Strong et al. 2005). Wisconsin 

DOT also investigated potential usage of other variables such as wind speed and direction 

and pavement temperature; however, these variables were not included in the final model. 

One of the interesting points about the Wisconsin DOT WSI is that it does not consider 

temperature. In addition, this index is to be used for a whole season and not event by 

event. Spatially, severity values are given on both a county-by-county level throughout 

the state and by Wisconsin DOT maintenance district level. Other states have adopted 

approaches similar to that of Wisconsin DOT and developed their own WSIs by 

considering similar variables. For example, Minnesota DOT used a similar approach and 

removed number of incidents from its framework (Strong et al. 2005). Indiana DOT also 

has adopted the general framework proposed by Wisconsin DOT. Indiana DOT’s WSI 

departs from previous models by including three more variables: snow depth, storm 

intensity (defined by storm duration) and average temperature, as well as developing 

separate equations for each climate zone in the state of Indiana. These four climate zones 
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are defined arbitrarily by the following locations within the state: South Bend, Fort 

Wayne, Indianapolis, and Evansville. Indiana DOT also directly correlated its WSI to 

observed snow removal costs. Indiana DOT’s WSI derives a unique WSI value for 

individual locations within the state representative of its climate regions. While this 

approach provides the most unique severity value for each location, an important caution 

is that it can become computationally challenging depending on the amount of 

meteorological data considered. Further, selection of locations should ideally be as 

objective as possible. A similar challenge with the development of a WSI in any state is 

to define representative locations throughout the state from which to obtain 

meteorological data. 

  The states of Illinois, Maine, Massachusetts, Pennsylvania and Washington have 

WSIs which, from a developmental perspective, do not exhibit strong similarity to the 

aforementioned states. Of this group, Illinois has the oldest winter severity index, which 

was developed by the Illinois State Water Survey (Cohen 1981; Strong et al. 2005). The 

Illinois WSI uses daily snowfall and temperature information to define a “salt day,” when 

maintenance operations would be required, for the Illinois DOT. This salt day WSI has 

also been incorporated into Ontario’s WSI as well (Strong et al. 2005). Pennsylvania 

DOT’s WSI incorporates more meteorological variables than Illinois; however, it is also 

related to the Pennsylvania DOT’s maintenance operations in terms of “premium hours,” 

or how many personnel hours are needed to mitigate roadway conditions (Strong et al. 

2005). The Pennsylvania WSI is unique because it explicitly considers different snow 

amounts or intensities. Maine DOT developed a seasonal WSI that is unique for different 

regions; however, there is no corresponding statewide value (Maine DOT 2009). Maine’s 
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WSI assigns various point values to a derived “freezing rain equivalent” and a “modified 

daily snowfall.” The Washington State DOT winter frost index is calculated from NWS 

temperature observations (Boon and Cluett 2002); however, it should be noted that 

temperature alone is insufficient to capture the severity of winter weather conditions. 

Aside from the existence of a WSI, Massachusetts DOT does not have robust 

documentation regarding the parameter details of its index (Massachusetts DOT 2012). In 

terms of a performance metric, Massachusetts DOT compares its WSI to salt usage 

throughout the state. 

  The states of New York, Oklahoma and Utah have considered unique approaches 

in the development of their WSIs by including surface and air temperature information 

and by separating non-precipitation from precipitation parameters. New York State DOT 

has incorporated mean wintertime land surface temperature (LST) information from the 

National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite product, surface and air temperature information 

from the New York State Mesonet, and road pavement temperature from a growing 

RWIS station network (Chien et al. 2014). Additionally, New York has considered 

inclusion of data from the North American Model (NAM) of the National Centers for 

Environmental Prediction (NCEP) particularly for the purpose of determining the 

duration of freezing rain in its severity score. Oklahoma DOT designed its winter, or 

“storm,” severity index model with the intention of ensuring compatibility with multiple 

forecasting models, such as the Weather Research and Forecasting model (WRF) or the 

Short-Range Ensemble and Forecast (SREF) model (Balasundaram et al. 2012). 

Oklahoma and Utah initially considered the SHRP WSI and transitioned to an alternative 
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index. Utah’s WSI remains in active development and refinement. Unlike the 

aforementioned states with a WSI presently under development, Utah deserves special 

mention here due to its similarities with New York and Oklahoma in the unique approach 

of assimilating more robust and complex meteorological data and techniques. Unlike 

states that have developed independent WSIs for regions throughout the state 

(e.g., Indiana), Utah has considered the use of mesoscale analysis systems, such as 

Real-Time Mesoscale Analysis to account for changes across its complex topography 

(De Pondeca et al. 2011; Farr and Sturges 2012). Further, Utah has assessed the inclusion 

of mobile weather observations, such as those from instruments mounted on plow trucks, 

into its WSI. These unique state DOT WSIs are highlighted to provide the full spectrum 

of complexity regarding WSIs across the United States. This approach suggests that a 

WSI with varying levels of complexity will be able to conform to the needs and 

specifications of the end-user.  

  California DOT, Montana DOT and Oregon DOT have WSIs that have been 

correlated to accident rates. They are the only states whose WSI includes a direct 

transportation safety related variable in the severity index model (Strong et al. 2005). 

Most state DOT WSIs define some severity values (e.g. SHRP) that are subsequently 

related to some other performance metrics (e.g. grip, salt usage). Another similarity 

among the California, Montana and Oregon WSIs is the incorporation of meteorological 

variables on a daily basis in order to derive a monthly accident rate value. Another unique 

approach of this group of WSIs is development of an entire statewide model in addition 

to alternative models for specific geographic regions within the state (i.e., mountains, 

valleys and plains). The objective of these models is to identify weather conditions that 



11 
 

 
 

result in increases or decreases in accident rate. That information would subsequently 

guide mitigation practices on those conditions that increase the accident rate. 

  Colorado DOT and Idaho Transportation Department (ITD) make use of an 

identical WSI, and both relate it to a grip-based mobility performance metric (Jensen 

et al. 2013; Walsh 2016). Both states are interested in reducing the duration over which 

observed pavement grip falls below a 0.6 threshold. Overall performance is assessed 

based on severity of weather conditions in addition to how long the measured grip was 

below the threshold. These two states are among the relative few that explicitly consider 

individual events in the overall WSI. Most states tend to consider, at best, daily 

meteorological variables; however, event-based variables more accurately capture what 

occurs within a particular storm at different times. From event-based variables, it is still 

possible to derive daily, monthly and seasonal severity index values, though it is difficult 

to scale downward from a monthly or seasonal value. Also, Colorado and Idaho 

developed their WSIs for specific points along the road network (e.g., particular mile 

marker) rather than for statewide, district, or broad geographic regions. Again, this allows 

for better understanding of how weather conditions are impacting specific areas during a 

particular event. The benefit of such an approach allows unique consideration of each 

event in addition to easier identification of target locations for increased mitigation.  

  Iowa DOT deserves a separate discussion of its WSI, because it is one of the 

better documented indices (Carmichael et al. 2004; Nixon and Qui 2005; Strong et al. 

2005; Qui 2008; Walsh 2016). Iowa’s WSI is unique in that it is a storm-based index, 

rather than monthly or seasonal. Further, individual storms are assigned a type and 

intensity based on weather conditions before, during and after the storm. This added 
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temporal consideration allows for a more realistic approach to adverse winter weather 

events. Pre-storm and early-storm behavior allows for consideration of changes in the 

liquid water equivalent of snow, presence of wet snow, and powdery snowfall. 

Post-storm conditions allow for consideration of the impact on treatment and mitigation 

activities of blowing and drifting snow after precipitation has stopped. A WSI that 

considers changes in meteorological conditions on a storm-scale (i.e., mesoscale) 

temporal resolution will likely yield better correlation to maintenance and mitigation 

activities simply due to the level of detail and complexity associated with weather 

hazards. This is one of the only known WSIs that explicitly incorporates road 

temperatures; however, while desirable, an important caution is that road temperature 

data has been shown to exhibit lack of quality control (Walker and Anderson 2016). 

Table 2.1 summarizes the aforementioned state DOT WSIs.  

 

b. Additional Winter Severity Indices 

Many existing WSIs have been developed specifically for transportation-related 

purposes over relatively short time scales. Non-transportation WSIs have been developed 

for a wide array of uses such as deer hunting (MNDNR 2018) and are beyond the scope 

of this work; however, other meteorological WSIs with no specific intended use are 

mentioned herein. The Accumulated Winter Season Severity Index (AWSSI; Boustead 

et al. 2015) represents a purely climatology-based meteorological WSI. The AWSSI was 

developed for over 50 locations in the United States to provide seasonal winter severity 

values during the period from 1950 through present day (MRCC 2018). Daily points are 

assigned for specific locations in the AWSSI for predefined thresholds of minimum and 
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maximum air temperatures, snowfall amounts and snow depth. These points are 

accumulated for an entire winter season to produce a final score that is associated with a 

given location’s winter severity. These final scores are sorted into a categorical range to 

report final classifications (i.e., mild, moderate, average, severe, extreme). While the 

AWSSI is a temporally robust WSI, an important limitation is that it is computed on a 

point-by-point basis. It would be necessary to interpolate winter severity values between 

points computed by the AWSSI. Another caveat of the AWSSI is that it assesses 

conditions throughout the entire winter season, not specific to an individual winter storm. 

This aligns with many of the state DOT WSIs as well; however, winter maintenance 

operations are more aligned with specific events rather than an entire winter season. A 

critical discussion during the development of the AWSSI concerned the definition of a 

winter season. Boustead et al. (2015) note several different definitions for the beginning 

and end of a winter season. For example, meteorologically / climatologically winter is 

defined as the months of December, January and February; however, winter events 

commonly occur outside of this time period. Further, the onset and cessation of winter 

varies substantially geographically. The AWSSI defined the onset of a winter season 

once any one of three criteria were met: 1) daily maximum temperature below 

32℉ (0°C), 2) daily snowfall in excess of 0.1 in. (0.25 cm), or 3) any date after 

1 December. Similarly, the AWSSI defines the end of a winter season based on when the 

last of any four criteria are satisfied: 1) daily maximum temperatures rise above 

32℉ (0°C), 2) no measurable daily snowfall, 3) snow depth drops below 1.0 in. (2.5 cm), 

or 4) any date after 1 March. An advantage of this winter season definition is that it 

provides a concise, strict period for consideration of overall winter severity. A limitation 
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of this definition is that it could omit early/late season snowfalls and/or cold outbreaks. 

Defining the winter season is crucial for the success of any WSI. 

  The NWS is experimenting with a prototype Winter Storm Severity Index (WSSI; 

WPC 2018) to better communicate impacts associated with winter storms as part of its 

strategic plan calling for an increase in decision support services (Rutz and Gibson 2013). 

The framework for the WSSI uses a categorical framework to discuss storm severity and 

impacts (i.e., none, limited, minor, moderate, major and extreme). Unlike the AWSSI and 

many state DOT WSIs, the WSSI is specific to individual snowstorms. The components 

of the WSSI include snow amount, blowing snow, ice accumulation, flash freeze and 

ground blizzard. An event-driven, meteorological index is desirable for the development 

of the NEWINS and complements the ongoing refinement of the WSSI.  

 

c. Weather Classification Schemes 

Meteorological events have been classified to categorize the magnitude of their 

impacts, including such events as tornadoes (i.e., Fujita and Enhanced Fujita scales; 

Fujita 1971; Edwards et al. 2013) and hurricanes (i.e., Saffir-Simpson scale; Simpson 

1974). In operational forecasting, the NWS Storm Prediction Center (SPC) Convective 

Outlook Severe Thunderstorm Risk Categories (SPC 2016) and experimental winter 

storm threat graphics (NWS 2016) use categorical classification approaches to convey 

potential impacts of hazardous weather. Winter storm classification schemes have not 

been as widely adopted as those for tornadoes and hurricanes. One reason for the lack of 

widespread adoption is that existing winter storm classifications have not been performed 

nationwide, but rather focused on the Northeastern United States. Kocin and Uccellini 
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(2004) developed a Northeast snowfall impact scale (NESIS) which provides a single 

classification for a particular winter storm by considering the snowfall amount, area 

receiving snow and the population density of the region. The NESIS categorical 

framework classifies events in five categories of increasing impacts: notable, significant, 

major, crippling and extreme. Extension of the NESIS to other geographic locations is 

plausible. The joint incorporation of meteorological and societal parameters into the 

NESIS aligns with the general framework of state DOT WSIs.  

  Cerruti and Decker (2011) sought to improve on the NESIS by creating a Local 

Winter Storm Scale (LWSS). Unlike the NESIS, the LWSS only considered 

meteorological variables in its classification of winter storms and assigned weights to 

each. Variables considered by the LWSS included sustained wind speeds, wind gusts, 

snow and ice accumulation and visibility. Wind categories were based on the Beaufort 

wind scale. Visibility was used as a proxy for precipitation rate. LWSS variable and event 

classifications included nuisance, moderate, significant, major, crippling, extreme, and 

catastrophic. While the NESIS used a five-category framework for consistency with 

tornado and hurricane intensity scales, the LWSS uses a seven-category framework.  

  None of the state DOT WSIs incorporated a categorical winter storm 

classification. Some (e.g., Iowa) considered different intensity levels, but never an 

explicit storm classification. Meteorological WSIs (e.g., AWSSI, WSSI) and storm 

classifications all considered and incorporated some type of categorical framework into 

their approaches. An important caveat is that most state DOT WSIs were developed in 

the absence of meteorological expertise. Similarly, most meteorological WSIs/storm 

classifications were developed in the absence of transportation officials.  



16 
 

 
 

 

d. Winter Maintenance Operations and Weather Data 

Existing WSIs and winter storm classifications rely on transportation and 

meteorological data. Transportation data from state DOTs includes accident rate, 

personnel hours, winter maintenance operations costs, traffic speeds and counts, and grip 

measurements (Strong et al. 2005; Jensen et al. 2013; Blincoe et al. 2015; Walsh 2016). 

State DOTs use their various data sets to assess the performance of their winter 

maintenance operations. In many instances, these data are also correlated with the state 

DOTs’ WSI. Such WSIs that are closely related to transportation data (e.g., California, 

Montana, and Oregon; Strong et al. 2005) are limited in their ability to represent the 

meteorological conditions present. Meteorological WSIs such as the AWSSI and WSSI 

that exclusively consider surface and atmospheric weather parameters (Boustead et al. 

2015; WPC 2018) are more suited to provide a meteorological diagnosis of severity. Such 

WSIs, though, rely on accurate meteorological data to be reliable. 

  ASOS station data provides the foundation for meteorological surface-based 

observations and associated WSIs. ASOS stations can provide high temporal resolution 

(i.e., one-minute) air temperature, dew point temperature, wind speed and direction, 

atmospheric pressure, precipitation type and accumulation, sky conditions, and current 

weather observations (NWS 2018). For WSI development, one of the most critical pieces 

of information obtainable from an ASOS station is precipitation type. To differentiate 

precipitation types, ASOS stations use a precipitation identification sensor (PI), also 

referred to as a Light Emitting Diode Weather Indicator (LEDWI; NWS 2018). As 

hydrometeors pass through the beam, a spectral analysis determines which hydrometeors 
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are present given the power returned to the sensor. Mixed precipitation can confuse the 

sensor and is often reported as “unknown precipitation.” For pure rain or snow, the 

spectral analysis can also derive precipitation intensity (i.e., slight, moderate, heavy). A 

separate sensor, known as a magnetostrictive oscillator is used to determine freezing rain 

precipitation and subsequent ice accumulation (NWS 2018). The sensor operates on the 

principle that as ice accumulates on the sensor, its oscillation frequency will change due 

to the additional weight of ice. Further, the subsequent magnetization will adjust 

accordingly. From these changes, freezing rain can be both identified, and accumulation 

detected. Given the lack of reliable, historical freezing rain observations and ice 

accumulation data through the entire ten-year study period, freezing rain was not 

considered in the development of the NEWINS; however, inclusion of freezing rain could 

be possible in future analyses. 

  From the literature, the most common meteorological parameters incorporated 

into state DOT WSIs are temperature, snow, wind and freezing rain. Temperature is one 

of the most common meteorological parameters used in WSIs. Studies as early as Angot 

(1914) and Abbe (1914) focused on characterizing winter severity by cumulative freezing 

degree days, or the sum of minimum temperature departures below 32°F (0°C), for 

comparison of cities such as Washington, D.C., and Paris, France. Although effective for 

comparing temperature behavior among sites, this approach neglects any contribution of 

precipitation. Hulme (1982) was among the first to consider road temperature into an 

index.  

  Snow is another critical meteorological parameter for winter maintenance 

operations and WSIs. Previous studies have shown that road condition/friction is directly 
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related to the amount of snow and/or ice on the road surface (Juga et al. 2013; Kwon 

et al. 2013). Snow is a complex factor that impacts winter maintenance operations. 

Estimating the depth of snow/ice on the road surface is difficult since these parameters 

depend on rapidly changeable factors such as precipitation rate, road treatment actions, 

traffic flow and surface temperatures (Baldwin et al. 2015). To simplify the problem, 

previous studies assumed that the amount of snow/ice on the road surface would be 

proportional to the precipitation rate (Baldwin et al. 2015). Kwon et al. (2013) showed 

that snowfall rate is linearly related to the percent reduction in free flow speed. In 

addition, the mass of frozen precipitation is also expected to be an important factor. 

According to Baldwin et al. (2015), even though low density snow will accumulate 

quickly and increase the depth of the snowfall much faster than high density, wet snow, 

the liquid equivalent can be considerably less for the low-density snow. All other 

conditions being equal, low density snow will melt faster and leave less residual water 

behind on the road surface than denser snow. Boustead et al. (2015) noted that, for their 

study, snowfall and snow-depth data were not available through the entire period of 

record at most stations, and even where available, the quality can be suspect (Robinson 

1989; Ryan et al. 2008; Doesken and Robinson 2009). 

  To address the snow measurement complexity, different methods for measuring 

snowfall, snow-depth, and respective liquid equivalents, have been developed. Trnka 

et al. (2010) used an average daily temperature of 32°F (0°C) or less to determine when 

snow falls, then used thresholds of minimum temperature to further refine the fraction of 

precipitation that accumulates as snowfall. Kienzle (2008) employed a similar method; 

however, a threshold temperature at which 50% of precipitation falls as snow and 50% 
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falls as rain was calculated. The calculations in this approach were considered inadequate 

for widespread use across a high number of stations and required continual updating. 

Both approaches provided liquid equivalents, rather than snowfall. Byun et al. (2008) 

created a snow-liquid ratio based on regression analysis of observed temperature, 

precipitation and snowfall, but the method required a 3-hourly precipitation rate. The 

AWSSI is capable of using snow data or precipitation data with snow information 

derived from precipitation amounts and temperatures. Precipitation measurements during 

snowfall also can contain errors due to rain gauge under-catch of snowfall 

(e.g., Goodison 1978; Goodison et al. 1998; Boustead et al. 2015).  

  Wind, a non-precipitation parameter, might impact traffic conditions both during 

and after a storm. In the storm, wind has a significant impact on traffic speed and 

accident risks, whether acting alone or in combination with precipitation (Knapp et al. 

2000; Andrey et al. 2001; Liu 2013). In fact, wind-blown snow can reduce visibility, 

which can impede the ability of drivers to respond to road conditions and potential 

hazards (Massachusetts DOT 2012). Post-storm winds also significantly impact winter 

maintenance operations. After a storm, wind can contribute to snowdrifts, reduce plowing 

effectiveness, cause retention of snow when the pavement is wet, and cause uneven 

dispersion of de-icing chemicals (McCullouch et al. 2004; Nixon and Qiu 2005; Ye et al. 

2009). The wind potential for blowing or drifting snow depends on snow density. In 

general, a wind speed greater than 20 mph (8.9 m s-1) can blow and drift snow (Farr and 

Sturges 2012). Thus, information on wind speed and direction can support winter 

maintenance operations and WSI development. 

  For freezing rain, the thickness of the ice layer is determined by the precipitation 
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intensity (Houston and Changnon 2007). This layer of ice creates challenging road 

conditions during and after a storm (Qiu and Nixon 2009; Wisconsin DOT 2014). 

Previous studies have found that crash risk is considerably higher during and after 

freezing rain events compared to dry snow (Andrey et al. 2003). Freezing rain frequency 

is variable throughout the United States and this phenomenon can increase the difficulty 

of maintaining safe road conditions. Assessing the risk of freezing rain requires 

information about its frequency, intensity and duration, along with other weather-related 

conditions, including the temperature and wind during freezing rain occurrences (Houston 

and Changnon 2007). The New York State DOT report mentioned that an hour of 

freezing rain must be considered twice as important as an hour of snowfall due to extra 

caution required during and after freezing rain (Chien et al. 2014). The Maine DOT 

collected the opinions of field crews who were involved in winter maintenance operations 

regarding the difficulty of dealing with freezing rain. They found that maintaining roads 

during and after freezing rain required additional runs and more materials, and typically 

costs 20-30% more compared to dry snow removal (Marquis 2009). Based on these 

results, the Maine DOT suggested increasing its WSI by 25% to account for the 

additional cost of freezing rain by converting freezing rain information to an equivalent 

snowfall amount and accumulating it throughout the winter season (Marquis 2009). More 

recent work (Sanders and Barjenbruch 2016) developed an ice accumulation model based 

on an analysis of ASOS ice-to-liquid ratios during freezing rain events. Despite these 

recent advancements, given the historical study period for the development of the 

NEWINS and lack of reliable/validated freezing rain observations and subsequent ice 

accumulation, freezing rain was not considered in the development of the NEWINS.  
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  For the development of the NEWINS, temperature, snowfall and wind data will 

be of critical importance. Road temperature and freezing rain data are omitted from the 

development of the NEWINS despite their desirability, due to their lack of reliability and 

availability for the entire ten-year study period. To capture the severity influences of 

individual events, a categorical storm classification framework (e.g., Kocin and Uccellini 

2004; Boustead et al. 2015) is desirable over a seasonal/annual averaged approach 

(e.g., Strong et al. 2005). Despite Iowa’s well documented WSI, it lacked consideration 

of areal coverage, precipitation rate/intensity, event duration and visibility, all of which 

were identified by NDOT personnel as desirable for inclusion in the NEWINS. Further, 

given the desire for the NEWINS to serve as an independent, meteorologically driven 

WSI, it is developed separate from winter maintenance operations data unlike other WSIs 

(e.g., California, Montana, Oregon; Strong et al. 2005). The strengths of the NEWINS is 

that it independently and explicitly considers the individual contribution of select 

meteorological parameters spatiotemporally during events, and the combined influence of 

these parameters yield a storm classification frequency distribution that is accumulated 

throughout a winter season. The NEWINS provides a finer resolution than the most 

existing WSIs by considering storm-level data. Further, the NEWINS focuses on 

meteorological conditions and can subsequently be compared independently with 

transportation and winter maintenance data.  
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3. Methods 

The development of the NEWINS first considers the study region and data sets 

used to define the winter season database. Then, a questionnaire was developed to 

provide guidance for the development of the NEWINS. Next, data management and 

quality control criteria were established to ensure a high-quality data set. Individual 

events were classified in accordance with the NEWINS categorical framework. Last, the 

NEWINS was computed and validated against winter maintenance performance data and 

additional meteorological data. 

 

a. Study Region and Data 

This research seeks to develop a WSI for NDOT known as the NEWINS. The 

study region for the development of the NEWINS was defined by the state boundaries of 

Nebraska. The state of Nebraska is further divided by NDOT into eight maintenance 

districts (Figure 3.1). NDOT maintenance operations are decentralized and spatially 

variable among and within the districts. All districts are responsible for their own 

resource and equipment allocation of personnel, plow trucks, and anti-icing materials. 

Some districts (e.g., Districts 1 and 2) ensure continuous (i.e., 24-hour) treatment of roads 

during a snowstorm. This is due, in part, to the urban population centers of Lincoln and 

Omaha, respectively, with a greater concentration of interstate and expressway road 

classifications. There is a greater demand on the road network within these two districts. 

Other districts (e.g., Districts 4, 5 and 6) only maintain continuous maintenance 

operations on their respective interstate corridor. Secondary and tertiary routes are  
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Figure 3.1. State of Nebraska counties with eight Nebraska Department of 

Transportation (NDOT) maintenance districts outlined in the thick black line. The 35 red 

dots indicate Automated Surface Observing System (ASOS) stations. The blue line 

represents the demarcation between Central (east, i.e., to the right) and Mountain (west, 

i.e., to the left) time zones   
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typically not treated overnight. Last, more rural districts (e.g., Districts 3, 7, and 8) that 

do not have any interstate highway to maintain also lack any roadways prioritized for 

continuous winter maintenance operations during a snowstorm.  

  Atmospheric variables for the NEWINS were obtained from the National Oceanic 

and Atmospheric Administration (NOAA) National Centers for Environmental 

Information (NCEI) for all ASOS stations within Nebraska (NCEI 2017a). Hourly data 

obtained from the ASOS stations included: station name, station elevation, station 

latitude, station longitude, wind speed, wind gusts, wind direction, cloud cover, visibility, 

present observed weather, air temperature, dew point temperature, sea-level pressure, 

station-pressure, and liquid-equivalent precipitation every hour, six hours, and 24 hours 

(NCEI 2017a, NWS 2018).  

 Snowfall observations for the NEWINS were obtained from the Global Historical 

Climatology Network-Daily (GHCN-D) sites within Nebraska (NCEI 2017b). The 

GHCN-D sites include data from the Community Collaborative Rain, Hail and Snow 

Network (CoCoRaHS 2018), the Nebraska Rainfall Assessment and Information 

Network (NeRAIN 2018), and the NWS Cooperative Observer Network (COOP 2018). 

The majority of the GHCN-D sites record once-daily 24-hour snowfall amounts 

measured at approximately 0700 local time (LT); however, there can be some temporal 

variability in the actual measurement time. Also, while some snowfall measurement 

networks (e.g., COOP) are more reliable and adhere to strict criteria and quality control, 

other measurement networks (e.g., CoCoRaHS) are citizen-science based and rely on 

reports from the public with less stringent quality control, which may result in 

inaccuracies or inconsistencies due to the measurement approach. Given this variability, 
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it is necessary to define a more consistent daily event period. There are approximately 

1000 GHCN-D sites statewide.  

 

b. Initial Winter Maintenance Operations and Severity Index Survey 

To complement the literature regarding existing winter severity indices and to 

guide the development of the NEWINS, a questionnaire available in Dao et al. (2018) 

was developed to assess state DOT best practices when measuring the performance of 

winter maintenance operations. Weather and WSI-related questions from the questionnaire are 

available in Appendix A. Additional questions asked state DOTs about their winter maintenance 

operations performance measurement and are beyond the scope of the present analysis. One of 

the major components of the questionnaire was meteorological aspects of winter 

maintenance operations and WSIs; therefore, a goal of the questionnaire was to document 

the collection, use, and source of various weather information for consideration in WSIs 

and winter maintenance operations. The maintenance operations staff of NDOT pilot 

tested the questionnaire and provided suggested revisions. Subsequently, the 

questionnaire was approved by the University of Nebraska-Lincoln’s Institutional 

Review Board. The questionnaire contained 25 questions and took approximately 

20 minutes for participants to complete. The questionnaire was distributed to the 31 state 

DOT members of Clear Roads. Clear Roads is a national research consortium for winter 

maintenance (Clear Roads 2018).   

  The questionnaire included several sections related to the respondents’ 

demographics, the state DOT decision-making procedures, its performance metrics and 

data, and the states’ WSIs (if applicable). The first section provided general information 
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about the study (e.g., objectives, definitions of technical terms) and obtained 

demographic information (e.g., work experience) about the respondents. The respondents 

were then asked to explain the decision-making processes in their agencies 

(e.g., centralized versus decentralized) regarding winter maintenance operations and 

storm-preparation activities. Since weather affects both winter maintenance decisions and 

operations’ performance measurements, respondents were asked to rate on a five-point 

Likert scale (1-“low” to 5-“high”) the significance of different weather variables during 

winter maintenance operations, the importance of different weather-forecast sources at 

different stages of a storm, and respondents’ perception of the accuracy of forecasts for 

different weather variables. The questionnaire also assessed which performance metrics 

(e.g., labor hours, lane-miles plowed, quantity of anti-icing materials used) each state 

implemented. In addition, because performance measurements require data collection, the 

questionnaire asked state DOT representatives to specify which data were collected 

regarding roadway winter maintenance operations (e.g., safety, mobility) and how these 

data were collected (e.g., fixed sensors alongside the road). Participants were also asked 

whether a state used a WSI to adjust performance measures, and if so, how. Respondents 

then had to evaluate the benefits of measuring winter maintenance operations’ 

performance and describe their approaches to reporting road conditions and performance 

measures to the public. Finally, the questionnaire included questions to capture aids and 

barriers to improving winter maintenance performance. 

 In total, 44 respondents completed the questionnaire with at least one from each 

of the 31 states shown in Figure 3.2. To consolidate the data for the states that had more 

than one respondent, the available responses were combined to create one single data  
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Figure 3.2. Thirty-one state (blue) departments of transportation (DOTs) in the United 

State participated in the first round of data collection and nine state DOTs (red) also 

participated in the first round and follow-up data collection.  
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point for each state using the average of the responses. The respondents represented 

different levels of operation management; including maintenance director, operation 

supervisor, maintenance superintendent, program specialist, engineer, and business 

planning coordinator and each had operating experience ranging from 4 to 43 years. To 

capture more detailed information about WSIs, such as the parameters included, time or 

spatial scales, and the purposes of using those indices, a follow-up questionnaire was 

developed (Appendix B), approved and distributed to the state DOTs who had agreed to 

participate in a follow-up session. Personnel of maintenance operations from nine state 

DOTs also responded to the follow-up questionnaire (Figure 3.2).  

 

c. Data Management and Quality Control 

  The abundance of data and having an objective to ensure stringent criteria for the 

analysis required various quality control procedures prior to the development of the 

NEWINS. Initially, 39 ASOS stations were included in the analysis; however, the quality 

control procedures reduced this number to 35 stations. Four ASOS stations were removed 

from the analysis because either: 1) the station did not have an operational PI, or LEDWI 

system, for all or part of the ten-year period or 2) the station had missing data for more 

than one entire winter season (Table 3.1). The ASOS stations in Columbus (KOLU) and 

Kearney (KEAR) were removed for failing to have an operational PI. ASOS stations in 

Blair (KBTA) and Wahoo (KAHQ) were removed since their available data did not 

extend through the entire ten-year period. Plattsmouth (KPMV) and Wayne (KLCG) each 

had a single winter season in which no data are available; however, the stations were 

included in the overall analysis. After quality control, the number of ASOS stations per  
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Table 3.1. Automated Surface Observing System (ASOS) station information organized 

by NDOT Maintenance District. Removed column identifies stations omitted from the 

analysis after quality control.  

 
         

NDOT 

District 

Station 

ID 

City Name USAF 

ID 

Lat. 

(°) 

Lon. 

(°) 

Elev. 

(m) 

Time 

Zone 

Removed 

1 BIE Beatrice 725515 40.28 -96.75 403 Central  

1 FNB Falls City 725533 40.07 -95.58 300 Central  

1 LNK Lincoln 725510 40.85 -96.77 364 Central  

1 AFK Nebraska City 725541 40.60 -95.85 354 Central  

1 AHQ Wahoo 720942 41.23 -96.60 374 Central X 

2 BTA Blair 720405 41.42 -96.12 396 Central X 

2 FET Fremont 725564 41.45 -96.52 367 Central  

2 OFF Bellevue 725540 41.12 -95.92 319 Central  

2 OMA Omaha 725500 41.32 -95.90 312 Central  

2 MLE Millard 720308 41.20 -96.12 320 Central  

2 PMV Plattsmouth 722291 40.95 -95.92 367 Central  

3 BVN Albion 723441 41.73 -98.05 551 Central  

3 OLU Columbus 725565 41.45 -97.32 440 Central X 

3 OFK Norfolk 725560 41.98 -97.43 470 Central  

3 TQE Tekamah 725527 41.77 -96.18 312 Central  

3 LCG Wayne 722241 42.25 -96.98 436 Central  

4 AUH Aurora 725513 40.88 -98.00 550 Central  

4 GRI Grand Island 725520 40.97 -98.32 561 Central  

4 HSI Hastings 725525 40.60 -98.43 591 Central  

4 HJH Hebron 722124 40.15 -97.58 447 Central  

4 EAR Kearney 725526 40.72 -99.00 649 Central X 

4 ODX Ord 725524 41.62 -98.95 631 Central  

4 JYR York 725512 40.90 -97.62 509 Central  

5 AIA Alliance 725635 42.05 -102.80 1196 Mountain  

5 CDR Chadron 725636 42.83 -103.10 1010 Mountain  

5 IBM Kimball 725665 41.18 -103.68 1501 Mountain  

5 BFF Scottsbluff 725660 41.87 -103.58 1203 Mountain  

5 SNY Sidney 725610 41.10 -102.98 1307 Mountain  

6 BBW Broken Bow 725555 41.43 -99.63 776 Central  

6 LXN Lexington 725624 40.78 -99.77 734 Central  

6 LBF North Platte 725620 41.12 -100.67 847 Central  

6 OGA Ogallala 725621 41.12 -101.77 999 Mountain  

6 TIF Thedford 722211 41.97 -100.57 892 Central  

7 HDE Holdrege 725628 40.45 -99.32 705 Central  

7 IML Imperial 725626 40.52 -101.62 998 Mountain  

7 MCK McCook 725625 40.20 -100.58 782 Central  

8 ANW Ainsworth 725556 42.57 -100.00 789 Central  

8 ONL O'Neill 725566 42.47 -98.67 619 Central  

8 VTN Valentine 725670 42.87 -100.55 788 Central  
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NDOT district ranged from three stations in Districts 7 and 8 to six stations in District 4 

(Figure 3.1). Spatially, the ASOS stations were distributed throughout the NDOT districts 

to reasonably capture the range of spatial variability in atmospheric conditions.  

  Hourly ASOS station observations were only incorporated into the analyses if the 

PI detected frozen precipitation (i.e., snow, ice pellets, mixed precipitation). Freezing rain 

was not considered in the analyses due to challenges associated with verification of ice 

accumulation (Changnon and Creech 2003) on spatiotemporal scales necessary for the 

research objective. For any 24-hour period, it is possible for only a single hour of 

observations to be included if that was the only instance of frozen precipitation identified. 

It is also possible for several discontinuous or continuous hours to be included if the 

precipitation was more intermittent or steady, respectively. 

  Quality control for these hourly frozen precipitation observations included the 

computation of dewpoint depression which is the difference between observed air and 

dewpoint temperatures. Hourly observations were removed from the winter season 

database if their dewpoint depression exceeded 30℉ (16.7°C). As noted by Jiusto and 

Wieckmann (1973), extreme dewpoint depressions would not yield tremendous moisture 

availability for frozen precipitation. It is believed that such extreme dewpoint depressions 

would either be the result of sensor error or indicative of exceptionally light snowfall.   

  The GHCN-D sites used in the analysis were only selected if the observation was 

within a 15-km spatial threshold of an ASOS station (Figure 3.3). This was intended to 

ensure spatial consistency between the observed snowfall and the atmospheric conditions 

present during the snow accumulation period. Further, given the interest in snowfall 

amounts that would require a winter maintenance operations response (i.e., plowing of  
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Figure 3.3. Southeast Nebraska counties with four Nebraska Department of 

Transportation (NDOT) maintenance districts visible outlined in the thick black line. The 

red dots indicate Automated Surface Observing System (ASOS) stations. The blue 

triangles show Global Historical Climate Network-Daily (GHCN-D) sites within 15 km 

of the ASOS stations that had sufficient data for the analysis.  
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measurable snow), GHCN-D sites were removed if the snowfall observations were either 

missing. To be included in the NEWINS winter season database, GHCN-D sites had to 

report a measurable snowfall amount .   

 After quality control, the ASOS station and GHCN-D site data were subsequently 

merged into a winter season event database. For each date, hourly ASOS station 

observations in which frozen precipitation was detected were paired with 24-hour 

snowfall amounts from the GHCN-D sites that adhered to the spatial and temporal 

criteria. The snowfall observations and number of hours of ASOS station data for each 

date and location pair were used to derive a snowfall rate variable by dividing snowfall 

amounts by the number of hours with frozen precipitation observed. Given the derived 

nature of the snowfall rate variable, rates in excess of 3 in hr-1 (7.62 cm hr-1) were 

removed, given the climatological infrequency of such extreme rates in Nebraska as 

previously documented by Rasmussen et al. (1999). Another derived variable was 

“district area” to provide a spatial context for the snowfall. District area was computed by 

dividing the number of ASOS stations reporting frozen precipitation on a given date in a 

particular NDOT maintenance district by the total number of ASOS stations possible 

within that district. Statistical parameters (i.e., minimum, maximum, mean, and median) 

were computed for all of the available variables from the ASOS stations, GHCN-D sites 

and derived variables.  

 

d. Event Classification 

  Temporal resolution and discrepancies within the various data sets presented one 

of the more difficult challenges for the analysis. Nebraska is divided by the Central and 
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Mountain time zone demarcations (Figure 3.1). Further, daylight savings ends and begins 

during the winter season on a non-stationary date. While ASOS data are reported in UTC 

and not impacted by the aforementioned temporal considerations. GHCN-D data are 

commonly reported in local time. Moreover, snowfall data from the GHCN-D sites are 

not consistently reported at the same time given the nature of its component programs 

(i.e., citizen science). In order to accommodate this range of temporal variability among 

the data sets, a “snow day” was defined as the 24-hour period preceding the reported 

snowfall observation with some tolerance for up to a two-hour (i.e., one-hour before or 

after) discrepancy. The latest local time a snowfall observation could be reported to still 

count for the same snow day would be 0800 LST or 0900 LDT. For most locations 

throughout Nebraska in the Central time zone, this leads to the definition of a snow day 

beginning 1400 UTC of the first day and ending through the 1300 UTC observation of 

the following day in which the snowfall observation would be taken (Table 3.2). For the 

western Nebraska locations in the Mountain time zone, this snow day definition would 

range from the 1500 UTC observation of the first day through the 1400 UTC observation 

of the following day in which the snowfall observation would be taken (Table 3.3). To 

provide an example of how a snow day would be defined in both time zones for a 

hypothetical 1 October snow day in which the snow accumulation period extends from 

30 September through 1 October where the snow measurement would be taken are given 

in Tables 3.2 and 3.3. The purpose of these temporal considerations defines the daily 

boundaries for events in the winter season database. Meteorological variables observed 

within these temporal bounds are subsequently used to classify individual daily events. 

This remedy also allowed for the creation of a zero-based “snow hour” variable which  
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Table 3.2. Central Standard/Daylight Time hypothetical comparison with UTC and Snow 

Date/Hour. 

     

Snow Date 

 

Snow 

Hour 

 

Central Standard 

Time 

(UTC-6) 

Central Daylight 

Time 

(UTC-5) 

UTC 

10/1/2015 0 09/30/2015 0800 09/30/2015 0900 09/30/2015 1400 

10/1/2015 1 09/30/2015 0900 09/30/2015 1000 09/30/2015 1500 

10/1/2015 2 09/30/2015 1000 09/30/2015 1100 09/30/2015 1600 

10/1/2015 3 09/30/2015 1100 09/30/2015 1200 09/30/2015 1700 

10/1/2015 4 09/30/2015 1200 09/30/2015 1300 09/30/2015 1800 

10/1/2015 5 09/30/2015 1300 09/30/2015 1400 09/30/2015 1900 

10/1/2015 6 09/30/2015 1400 09/30/2015 1500 09/30/2015 2000 

10/1/2015 7 09/30/2015 1500 09/30/2015 1600 09/30/2015 2100 

10/1/2015 8 09/30/2015 1600 09/30/2015 1700 09/30/2015 2200 

10/1/2015 9 09/30/2015 1700 09/30/2015 1800 09/30/2015 2300 

10/1/2015 10 09/30/2015 1800 09/30/2015 1900 10/1/2015 0000 

10/1/2015 11 09/30/2015 1900 09/30/2015 2000 10/1/2015 0100 

10/1/2015 12 09/30/2015 2000 09/30/2015 2100 10/1/2015 0200 

10/1/2015 13 09/30/2015 2100 09/30/2015 2200 10/1/2015 0300 

10/1/2015 14 09/30/2015 2200 09/30/2015 2300 10/1/2015 0400 

10/1/2015 15 09/30/2015 2300 10/1/2015 0000 10/1/2015 0500 

10/1/2015 16 10/1/2015 0000 10/1/2015 0100 10/1/2015 0600 

10/1/2015 17 10/1/2015 0100 10/1/2015 0200 10/1/2015 0700 

10/1/2015 18 10/1/2015 0200 10/1/2015 0300 10/1/2015 0800 

10/1/2015 19 10/1/2015 0300 10/1/2015 0400 10/1/2015 0900 

10/1/2015 20 10/1/2015 0400 10/1/2015 0500 10/1/2015 1000 

10/1/2015 21 10/1/2015 0500 10/1/2015 0600 10/1/2015 1100 

10/1/2015 22 10/1/2015 0600 10/1/2015 0700 10/1/2015 1200 

10/1/2015 23 10/1/2015 0700 10/1/2015 0800 10/1/2015 1300 
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Table 3.3. Mountain Standard/Daylight Time hypothetical comparison with UTC and 

Snow Date/Hour. 

     

Snow Date 

 

Snow 

Hour 

 

Mountain Standard 

Time 

(UTC-7) 

Mountain Daylight 

Time 

(UTC-6) 

UTC 

10/1/2015 0 09/30/2015 0800 09/30/2015 0900 09/30/2015 1500 

10/1/2015 1 09/30/2015 0900 09/30/2015 1000 09/30/2015 1600 

10/1/2015 2 09/30/2015 1000 09/30/2015 1100 09/30/2015 1700 

10/1/2015 3 09/30/2015 1100 09/30/2015 1200 09/30/2015 1800 

10/1/2015 4 09/30/2015 1200 09/30/2015 1300 09/30/2015 1900 

10/1/2015 5 09/30/2015 1300 09/30/2015 1400 09/30/2015 2000 

10/1/2015 6 09/30/2015 1400 09/30/2015 1500 09/30/2015 2100 

10/1/2015 7 09/30/2015 1500 09/30/2015 1600 09/30/2015 2200 

10/1/2015 8 09/30/2015 1600 09/30/2015 1700 09/30/2015 2300 

10/1/2015 9 09/30/2015 1700 09/30/2015 1800 10/1/2015 0000 

10/1/2015 10 09/30/2015 1800 09/30/2015 1900 10/1/2015 0100 

10/1/2015 11 09/30/2015 1900 09/30/2015 2000 10/1/2015 0200 

10/1/2015 12 09/30/2015 2000 09/30/2015 2100 10/1/2015 0300 

10/1/2015 13 09/30/2015 2100 09/30/2015 2200 10/1/2015 0400 

10/1/2015 14 09/30/2015 2200 09/30/2015 2300 10/1/2015 0500 

10/1/2015 15 09/30/2015 2300 10/1/2015 0000 10/1/2015 0600 

10/1/2015 16 10/1/2015 0000 10/1/2015 0100 10/1/2015 0600 

10/1/2015 17 10/1/2015 0100 10/1/2015 0200 10/1/2015 0800 

10/1/2015 18 10/1/2015 0200 10/1/2015 0300 10/1/2015 0900 

10/1/2015 19 10/1/2015 0300 10/1/2015 0400 10/1/2015 1000 

10/1/2015 20 10/1/2015 0400 10/1/2015 0500 10/1/2015 1100 

10/1/2015 21 10/1/2015 0500 10/1/2015 0600 10/1/2015 1200 

10/1/2015 22 10/1/2015 0600 10/1/2015 0700 10/1/2015 1300 

10/1/2015 23 10/1/2015 0700 10/1/2015 0800 10/1/2015 1400 
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would subsequently be used in the analysis to compute snowfall duration.  

  In close consultation with the NDOT, the following variables were selected for 

the primary development of the NEWINS: 1) wind speed, 2) visibility, 3) air temperature, 

4) duration of snowfall, 5) snowfall, 6) snowfall rate, and 7) district area. These variables 

were selected on the basis of their reliability from the instrumentation in addition to their 

importance / impact on NDOT’s winter maintenance operations. For inclusion in the 

winter season database, these weather variables were averaged across each NDOT 

maintenance district from the available merged ASOS station and GHCN-D site data for 

each date. Surface (i.e., RWIS) temperature information was not available for the entire 

historical ten-year period and was therefore not included in the development of the 

NEWINS.  

  The winter season database was further modified for use in a categorical data 

analysis framework. NDOT communicates extensively with its local NWS offices, and it 

was desirable to create a winter severity index that mirrored existing and possible future 

NWS products such as the SPC Convective Outlook Severe Thunderstorm Risk 

Categories (SPC 2016), experimental winter storm threat graphics (NWS 2016), or 

experimental winter storm severity index (WPC 2018). To this end, in consultation with 

NDOT, a categorial road weather and winter maintenance operations framework was 

developed to serve as the foundation for NEWINS (Table 3.4). The objective was to 

classify individual events within the winter season database into one of six categories 

from Category 1: trace, low impact storms, no winter maintenance operations activity to 

Category 6: high, significant impact storms, maximum winter maintenance operations 

activity with possible suspensions necessary due to safety concerns. This categorical  
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framework was designed with specific consideration given to: 1) road access, 2) road 

conditions, 3) traffic speeds, 4) treatment operations, and 5) NDOT’s winter maintenance 

performance objective. Road access is defined here as whether the road is open and travel 

by the public is permitted. Road conditions refers to the amount and type of precipitation 

accumulation within the driving lanes ranging from wet roads to impassable due to snow 

and ice coverage. Traffic speeds addresses the likely impact of the weather conditions on 

free-flow travel speeds. NDOT does not consider specific speed thresholds as a 

prerequisite to define a meteorological impact as impacts can occur at any speed (NDOT 

2016, personal communication). Treatment operations refers to NDOT’s winter 

maintenance operations activities including but not limited to chemical or material 

applications and mechanical plowing from snow removal. Lastly, NDOT’s maintenance 

performance objective is to return roadway speeds to within 10 mph (16 km hr-1) of the 

posted speed limit within six hours of precipitation cessation (NDOT 2016, personal 

communication). The likelihood of attaining that objective is incorporated into the 

NEWINS categorical framework. 

  From the road weather/maintenance operations framework, the seven weather 

variables selected for the NEWINS were placed into the same categorical framework 

(Table 3.5). A subjective, manual sensitivity analysis was performed to identify and 

refine the distribution based on a modified Delphi method approach (Hallowell and 

Gambatese 2010). The Delphi method considers the opinion of experts in a discipline to 

provide reasonably objective data. Further, these opinions are provided in an iterative 

manner to provide consensus among the group of experts. In this instance, transportation 

and meteorological experts were consulted to provide input regarding which range of  
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data, for each meteorological parameter, would yield the corresponding road impacts. 

Snowfall, air temperature and district area were distributed among the six categories to 

ensure near-even separation across the range of each variable. For example, each 

snowfall category range varies between 1-2 in. (2.5-5.1 cm) or each air temperature 

category contained a 5℉ (2.8°C) range, excluding the minimum and maximum 

categories. Snowfall rate, duration and visibility were distributed among the six 

categories to ensure near-even frequency of observations within each category. Last, 

wind speed was distributed among the six categories loosely based on a modified 

Beaufort wind scale (SPC 2018). Table 3.6 shows the specific distribution of each 

weather variable and its categorical assignment.  Cerruti and Decker (2011) proposed a 

similar approach in the development of their LWSS. 

  The NEWINS joins a vast array of WSIs, each with their own respective strengths 

and caveats. As seen from the SHRP WSI (Boselly et al. 1993), the best approach is for a 

WSI to be tailored specifically to the needs of the state DOT, since broad, versatile WSIs 

are often inaccurate due to their simplicity or lack of accounting for localized conditions. 

Given that the NEWINS was designed with respect to a decadal winter season database, 

it surpasses the SHRP WSI in terms of considering local and regional weather variability. 

Further, given the ten-year development period, the NEWINS is surpassed only by the 

AWSSI (Boustead et al. 2015) in terms of its historical period. Further, with the inclusion 

of 35 ASOS stations distributed throughout eight transportation districts, the NEWINS 

provides a greater station density than the AWSSI which considers only approximately 

50 locations throughout the United States. Important differences between the NEWINS 

and AWSSI worth highlighting are that the NEWINS averages conditions across all  
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ASOS stations within each district and throughout the state to derive a categorical 

frequency distribution and subsequent severity value. The AWSSI only computes a 

severity value for point locations (Boustead et al. 2015). Another important difference is 

that the AWSSI considers daily conditions throughout the entire winter season whereas 

the NEWINS only considers the conditions and impacts associated with specific 

snowstorms. One final difference is that the AWSSI establishes strict criteria to define the 

beginning and end of a winter season whereas the NEWINS is more flexible and allows 

for the precipitation type (i.e., frozen precipitation) to dictate the temporal boundaries of 

the winter season. Both approaches are relatively transferrable to other applications. 

 

e. Winter Severity Index Computation and Applications 

An important challenge to overcome with the categorical framework is that for 

any given event during a winter season, the magnitude of the weather variables can be 

quite different for a single maintenance district or across several maintenance districts 

experiencing the same event (Table 3.7). To address this challenge, a subjective, manual 

sensitivity analysis similar to the Delphi approach of Hallowell and Gambatese (2010) 

was performed. In consultation with NDOT personnel, appropriate weights for the seven 

weather variables were developed so that a linear combination would yield a single storm 

categorical classification (Table 3.4) for each event at the district level. Eq. (1) provides 

the general form of the NEWINS event category. Each weather variable is averaged 

across the maintenance district and assigned a category based on Table 3.6. Categories 

for each weather variable are subsequently used in Eq. (1) in lieu of the raw data. This  
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results in the NEWINS event categorical frequency distribution. Table 3.8 provides the 

final weights assigned to each weather variable category.  

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 𝛽1 × 𝑆𝑛𝑜𝑤𝑓𝑎𝑙𝑙 𝐶𝑎𝑡 + 𝛽2 × 𝑆𝑛𝑜𝑤 𝑅𝑎𝑡𝑒 𝐶𝑎𝑡 + 𝛽3 × 𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 𝐶𝑎𝑡 + 𝛽4 ×

𝐴𝑖𝑟 𝑇𝑒𝑚𝑝 𝐶𝑎𝑡 + 𝛽5 × 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 𝐴𝑟𝑒𝑎 𝐶𝑎𝑡 + 𝛽6 × 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑡 + 𝛽7 × 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝐶𝑎𝑡   (1) 

From the categorical frequency distribution, the final NEWINS value is computed 

according to Eq. (2).  

𝑁𝐸𝑊𝐼𝑁𝑆 =
∑(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦×𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

100
 (2) 

 This provides the final statewide NEWINS value for a given season. It can also be 

used to compute an NEWINS value for each individual NDOT maintenance district 

which can be summed to yield the same final statewide value. The mathematical linear 

combination / parameter weighting framework of the NEWINS is similar to that used by 

Wisconsin, Minnesota, Indiana, Illinois, and Pennsylvania for their respective WSIs 

(Cohen 1981; Strong et al. 2005). An important difference, though, is that the 

mathematical framework incorporates a categorical framework. Unlike the 

aforementioned WSIs, though more similar to Iowa (Carmichael et al. 2004; Nixon and 

Qui 2005; Strong et al. 2005; Qui 2008; Walsh 2016), the NEWINS is an event-based 

WSI. It considers specific snowstorms in its computation. Limitations of Iowa’s WSI, 

though, are that it does not consider a complete set of relevant variables important to 

winter maintenance operations (e.g., areal coverage, duration, snowfall rate, visibility) 

unlike the NEWINS. In terms of a dependent variable, the NEWINS is substantially 

different from the California, Montana, Oregon, Idaho and Colorado WSIs (Strong et al. 

2005; Jensen et al. 2013; Walsh 2016) in that it is a pure meteorological index (like the  
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Table 3.8. NEWINS event category linear combination equation weights. 

  

Parameter NEWINS 

Parameter 

Weight 

Snowfall Category 

(β1) 

0.80 

Snow Rate Category 

(β2) 

0.05 

Wind Speed Category 

(β3) 

0.05 

Air Temp Category 

(β4) 

0.05 

District Area Category 

(β5) 

0.02 

Duration Category 

(β6) 

0.02 

Visibility Category 

(β7) 

0.01 
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AWSSI) and not related to accident rate or grip measurements. It is feasible for future 

correlation of the NEWINS to transportation-related variables; however, no such data are 

presently available over the entire historical period. 

  To ensure the reliability of the NEWINS and its components, several different 

indices were computed and subsequently compared to the NEWINS. An initial 

snowfall-based index was computed statewide and for each NDOT maintenance district 

by comparing the number of days with observed frozen precipitation as identified from 

the ASOS station data (i.e., snow days) to the number of days with observed snow 

accumulation as identified from the GHCN-D site data (i.e., snowfall days). A second 

snowfall-based index was computed statewide and for each maintenance district 

comparing each winter season’s total accumulated snowfall to the ten-year average 

snowfall accumulation. For an independent climate-based index, temperature and 

precipitation anomalies were obtained from the NOAA NCEI climate division 

(Figure 3.4) data (ESRL 2017). Nebraska contains eight climate districts which roughly 

align with NDOT’s eight maintenance districts. Additionally, applications of the 

NEWINS were performed including a K-means cluster analysis for validation of the 

storm classification approach, an example correlation of 2015-16 winter season storm 

classification to available NDOT traffic speed data, and an analysis of a winter season 

(i.e., 2016-17) beyond the decadal winter season database used for the development of 

the NEWINS. The NEWINS was not explicitly compared to the AWSSI or LWSS due to 

lack of available raw data and different spatial resolutions. The NEWINS is computed for 

entire regions (i.e., statewide, district level), while the AWSSI is point-based.  
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Figure 3.4. NOAA NCEI Nebraska climate districts (CPC 2018).  
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4. Results and Discussion 

Multiple tasks led to the development of the NEWINS and are presented by 

subsections within this chapter. The first task was a winter maintenance operations and 

winter severity index questionnaire which was developed, distributed and will be 

discussed to aid the formulation of the NEWINS. The second task was the development 

and refinement of the NEWINS event classification and mathematical formulas. To 

provide context and highlight the strengths of the NEWINS, the third task was a 

comparison analysis of various meteorological indices. Furthermore, the fourth task 

provides a more in-depth consideration of the NEWINS at the statewide and district 

levels given the intended use of the NEWINS by NDOT. To validate the NEWINS 

results, the fifth task assessed the NEWINS in the context of a K-means cluster analysis. 

To apply the NEWINS, the sixth task compared the NEWINS to 2015-16 winter 

maintenance performance data across Interstate 80 test sections. The final task will 

ensure the reproducibility of the NEWINS methods by computing and comparing the 

2016-17 winter season values to the decadal (i.e., 2006-2016) winter seasons.  

 

a. Initial Winter Maintenance Operations and Severity Index Survey 

The primary research objective is attained through the documented creation of the 

NEWINS. To develop the NEWINS, a questionnaire was developed and distributed to 

various state DOTs to provide guidance for data collection and variable inclusion 

considerations. Further, the survey complemented the existing literature documenting 

other WSIs. The results of the questionnaire (Dao et al. 2018) given to 31 state DOTs that 
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were members of the Clear Roads research consortium yielded a 100% response rate and 

revealed that, in terms of importance of various weather variables, most respondents rated 

snowfall, road temperature, and freezing rain as important or very important (Table 4.1). 

Respondents also mentioned other weather variables that appear to be important to their 

winter maintenance operations, including frost, cloud cover, storm duration, dew point, 

humidity, intensity, timing, rate of change, and black ice. Unfortunately, there is no 

detailed record of freezing rain and black ice, for example, to include these in a WSI. The 

questionnaire asked respondents for their primary source for weather information, which 

was in general the NWS before, during, and after a storm (Table 4.2). The next largest 

response was private weather consulting companies. Results did reveal that it was more 

common to obtain weather forecast information before a storm rather than during or after 

an event. Regardless of the specific source and time period for information acquisition, 

forecasts of air temperature, wind, and snow occurrence were perceived to be most 

accurate, while forecasts of snow amount and freezing rain were perceived to have the 

lowest accuracy (Table 4.3). 

  With respect to how the weather influences their operations, almost all the 

responding state DOTs (97%) suggested that any forecast of snow would initiate 

preparations before a storm, and 61% of the responding state DOTs indicated that a 

forecast for freezing rain, high wind, frost, black ice, freezing fog, or any precipitation 

with temperatures near or below 32°F (0°C) would also initiate advance preparations. 

Prior to a storm, 47% of responding state DOTs preferred accurate weather information 

three days before for winter maintenance operations decisions; 36% of responding state 

DOTs preferred a two-day lead time; and 17% said the forecast less than one day in  
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Table 4.1. The importance of weather variables for winter maintenance operations. The 

value represents the number of state DOTs and the percentage of the total respondents.  

       

Level of importance Snowfall Air 

Temp. 

Road 

Temp. 

Wind Blowing/ 

Drifting 

Freezing 

Rain 

Very Important 28 (90%) 12 (39%) 28 (90%) 14 (45%) 13 (42%) 24 (77%) 

Elevated Importance  1 (3.5%) 8 (26%) 2 (6.5%) 9 (29%) 11 (35%) 3 (10%) 

Moderately Important 2 (6.5%) 7 (23%) 1 (3.5%) 5 (16%) 5 (16%) 2 (6%) 

Less Importance 0 (0%) 3 (10%) 0 (0%) 1 (3.5%) 2 (6%) 2 (6%) 

Not Important 0 (0%) 1 (3%) 0 (0%) 2 (6.5%) 0 (0%) 0 (0%) 
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Table 4.2. Sources of weather forecast information used by state DOTs at different stages 

of a storm. The values represent the number of responses.  

     

Weather Information Source Before 

Storm 

During Storm 

(while snowing) 

Post-

Storm 

Not 

Used 

National Weather Service 30 26 18 1 

Private weather consulting company 21 20 16 5 

Mobile application on smartphone or tablet 19 20 15 4 

Local TV / radio 19 14 9 5 

Maintenance decision support system 14 12 11 7 

Internal meteorologist on staff 11 8 7 11 

The Weather Channel 11 7 4 10 

Newspaper 3 1 1 16 
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Table 4.3. The perception of forecast accuracy for different weather variables. The value 

represents the number of state DOTs and the percentage of the total respondents.  

        

Level of 

Accuracy 

Snow 

Occurrence 

Snow 

Amount 

Air 

Temp. 

Road 

Temp. 
Wind 

Blowing/ 

Drifting 

Freezing 

Rain 

Very 

Accurate 
5 (16%) 2 (6%) 6 (19%) 3 (10%) 4 (13%) 2 (7%) 2 (7%) 

Elevated 

Accuracy  
16 (52%) 12 (39%) 20 (65%) 15 (48%) 18 (58%) 15 (50%) 12 (40%) 

Moderately 

Accurate 
9 (29%) 14 (45%) 4 (13%) 10 (32%) 8 (26%) 11 (37%) 12 (40%) 

Less 

Accuracy 
1 (3%) 3 (10%) 0 (0%) 1 (3%) 1 (3%) 2 (7%) 4 (13%) 

Not 

Accurate 
0 (0%) 0 (0%) 0 (0%) 1 (3%) 0 (0%) 0 (0%) 0 (0%) 
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advance was enough time to initiate decisions. Most responding state DOTs (94%) 

indicated that they pre-treat the roads, though two state DOTs reported that they do not 

pre-treat roads. Most of the responding state DOTs (75%) indicated that they begin 

deploying their operation activities (e.g., plowing, material spreading excluding 

pre-treatment) once snowfall begins; however, some states do not begin deployment until 

a certain amount of snowfall accumulates on the road surface (e.g., road pavement 

accumulation of 0.5-1 in. [1.3-2.5 cm] of snow, depending on the event condition and 

snowfall intensity). Thirty-two percent of the responding state DOTs deployed once they 

have a request from law enforcement. 

  Regarding the use of a WSI, 15 out of 31 states responded that they use a WSI for 

winter maintenance operations. Of the 16 responding states that do not use a WSI, 

14 states are interested in developing a WSI. Twenty percent of WSI users rated its 

accuracy as “Very Accurate,” 53% as “Moderately Accurate,” and 7% rated it as 

“Minimally Accurate.” With the follow-up questionnaire, state DOTs were asked to 

provide additional information on WSI practices. Among the nine state DOTs who 

provided complete responses, four of them responded that the WSIs they are using were 

developed by their internal staff (Figure 4.1). Four state DOTs reported that the indices 

had been developed for them by private weather consultants. Only one state reported that 

they are using a pre-existing WSI to measure their performance, and no states responded 

that their developed WSI was a part of a university research collaboration. This result 

highlights the significance of the NEWINS development as fostering groundbreaking 

collaborations.  

  The state DOTs were also asked to provide the factors that account for the  
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Figure 4.1. Organizations which developed the WSI for state DOTs. 
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accuracy or inaccuracy of their WSIs. The most frequently reported factors accounting 

for the accuracy of a WSI are air temperature and snowfall amount. For the inaccuracy, 

three states responded that weather and maintenance operations data are the factor that 

usually decreases the accuracy of their WSIs, while the other states indicated different 

factors such as scoring methodology, freezing rain, and visibility. 

  Regarding the time scale used to compute WSI, most states reported that a daily 

timeframe is the preferred time scale for their WSI.  Some states indicated that even if the 

mathematical formula of a WSI is daily or hourly, it can be computed whenever needed 

during the season as well as at the end of a season. The Vermont Agency of 

Transportation responded that they are using two different indices. Their internal WSI 

includes daily RWIS data and their external WSI is a private weather consultant’s 

seasonal WSI. Regarding spatial scale, four out of nine states said that their WSI is 

computed using county regions as the spatial boundary.  The five other states used 

different spatial boundaries for their indices, such as individual road segments, districts, 

or a single statewide value. 

  When asked which factors could help to improve their WSI, Pennsylvania DOT 

reported that omitting the "snow removal cost" portion of the WSI could be helpful due 

to the variability of snow removal costs such as urban versus rural areas. Additionally, 

being able to have more granular spatial scale or being able to calculate the WSI more 

frequently than at seasonal time scales could improve accuracy. This result suggests that 

the NEWINS should be flexible enough to consider a variety of spatial and temporal 

resolutions and not necessarily be developed specifically for winter maintenance 

operations data due to cost variability. More details of weather conditions 
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(e.g., precipitation, blowing snow, visibility) and better accuracy of weather data were 

also reported as ways to improve a state DOTs performance as these variables are 

challenging for WSI inclusion. 

  The follow-up questionnaire results also show that the most important purpose for 

which state DOTs use WSIs is to improve their performance. Once you improve your 

performance, the budgetary factors then will change which also corresponds with the next 

most important parameter, expense verification (Figure 4.2). WSI use varied across the 

different state DOTs. Some states used their WSI annually as a reference only for internal 

staff to see how their winter severity compared to different years, while other respondents 

used the WSIs quarterly, monthly, weekly, or even daily to track the use of maintenance 

materials. For example, salt use tracking was reported by Iowa DOT. South Dakota DOT 

reported that their WSI is calculated monthly for statewide related crash rates and at the 

end of each winter season to calculate a total winter related crash rate. It should be noted 

that South Dakota and Rhode Island in the questionnaire stated that they had WSIs, 

though their WSI documentation was not discovered during the literature review. In other 

states, the WSI is used at times throughout the winter season to do a cost comparison of 

routes, shops, and other administrative units. 

  Regarding the weather parameters that are included in the WSIs, the results from 

the follow-up questionnaire (Figure 4.3) indicate that snow amount is included in most 

WSIs (7 out of 9 WSIs). Freezing rain is the second parameter that is most frequently 

used in WSIs; however, its application is poorly documented in the WSI literature. 

Further, validation of freezing rain observations and ice accumulation data were not 

available for the NEWINS study period. Other weather parameters were included in  
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Figure 4.2. Purpose of using WSI in Importance Order. The height of the bar represents 

the relative average score from the respondents for the importance of each option. 
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Figure 4.3. The number of state DOTs using particular weather parameters included in 

their WSI, more than one parameter could be chosen. 

  



59 
 

 
 

WSIs a varying number of times. The follow-up questionnaire results show that the most 

important WSI variable is snow duration, while visibility is ranked the least important 

WSI variable (Figure 4.4). Calculating the average scores of responses indicated that the 

order of importance variables that should be included in WSIs are: snow duration, snow 

intensity, snow amount, air temperature, wind speed, and visibility. While the variables 

relevant to snow are usually considered to be the most important WSI variables, it is 

important to note that snow amount is incorporated in the greatest number of WSIs 

(Figure 4.3); however, the importance of snow amount is not first when the importance of 

weather variables is considered (Figure 4.4). These results influenced the framework and 

development of the NEWINS.  

  Most state DOTs indicated that measuring winter maintenance performance helps 

them improve decision processes relating to snow and ice control and internal and 

external communications. According to the questionnaire results, all state DOTs that 

responded were collecting and using weather data in their planning and decision-making 

activities for winter maintenance operations, which shows an improvement over the past 

decade (Maze et al. 2007). While all weather variables are considered important, wind 

and air temperature exhibit the widest range of responses among the respondents, an 

outcome reasonably attributed to geographical variation. Additionally, a notable finding 

indicated that no matter which source generated weather forecast information, most states 

used the forecast data before a winter storm, with usage decreasing both during and after 

a storm. This result suggests that state DOTs are more dependent on weather forecast 

information for planning purposes (e.g., scheduling personnel, loading, and staging 

equipment) rather than tactical purposes (e.g., specific treatment areas, material  
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Figure 4.4. Importance of weather variables in WSI. The height of the bar represents the 

average score from the respondents for the importance. 
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recommendations). The results further corroborate this idea, as most states noted that 

three days is the preferred timeframe for receiving accurate weather forecast information 

(Table 4.2). Furthermore, respondents generally viewed weather forecasts as accurate, 

though they perceived both snow quantity and the occurrence of freezing rain as having 

the highest inaccuracy. This view implies that a high degree of error still occurs in certain 

elements of weather forecasts, a fact that can impede state DOT snow and ice control 

operation plans. The results of this questionnaire suggest that to improve safety and 

mobility in winter maintenance operations, it might be better for state DOTs to partner 

with the weather enterprise to obtain more accurate weather data and better interpretation 

of existing weather data. 

  Despite the significant reliance on weather information and forecasts, only half of 

the state DOTs reported that they used a WSI. This result highlights a disconnect in the 

use of weather information as all state DOTs rely on critical, tactical, in-situ weather 

information (Tables 4.1-4.3), however, only those state DOTs with a WSI explicitly 

consider long-term trends and strategic weather information for long-range budget 

planning, budget justification and performance improvement purposes (Figure 4.2). The 

weather variables considered within most WSIs (Figures 4.3 and 4.4) were not dissimilar 

from the critical weather information for winter maintenance operations (Table 4.1). An 

interesting contradiction was that the state DOTs did highlight the importance of an 

explicit “visibility” consideration within their WSI; however, visibility was more of a 

derived quantity from the weather forecast information (i.e., snowfall rate and wind 

speed). This information is useful for the weather enterprise to ensure forecasts are 

tailored to address and highlight the needs of its diverse group of end-users. Most of the 
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remaining state DOTs without a WSI did note that there was interest in developing one 

suited for their operations. These findings underscore future avenues for research and 

collaboration between state DOTs and the weather enterprise to create new WSIs and 

refine existing ones. The questionnaire results also suggest that to ensure the success of 

the NEWINS, NDOT must be consulted extensively before, during and after its 

development.  

   

b. Event Classification and Winter Severity Index Development 

  A sensitivity analysis refined the parameter weights for event classification to 

ultimately create the NEWINS. To develop and refine the categorical variable assignment 

(Table 3.6) in addition to the variable weights (Table 3.8), a subjective, manual analysis 

following a modified Delphi method approach was performed initially on the 2015-16 

winter season, and then the 2009-10 winter season. Initially, nine NDOT personnel 

manually classified a subset of 16 cases from the two winter seasons and provided 

preliminary variable weights (Figure 4.5). The specific weights were not incorporated 

explicitly into the NEWINS; however, the preliminary NDOT weights provided a relative 

magnitude for each weather variable. After establishing classification consistency 

between the NDOT personnel and the research team, a panel of three research 

collaborators manually classified all district-level events for the two winter seasons. This 

manual classification was iterated three times with the target objective of reaching and 

maintaining consistency in the categorical frequency distribution of the three researchers. 

Once consistency was established via the manual classification, sensitivity analyses were 

performed to identify the appropriate categorical variable assignment and weights. 
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Figure 4.5. Nebraska DOT personnel preliminary parameter weights for seven weather 

variables incorporated into the NEWINS.  
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  Initially, two approaches for categorical variable assignment were conducted. 

First, variables were assigned in the interest of ensuring equal-sized categories across the 

range of each variable (Table 4.4). A second technique sought to produce variable 

assignment in accordance with an equal frequency distribution of observations within 

each category for each variable (Table 4.5). For both approaches, various parameter 

weights were attempted in order to match the manually classified distributions 

(Table 4.6) resulting in eight methods. Methods 1-4were applied to the first categorical 

variable assignment approach (i.e., equal length distributions, Table 4.4). Methods 5-8 

were applied to the second categorical variable assignment (i.e., equal observation 

distributions, Table 4.5). Methods 1 and 5 assigned equal parameter weights across all 

seven variables with the only difference being which categorical variable assignment 

each method was applied to. Similarly, Methods 2 and 6 sought to vary the parameter 

weights while maintaining consistency with NDOT’s recommendation that snow, snow 

rate, wind speed and temperature had the greatest importance. Methods 3 and 7 sought to 

modify the weights such that in the event of colder events, the increased likelihood of 

blowing snow would be represented more significantly while still maintaining an 

independent weight for temperature itself. Finally, Methods 4 and 8 maintained a 

conditional parameter weight for wind speed dependent on temperature; however, 

temperature itself was no longer explicitly considered in the linear combination 

framework (i.e., parameter weight was assigned zero for air temperature).  

  Both initial categorical assignment approaches and all eight corresponding 

parameter weighting methods failed to accurately represent the manually classified 

distribution (Tables 4.7 and 4.8). The individual researcher classifications and their  
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Table 4.6. NEWINS event category linear combination equation weights for 2015-16 

manual sensitivity analysis various methods. 

         

Parameter Method 

1 

Method 

2 

Method 

3 

Method 
4 

Method 

5 

Method 

6 

Method 

7 

Method 

8 

Snowfall 

Category 

(β1) 

0.143 0.4 0.4 0.4 0.143 0.4 0.4 0.4 

Snow Rate 

Category 

(β2) 

0.143 0.2 0.2 0.2 0.143 0.2 0.2 0.2 

Wind 

Speed 

Category 

(β3) 

0.143 0.2 If T<25, 

0.3 else 

0.2 

If T<25, 
0.3 else 

0.2 

0.143 0.2 If T<25, 

0.3 else 

0.2 

If T<27, 

0.3 else 

0.2 

Air Temp 

Category 

(β4) 

0.143 0.1 If T<25, 

0.05 

else 0.1 

0 0.143 0.1 If T<25, 

0.05 

else 0.1 

0 

District 

Area 

Category 

(β5) 

0.143 0.04 If T<25, 

0.02 

else 

0.04 

If T<25, 
0.04 
else 
0.08 

0.143 0.04 If T<25, 

0.02 

else 

0.04 

If T<27, 

0.04 

else 

0.08 

Duration 

Category 

(β6) 

0.143 0.04 If T<25, 

0.02 

else 

0.04 

If T<25, 
0.04 
else 
0.08 

0.143 0.04 If T<25, 

0.02 

else 

0.04 

If T<27, 

0.04 

else 

0.08 

Visibility 

Category 

(β7) 

0.143 0.02 If T<25, 

0.01 

else 

0.02 

If T<25, 
0.02 
else 
0.04 

0.143 0.02 If T<25, 

0.01 

else 

0.02 

If T<27, 

0.02 

else 

0.04 
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Table 4.7. Three researcher (R1-3) 2015-16 winter season database event classifications, 

their respective averages, median, and corresponding method (M1-8) classifications.  

              

Category R1 R2 R3 Avg. Med. M1 M2 M3 M4 M5 M6 M7 M8 

1 143 125 140 136 136 6 33 50 22 1 9 10 4 

2 54 81 46 60 61 135 162 147 152 44 49 57 48 

3 27 19 42 30 28 98 41 39 56 85 76 73 68 

4 15 11 19 17 15 15 17 17 20 81 67 63 60 

5 14 12 7 10 13 0 1 1 4 40 43 41 48 

6 1 6 0 1 1 0 0 0 0 3 10 10 26 
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respective averages and medians suggest a target frequency distribution that is 

right-tailed, with highest frequencies for Category 1 events and lowest frequencies for 

Category 6 events. A similar distribution was observed by Cerruti and Decker (2011) in 

their LWSS. The methods all failed to produce a similar distribution to the manual 

distribution, with the greatest frequencies on average observed in the intermediate 

Category 2 and 3 events. An assessment of the average difference between the categories 

produced among the methods and the average/median of the manually classification 

revealed a consistent error of at least one category (Table 4.8). Methods 3 and 4 

performed the best of the various approaches; however, there were still substantial 

instances of categorical assignment error.  

  To overcome these assignment errors a hybrid categorical variable assignment 

approach was developed. Snowfall, wind speed, air temperature, and district area were 

distributed according to the first approach maintaining equal length distributions. 

Snowfall rate, duration and visibility were distributed according to the second approach 

maintaining equal observation distributions. This categorical variable assignment was 

eventually selected to represent the frequency distribution for the final NEWINS 

(Table 3.6). To determine appropriate parameter weights, a simple linear regression was 

performed on the average of the manual classifications from the three researchers to 

determine a suitable weight for the variables (Method 9; Table 4.9). Then, only the 

parameter weight for snowfall from the simple linear regression was utilized and the 

remaining weights were determined in consultation with NDOT to ensure the weights 

summed to one (Method 10; Table 4.9). The distributions of both approaches were highly 

similar and aligned well with the manually classification distributions (Table 4.10).  
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Table 4.9. Second round linear combination equation weights. 

   

Parameter Method 9 Method 10 

Intercept 

(β0) 

-0.30 0.00 

Snowfall Category 

(β1) 

0.80 0.80 

Snow Rate Category 

(β2) 

0.02 0.05 

Wind Speed Category 

(β3) 

0.09 0.05 

Air Temp Category 

(β4) 

0.04 0.05 

District Area Category 

(β5) 

0.09 0.02 

Duration Category 

(β6) 

-0.04 0.02 

Visibility Category 

(β7) 

0.01 0.01 
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Table 4.10. Three researcher (R1-3) 2015-16 winter season database event 

classifications, their respective averages, median, and corresponding second round 

method (M9-10) classifications. 

        

Category R1 R2 R3 Avg. Med. M9 M10 

1 143 125 140 136 136 132 132 

2 54 81 46 60 61 64 64 

3 27 19 42 30 28 29 25 

4 15 11 19 17 15 20 19 

5 14 12 7 10 13 9 12 

6 1 6 0 1 1 0 2 
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Given the similarity between the two approaches, the simplicity of Method 10’s final 

equation, and its greater accuracy classifying higher end (i.e., Category 6) events, 

Method 10 was selected to move forward for the final NEWINS (Table 3.8). To further 

validate the decision to proceed with Method 10 as the NEWINS, corresponding 

NEWINS values were computed from the individual and average classifications of three 

researchers for the 2009-10 and 2015-16 winter seasons (Table 4.11). The NEWINS 

results show relatively minor variability which provides sufficient evidence to move 

forward with comparing the NEWINS to additional indices for further validation and 

discussion.  

 

c. Comparison Indices 

Comparison indices were computed to provide additional context for the 

NEWINS. Some severity indices (e.g., Cohen 1981; Kocin and Uccellini 2004; Strong 

et al. 2005) consider the spatial distribution of accumulated snowfall throughout an event 

or entire winter season. Therefore, snowfall-based indices were computed statewide and 

for each NDOT maintenance district by comparing the annual frequency distribution 

between the number of days with observed frozen precipitation as identified from the 

ASOS station data (i.e., snow days) and the number of days with observed snow 

accumulation (i.e., snowfall days; frozen precipitation accumulation of 0.1 in. [0.25 cm] 

or greater) as identified from the GHCN-D site data within 15 km of an ASOS station 

(i.e., snowfall days) for each winter season (Figure 4.6 and Table 4.12). An important 

caveat to note with this approach is that snow reported at a single ASOS station or 

GHCN-D site within a NDOT District of any duration would be sufficient to count as a  
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Table 4.11. Statewide seasonal NEWINS for 2009-10 and 2015-16 winter seasons from 

three researcher classifications (R1-3), their average and selected method (M10).  

      

Winter Season R1 R2 R3 Avg. M10 

2009 – 2010 6.06 6.05 6.18 6.10 6.15 

2015 – 2016 4.68 4.84 4.69 4.74 4.83 
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Figure 4.6. Snow (i.e., frozen precipitation identified by ASOS stations) days (left) and 

snowfall (i.e., accumulation measured by GHCN-D sites) days (right) with respective 

averages (dashed line).  
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Table 4.12. District and statewide total snow (i.e., frozen precipitation reported by 

ASOS) days. 

 

Snow Days 

Winter 
Season 

District 
1 

District 
2 

District 
3 

District 
4 

District 
5 

District 
6 

District 
7 

District 
8 

Statewide 

2006-07 36 40 59 53 67 57 42 67 114 
2007-08 60 61 68 78 86 77 51 67 131 
2008-09 48 55 65 64 71 67 46 75 125 
2009-10 60 70 64 81 84 75 61 67 146 
2010-11 49 60 63 53 80 61 43 67 125 
2011-12 28 22 31 35 50 39 27 34 76 
2012-13 51 58 69 63 77 65 44 66 124 
2013-14 42 59 62 70 94 75 52 77 137 
2014-15 33 39 42 41 61 48 36 45 89 
2015-16 37 44 53 44 71 52 43 56 102 
Decade 
Average 44.4 50.8 57.6 58.2 74.1 61.6 44.5 62.1 116.9 
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snow or snowfall day, respectively. Statewide, the decade average number of snow days 

was 116.9 days (Figure 4.6 and Table 4.12). This indicates that for the ten-year period, on 

average, somewhere within the state receives snowfall nearly one-third of the year. The 

annual variability in snow day frequency ranged from 76 days during the 2011-12 winter 

season to 146 days during the 2009-10 winter season. By this measure, it can be stated 

that 2009-10 was the most severe winter season in the ten-year winter season database 

and 2011-12 was the least severe if only number of days that snow was observed is taken 

into consideration. At the NDOT maintenance district level, the decade average snow day 

frequency ranged from 44.4 days in District 1 (i.e., southeast Nebraska) to 74.1 days in 

District 5 (i.e., western Nebraska). Inter-annual variability in snow day frequency can be 

seen among the maintenance districts as well. For example, District 3’s highest snow day 

frequency occurred during the 2012-13 winter season whereas the statewide highest was 

the 2009-10 winter season (Table 4.12). All districts observed their lowest snow day 

frequency during the 2011-12 winter season. This consistency among the districts 

suggests that the 2011-12 winter season was a lower frozen precipitation year relative to 

the others. Snow day anomalies (Table 4.13) were computed statewide and for each 

district as well. Statewide, the largest positive snow day anomaly occurred during the 

2009-10 winter season and the largest negative snow day anomaly occurred during the 

2011-12 winter season. For the maintenance districts, while the largest negative 

anomalies were consistent with the 2011-12 winter season, the positive anomalies were 

more variable. For example, District 1’s largest positive snow day anomalies occurred in 

both the 2007-08 and 2009-10 winter seasons (Table 4.13). Similarly, District 8’s largest 

positive anomaly occurred during the 2013-14 winter season (Table 4.13).  
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Table 4.13. District and statewide snow day anomalies. Blue denotes positive anomalies 

and gold denotes negative anomalies. The largest positive anomalies are bold, and the 

largest negative anomalies are italicized.  

 

Snow Days Anomalies 

Winter 
Season 

District 
1 

District 
2 

District 
3 

District 
4 

District 
5 

District 
6 

District 
7 

District 
8 

Statewide 

2006-07 -8.4 -10.8 1.4 -5.2 -7.1 -4.6 -2.5 4.9 -2.9 
2007-08 15.6 10.2 10.4 19.8 11.9 15.4 6.5 4.9 14.1 
2008-09 3.6 4.2 7.4 5.8 -3.1 5.4 1.5 12.9 8.1 
2009-10 15.6 19.2 6.4 22.8 9.9 13.4 16.5 4.9 29.1 
2010-11 4.6 9.2 5.4 -5.2 5.9 -0.6 -1.5 4.9 8.1 
2011-12 -16.4 -28.8 -26.6 -23.2 -24.1 -22.6 -17.5 -28.1 -40.9 
2012-13 6.6 7.2 11.4 4.8 2.9 3.4 -0.5 3.9 7.1 
2013-14 -2.4 8.2 4.4 11.8 19.9 13.4 7.5 14.9 20.1 
2014-15 -11.4 -11.8 -15.6 -17.2 -13.1 -13.6 -8.5 -17.1 -27.9 
2015-16 -7.4 -6.8 -4.6 -14.2 -3.1 -9.6 -1.5 -6.1 -14.9 

  



79 
 

 
 

 Snow days considered only observed frozen precipitation whereas snowfall days 

considered frozen precipitation accumulation. Snowfall days statewide averaged 

71.3 days during the decade (Figure 4.6 and Table 4.14). The statewide range in snowfall 

day frequency was a minimum of 44 days during the 2011-12 winter season and 87 days 

during the 2007-08 winter season. By this measure, the 2007-08 winter season was the 

most severe during the period, while the 2011-12 winter season was the least severe. This 

difference would suggest that while there was a higher frequency of days with snow 

during the 2009-10 winter season, that snow tended not to accumulate on all days. 

Further, this difference in the most severe winter season between the two methodologies 

highlights the necessity of a more robust winter severity index that assesses details 

regarding individual storms. Among the districts, decadal average snowfall day frequency 

ranged from 22.9 days in District 1 to 47.0 days in District 5. This result paired with the 

snow day frequency demonstrates that the eastern part of the state receives on average 

approximately half the number of snow/snowfall days as the western part of the state. 

This quantification could be beneficial to NDOT for the purposes of budgetary planning 

among the different maintenance districts. Snowfall day anomalies (Table 4.15) further 

agree with the 2011-12 winter season as the least severe during the period with the largest 

negative anomaly. The snowfall day anomalies would rank the 2007-08 winter season as 

the most severe and the 2009-10 winter season, which observed the largest positive 

anomalies in snow day frequency, would be ranked third behind the 2013-14 winter 

season.  

  The percentage reduction between snow and snowfall days is an important 

statistic for winter maintenance operations (Table 4.16). NDOT personnel state that their  



80 
 

 
 

Table 4.14. District and statewide total snowfall (i.e., accumulation) days. 

 

Snowfall Days 

Winter 
Season 

District 
1 

District 
2 

District 
3 

District 
4 

District 
5 

District 
6 

District 
7 

District 
8 

Statewide 

2006-07 17 21 21 26 41 26 28 24 62 
2007-08 33 36 43 48 57 35 27 30 87 
2008-09 24 31 43 34 45 31 28 21 77 
2009-10 32 38 43 45 49 39 31 28 81 
2010-11 28 37 38 32 51 32 23 38 73 
2011-12 9 14 15 16 30 20 16 14 44 
2012-13 21 25 28 37 50 38 28 30 75 
2013-14 24 35 27 37 61 36 25 23 84 
2014-15 18 22 24 24 44 30 24 21 59 
2015-16 23 28 31 31 42 35 31 33 71 
Decade 
Average 22.9 28.7 31.3 33.0 47.0 32.2 26.1 26.2 71.3 
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Table 4.15. District and statewide snowfall day anomalies. Blue denotes positive 

anomalies and gold denotes negative anomalies. The largest positive anomalies are bold, 

and the largest negative anomalies are italicized. 

 

Snowfall Days Anomalies 

Winter 
Season 

District 
1 

District 
2 

District 
3 

District 
4 

District 
5 

District 
6 

District 
7 

District 
8 

Statewide 

2006-07 -5.9 -7.7 -10.3 -7 -6 -6.2 1.9 -2.2 -9.3 
2007-08 10.1 7.3 11.7 15 10 2.8 0.9 3.8 15.7 
2008-09 1.1 2.3 11.7 1 -2 -1.2 1.9 -5.2 5.7 
2009-10 9.1 9.3 11.7 12 2 6.8 4.9 1.8 9.7 
2010-11 5.1 8.3 6.7 -1 4 -0.2 -3.1 11.8 1.7 
2011-12 -13.9 -14.7 -16.3 -17 -17 -12.2 -10.1 -12.2 -27.3 
2012-13 -1.9 -3.7 -3.3 4 3 5.8 1.9 3.8 3.7 
2013-14 1.1 6.3 -4.3 4 14 3.8 -1.1 -3.2 12.7 
2014-15 -4.9 -6.7 -7.3 -9 -3 -2.2 -2.1 -5.2 -12.3 
2015-16 0.1 -0.7 -0.3 -2 -5 2.8 4.9 6.8 -0.3 
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Table 4.16. District and statewide percent reduction between snow (i.e., precipitation) 

and snowfall (i.e., accumulation) days. 

 

Snow-Snowfall Days Percentage Reduction 

Winter 
Season 

District 
1 

District 
2 

District 
3 

District 
4 

District 
5 

District 
6 

District 
7 

District 
8 

Statewide 

2006-07 52.8 47.5 64.4 50.9 38.8 54.4 33.3 64.2 45.6 
2007-08 45.0 41.0 36.8 38.5 33.7 54.5 47.1 55.2 33.6 
2008-09 50.0 43.6 33.8 46.9 36.6 53.7 39.1 72.0 38.4 
2009-10 46.7 45.7 32.8 44.4 41.7 48.0 49.2 58.2 44.5 
2010-11 42.9 38.3 39.7 39.6 36.3 47.5 46.5 43.3 41.6 
2011-12 67.9 36.4 51.6 54.3 40.0 48.7 40.7 58.8 42.1 
2012-13 58.8 56.9 59.4 41.3 35.1 41.5 36.4 54.5 39.5 
2013-14 42.9 40.7 56.5 47.1 35.1 52.0 51.9 70.1 38.7 
2014-15 45.5 43.6 42.9 41.5 27.9 37.5 33.3 53.3 33.7 
2015-16 37.8 36.4 41.5 29.5 40.8 32.7 27.9 41.1 30.4 
Decade 
Average 48.4 43.5 45.7 43.3 36.6 47.7 41.3 57.8 39.0 
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operations prepare for a forecast threat of snow and deploy once snow begins 

(i.e., operations deploy on snow days). The statewide decadal average percentage 

reduction between snow and snowfall days suggests that 39.0% of the times it snows, the 

snow does not accumulate. From a winter maintenance operations standpoint, this could 

equate to a savings in unnecessary deployment expenses. The statewide percentage 

reduction ranges from 30.4% during the 2015-16 winter season to 45.6% during the 

2006-07 winter season. At the district level, decadal percentage reductions range from 

36.6% in District 5 to 57.8% in District 8. The high variability in these results further 

highlights the need for a winter severity index which captures individual events during 

the winter season rather than a frequency distribution of days with snow falling versus 

accumulating.  

  One final snowfall-based index was to observe the winter seasonal accumulated 

snowfall (Table 4.17). The decadal average statewide snowfall was 42.6 in. (108.2 cm) 

with a range from 24.1 in. (61.2 cm) during the 2011-12 winter season to 60.2 in. 

(152.9 cm) during the 2009-10 winter season. This result aligns with the snow day 

frequency distribution that would suggest the most severe winter season was 2009-10 and 

the least severe was 2011-12. The average decadal snowfall at the district level ranged 

from 30.3 in. (76.9 cm) in District 1 to 68.12 in. (173.0 cm) in District 5. This result also 

aligns with the snow/snowfall day distribution between the eastern and western regions of 

the state. Snowfall anomalies (Table 4.18) illustrate further spatial variability using 

snowfall-based winter severity indices. Statewide, the largest positive anomaly occurred 

during the 2009-10 winter season and the largest negative anomaly occurred during the 

2011-12 winter season. However, at the district level, while large negative anomalies  
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Table 4.17. District and statewide total seasonal snowfall. 

 

Snowfall Accumulation (in.) 

Winter 
Season 

District 
1 

District 
2 

District 
3 

District 
4 

District 
5 

District 
6 

District 
7 

District 
8 

State 
Average 

2006-07 36.6 37.0 32.8 26.0 61.4 46.3 47.7 31.8 40.0 
2007-08 36.5 30.6 46.1 43.2 75.0 38.6 42.7 42.1 44.3 
2008-09 23.1 32.5 46.6 40.1 57.0 40.9 40.4 41.0 40.2 
2009-10 57.7 63.5 63.4 66.7 87.6 60.6 49.9 31.9 60.2 
2010-11 38.5 51.4 54.3 53.0 66.5 53.2 41.4 59.6 52.2 
2011-12 15.6 28.8 21.1 24.9 31.2 23.0 30.8 17.6 24.1 
2012-13 27.2 40.2 37.6 47.9 74.2 51.3 53.6 52.1 48.0 
2013-14 21.7 22.6 24.2 33.5 82.7 40.6 36.4 32.9 36.8 
2014-15 22.8 22.1 26.6 33.9 69.9 27.6 25.1 30.3 32.3 
2015-16 23.0 34.6 59.5 42.6 75.7 47.5 49.4 51.8 48.0 
Decade 
Average 30.3 36.3 41.2 41.2 68.1 43.0 41.7 39.1 42.6 
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Table 4.18. District and statewide snowfall anomalies. Blue denotes positive anomalies 

and gold denotes negative anomalies. The largest positive anomalies are bold, and the 

largest negative anomalies are italicized. 

 

Snowfall Accumulation Anomalies (in.) 

Winter 
Season 

District 
1 

District 
2 

District 
3 

District 
4 

District 
5 

District 
6 

District 
7 

District 
8 

State 
Average 

2006-07 6.3 0.7 -8.4 -15.2 -6.7 3.3 5.9 -7.3 -2.6 
2007-08 6.2 -5.7 4.9 2.0 6.9 -4.4 0.9 3.0 1.7 
2008-09 -7.2 -3.8 5.4 -1.1 -11.1 -2.0 -1.3 1.9 -2.4 
2009-10 27.4 27.2 22.2 25.5 19.5 17.6 8.1 -7.2 17.6 
2010-11 8.2 15.1 13.1 11.8 -1.6 10.2 -0.4 20.5 9.6 
2011-12 -14.7 -7.5 -20.1 -16.3 -36.9 -20.0 -10.9 -21.5 -18.5 
2012-13 -3.1 3.9 -3.6 6.7 6.1 8.3 11.9 13.0 5.4 
2013-14 -8.6 -13.7 -17.0 -7.7 14.6 -2.4 -5.4 -6.2 -5.8 
2014-15 -7.5 -14.2 -14.6 -7.3 1.8 -15.4 -16.7 -8.8 -10.3 
2015-16 -7.3 -1.7 18.3 1.4 7.6 4.5 7.7 12.7 5.4 
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were consistent across all eight districts for the 2011-12 winter season, District 8 

observed a negative anomaly during the 2009-10 winter season while the remainder of 

the districts had large positive anomalies. While the spatial variability in snowfall-based 

indices supports a more robust, event-oriented approach, it also highlights the worthwhile 

consideration of climate (i.e., temperature and precipitation) anomalies across the state 

for the ten-year period as well.  

  In order to consider a longer, climatology-based index, temperature and 

precipitation anomalies were obtained from the NOAA NCEI climate division data 

(ESRL 2017). Nebraska contains eight climate districts which roughly align with 

NDOT’s eight maintenance districts. Due to the lack of a perfect alignment; however, the 

temperature and precipitation anomalies were accumulated across the eight climate 

districts to provide a statewide value for each winter season. These anomalies would 

subsequently be compared with the aforementioned snowfall-based winter severity 

indices and the final NEWINS. 

  For a climate-based index, precipitation and temperature anomalies were obtained 

from the eight climate districts within the state of Nebraska (Figure 3.4) from October 

through April of each winter season and averaged statewide (Table 4.19). For severity 

purposes, the anomalies are ranked and larger positive precipitation anomalies (i.e., more 

snowfall possible) while larger negative temperature anomalies (i.e., colder winter) are 

associated with a higher winter severity. For precipitation anomalies, the 2015-16 winter 

season observed the largest positive anomaly (4.30 in.; 10.92 cm) while the 2014-15 

winter season observed the largest negative anomaly (-2.02 in.; -5.13 cm). From the 

snowfall data, the most severe 2009-10 winter season ranks third in the precipitation  
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Table 4.19. Average statewide decadal temperature and precipitation anomalies. For 

precipitation, blue denotes positive anomalies and gold denotes negative anomalies. For 

temperature, blue denotes negative anomalies (i.e., colder, more severe conditions) and 

gold denotes positive anomalies (i.e., warmer, less severe conditions). The largest 

positive anomalies are bold, and the largest negative anomalies are italicized. 

 
     

Winter Season Precip. 
Anomaly (in.) 

Precip. 
Anomaly 

Rank 

Temp. 
Anomaly (°F) 

Temp. 
Anomaly 

Rank 

2006-2007 2.84 2 0.68 7 
2007-2008 0.74 5 -0.58 3 
2008-2009 1.97 4 0.43 6 
2009-2010 2.71 3 -1.21 2 
2010-2011 -1.57 9 -0.23 4 
2011-2012 -0.10 6 5.18 10 
2012-2013 -1.52 8 -0.16 5 
2013-2014 -1.34 7 -1.46 1 
2014-2015 -2.02 10 1.66 8 
2015-2016 4.30 1 4.57 9 
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anomalies and the least severe 2011-12 winter season ranks sixth in precipitation 

anomalies. These results provide stark contrast to the snowfall-based indices. However, 

while the 2015-16 winter season may have observed an abundance of precipitation, it was 

not in the form of snow. For temperature anomalies, the 2013-14 winter season observed 

the largest negative anomaly (-1.46 ℉; -0.81°C) while the 2011-12 winter season 

observed the largest positive anomaly (5.18℉; 2.88°C). This result agrees with the 

previous ranking of the 2011-12 winter season as the least severe season from the 

snowfall data. The 2009-10 winter season ranks second in the temperature anomalies 

(-1.21℉; -0.67°C) which is more in agreement with the snowfall-based index as well. 

Given the misalignment between climate districts and maintenance districts, it was not 

feasible to conduct a district level anomaly comparison. The snowfall and climate-based 

indices support the use of a hybrid approach which considers snowfall and temperature, 

in addition to other weather variables at the level of individual events.  

  

d.  Nebraska Winter Severity Index (NEWINS) 

The first component of the NEWINS produced a categorical (Table 3.4) frequency 

distribution of classified events statewide and at the district level (Figure 4.7 and 

Tables 4.20-4.28) for each of the ten winter seasons within the study period. Statewide, 

the average number of events was 246.7 (Table 4.20). The 2011-12 winter season had the 

fewest events with 134, and the 2007-08 and 2009-10 winter seasons were tied for the 

most events with 305. From the categorical framework, the distribution of events across 

all winter seasons was right-skewed/tailed (Figure 4.7). Trace (i.e., Category 1) events 

were the most frequent while high (i.e., Category 6) events were rare with several winter  
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Figure 4.7. NEWINS winter season categorical event distribution. 
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Table 4.20. Statewide categorical classification frequency distribution. 

 

Categorical Event Frequency 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 98 51 21 23 10 1 204 
2007-2008 155 85 41 22 2 0 305 
2008-2009 123 88 22 18 6 0 257 
2009-2010 129 96 39 25 13 3 305 
2010-2011 114 92 37 23 11 1 278 
2011-2012 65 35 15 12 7 0 134 
2012-2013 113 74 35 21 13 0 256 
2013-2014 136 80 36 13 2 0 267 
2014-2015 112 54 19 20 2 0 207 
2015-2016 127 67 24 22 12 2 254 

Decade 
Average 

117.2 72.2 28.9 19.9 7.8 0.7 246.7 
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Table 4.21. NDOT District 1 categorical classification frequency distribution. 

 

Categorical Event Frequency District 1 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 6 4 2 4 1 0 17 
2007-2008 22 3 3 5 0 0 33 
2008-2009 15 6 1 2 0 0 24 
2009-2010 13 10 3 3 3 0 32 
2010-2011 13 8 2 5 0 0 28 
2011-2012 3 2 2 2 0 0 9 
2012-2013 12 4 3 1 1 0 21 
2013-2014 16 4 2 2 0 0 24 
2014-2015 11 3 1 3 0 0 18 
2015-2016 12 6 5 0 0 0 23 

Decade 
Average 

12.3 5.0 2.4 2.7 0.5 0.0 22.9 
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Table 4.22. NDOT District 2 categorical classification frequency distribution. 

 

Categorical Event Frequency District 2 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 11 3 1 4 2 0 21 
2007-2008 27 4 2 3 0 0 36 
2008-2009 19 8 2 1 1 0 31 
2009-2010 19 9 3 4 2 1 38 
2010-2011 19 7 8 2 0 1 37 
2011-2012 6 3 1 1 3 0 14 
2012-2013 15 3 2 2 3 0 25 
2013-2014 25 9 0 1 0 0 35 
2014-2015 16 3 2 0 1 0 22 
2015-2016 16 6 1 4 1 0 28 

Decade 
Average 

17.3 5.5 2.2 2.2 1.3 0.2 28.7 
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Table 4.23. NDOT District 3 categorical classification frequency distribution. 

 

Categorical Event Frequency District 3 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 11 3 2 4 1 0 21 
2007-2008 18 17 6 2 0 0 43 
2008-2009 23 15 1 3 1 0 43 
2009-2010 21 14 2 3 2 1 43 
2010-2011 14 17 4 2 1 0 38 
2011-2012 8 3 2 1 1 0 15 
2012-2013 14 6 6 1 1 0 28 
2013-2014 15 9 3 0 0 0 27 
2014-2015 14 6 1 3 0 0 24 
2015-2016 13 7 7 1 2 1 31 

Decade 
Average 

15.1 9.7 3.4 2.0 0.9 0.2 31.3 
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Table 4.24. NDOT District 4 categorical classification frequency distribution. 

 

Categorical Event Frequency District 4 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 16 7 2 0 1 0 26 
2007-2008 30 11 5 1 0 0 47 
2008-2009 16 12 3 2 1 0 34 
2009-2010 22 11 6 4 1 1 45 
2010-2011 12 10 5 3 2 0 32 
2011-2012 9 2 3 1 1 0 16 
2012-2013 19 10 5 2 1 0 37 
2013-2014 21 11 4 1 0 0 37 
2014-2015 11 8 3 2 0 0 24 
2015-2016 15 12 2 0 2 0 31 

Decade 
Average 

17.1 9.4 3.8 1.6 0.9 0.1 32.9 
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Table 4.25. NDOT District 5 categorical classification frequency distribution. 

 

Categorical Event Frequency District 5 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 21 10 5 4 0 1 41 
2007-2008 20 18 14 2 0 0 54 
2008-2009 18 20 3 4 0 0 45 
2009-2010 15 15 11 8 0 0 49 
2010-2011 24 15 7 4 1 0 51 
2011-2012 16 11 1 2 0 0 30 
2012-2013 18 18 10 2 2 0 50 
2013-2014 25 20 11 2 2 0 60 
2014-2015 17 15 7 4 1 0 44 
2015-2016 20 11 2 4 4 1 42 

Decade 
Average 

19.4 15.3 7.1 3.6 1.0 0.2 46.6 
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Table 4.26. NDOT District 6 categorical classification frequency distribution. 

 

Categorical Event Frequency District 6 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 12 5 3 4 2 0 26 
2007-2008 18 12 2 2 1 0 35 
2008-2009 15 8 5 3 0 0 31 
2009-2010 16 15 5 0 3 0 39 
2010-2011 11 11 5 1 3 0 31 
2011-2012 10 7 2 1 0 0 20 
2012-2013 17 13 3 5 0 0 38 
2013-2014 19 9 6 2 0 0 36 
2014-2015 19 7 1 3 0 0 30 
2015-2016 18 11 2 3 1 0 35 

Decade 
Average 

15.5 9.8 3.4 2.4 1.0 0.0 32.1 

 

  



97 
 

 
 

Table 4.27. NDOT District 7 categorical classification frequency distribution. 

 

Categorical Event Frequency District 7 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 10 11 3 1 3 0 28 
2007-2008 7 10 6 4 0 0 27 
2008-2009 11 12 3 1 1 0 28 
2009-2010 10 12 4 3 2 0 31 
2010-2011 7 10 2 2 2 0 23 
2011-2012 6 3 3 2 2 0 16 
2012-2013 9 9 3 5 2 0 28 
2013-2014 8 10 5 2 0 0 25 
2014-2015 15 5 3 1 0 0 24 
2015-2016 19 6 2 2 2 0 31 

Decade 
Average 

10.2 8.8 3.4 2.3 1.4 0.0 26.1 
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Table 4.28. NDOT District 8 categorical classification frequency distribution. 

 

Categorical Event Frequency District 8 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 11 8 3 2 0 0 24 
2007-2008 13 10 3 3 1 0 30 
2008-2009 6 7 4 2 2 0 21 
2009-2010 13 10 5 0 0 0 28 
2010-2011 14 14 4 4 2 0 38 
2011-2012 7 4 1 2 0 0 14 
2012-2013 9 11 3 3 3 0 29 
2013-2014 7 8 5 3 0 0 23 
2014-2015 9 7 1 4 0 0 21 
2015-2016 14 8 3 8 0 0 33 

Decade 
Average 

10.3 8.7 3.2 3.1 0.8 0.0 26.1 
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seasons observing none (Table 4.20). Slight (i.e., Category 3) and enhanced 

(i.e., Category 4) events exhibited higher variability in their frequency distributions. 

Some winter seasons observed more enhanced events than slight (e.g., 2006-07, 2014-15 

winter seasons), where others contained very similar frequencies (e.g., 2008-09, 2011-12, 

and 2015-16 winter seasons) between the two. Given the categorical assignment 

(Table 3.4) and Eq. (1), the middle events are likely to overlap with one another as very 

subtle changes could alter their classification. The extreme events (i.e., trace and high) 

are more distinct from one another and therefore do not exhibit any degree of overlap. 

This is an important caveat to note in both the frequency distribution and eventual final 

NEWINS seasonal values as well. At the district level (Tables 4.21-4.28), District 1 

overall had the fewest events with a decadal average of 22.9 while District 5 had the most 

with a decadal average of 46.6 events. This spatial distribution aligns with the previous 

snowfall-based data (Tables 4.12-4.18).  

  To further confirm the NEWINS storm classification frequency distribution 

beyond comparison with additional snowfall and climate-based indices, an independent 

Delphi-based method was performed with seven new research collaborators who were 

undergraduate and graduate meteorology students. These seven new researchers were 

asked to perform the same manual classification of events that led to the development of 

the NEWINS. The initial NEWINS was based on manual classification of two winter 

seasons. These seven researchers manually classified events across all ten winter seasons 

in the database with multiple iterations. The objective was to ensure consistency in the 

frequency distribution between this new manually classified winter season database and 

the NEWINS winter season database. Further, with a greater number of researchers 
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manually classifying the seasons, it was important to ensure that their individual 

departures from the group mean (Table 4.29) and standard deviations (Table 4.30) were 

minimized, hence the multiple iterations as needed. Overall, the results from the seven 

researchers aligned with those of the NEWINS quite well (Table 4.31). The distributions 

were right-skewed/tailed across all ten winter seasons for the manual classifications. The 

categorical frequency distribution and event classification component of the NEWINS 

builds on the framework in the development of the NESIS (Kocin and Uccellini 2004) 

and LWSS (Cerruti and Decker 2011). Cerruti and Decker (2011) observed a similar 

right-tailed/skewed frequency distribution with higher category (i.e., impact) events 

exhibiting far lower frequencies relative to lower category events. Also, while the 

parameter weights differed between the NEWINS and LWSS, both approaches gave the 

most weight to the snowfall amount parameter. As noted, freezing rain data lacked 

availability through the ten-year study period and was omitted during the development of 

the NEWINS, unlike the LWSS which considered freezing rain events. Future refinement 

of the NEWINS could ensure freezing rain is incorporated into the WSI. These additional 

improvements could also make the NEWINS framework a candidate for NWS 

consideration in its WSSI (WPC 2018). The consistency between these results and the 

literature confirm the NEWINS frequency distribution and its components given the 

similarities to a manual classification with a more numerous, independent set of 

researchers.  

  The final NEWINS was computed via Eq. (2) to provide a single value for each 

winter season statewide and at the NDOT maintenance district level (Figures 4.8-4.9 and 

Table 4.32). The statewide decadal average NEWINS value was 4.77. Based on the  
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Table 4.29. Departures for each researcher from the group average frequency 

distribution. Blue represents overestimates (positive values) where gold represents 

underestimates (negative values). 

        

Winter Season R1 R2 R3 R4 R5 R6 R7 

2006-2007 0.21 -0.50 0.08 0.07 0.39 0.00 -0.17 

2007-2008 0.21 -0.40 0.12 -0.05 0.32 -0.04 -0.19 

2008-2009 0.25 -0.47 0.07 -0.10 0.37 0.01 -0.20 

2009-2010 0.43 0.26 0.12 -0.36 -0.07 -0.07 -0.19 

2010-2011 0.32 -0.67 0.29 -0.11 0.26 0.09 -0.20 

2011-2012 0.40 -0.49 0.07 -0.07 0.34 0.14 -0.07 

2012-2013 0.41 -0.49 0.11 -0.31 0.38 0.13 -0.06 

2013-2014 0.40 -0.46 0.23 -0.28 0.27 0.12 -0.16 

2014-2015 0.44 -0.47 0.24 -0.19 0.43 0.13 -0.05 

2015-2016 0.27 0.26 -0.13 -0.01 -0.03 -0.02 -0.24 
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Table 4.30. Researcher standard deviations for Delphi approach. 

        

Winter Season R1 R2 R3 R4 R5 R6 R7 

2006-2007 0.45 0.66 0.53 0.51 0.61 0.42 0.57 

2007-2008 0.42 0.61 0.51 0.53 0.50 0.37 0.44 

2008-2009 0.44 0.57 0.42 0.55 0.50 0.23 0.45 

2009-2010 0.57 0.55 0.39 0.60 0.40 0.35 0.46 

2010-2011 0.47 0.70 0.61 0.49 0.47 0.37 0.56 

2011-2012 0.49 0.67 0.46 0.44 0.50 0.41 0.52 

2012-2013 0.51 0.61 0.42 0.50 0.50 0.39 0.49 

2013-2014 0.56 0.61 0.49 0.46 0.44 0.36 0.45 

2014-2015 0.54 0.66 0.54 0.46 0.52 0.40 0.40 

2015-2016 0.48 0.52 0.37 0.53 0.32 0.31 0.50 
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Table 4.31. Average categorical classification frequency distribution from seven 

researchers who manually classified each winter season for Delphi approach. 

 

Categorical Event Frequency 

Winter 
Season 

Trace 
(1) 

Marginal 
(2) 

Slight  
(3) 

Enhanced 
(4) 

Moderate 
(5) 

High  
(6) 

Total 

2006-2007 97 56 28 11 12 0 204 
2007-2008 159 103 38 7 2 0 309 
2008-2009 131 87 22 10 6 1 257 
2009-2010 151 79 40 17 6 12 305 
2010-2011 122 105 33 9 10 0 279 
2011-2012 76 34 11 8 3 2 134 
2012-2013 133 72 28 10 12 2 257 
2013-2014 155 83 24 4 2 0 268 
2014-2015 120 57 19 8 2 1 207 
2015-2016 136 59 29 15 6 9 254 

Decade 
Average 

128 73.5 27.2 9.9 6.1 2.7 247.4 
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Figure 4.8. NEWINS winter season values with decadal average (black dashed line). 
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Figure 4.9. NEWINS winter season values with each district’s contribution. 
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Table 4.32. NEWINS district and statewide seasonal values. 

 

NEWINS Values 

Winter 
Season 

District 
1 

District 
2 

District 
3 

District 
4 

District 
5 

District 
6 

District 
7 

District 
8 

Statewide 

2006-07 0.44 0.46 0.43 0.43 0.74 0.56 0.58 0.43 4.08 
2007-08 0.59 0.58 0.79 0.72 1.02 0.58 0.60 0.60 5.47 
2008-09 0.41 0.53 0.78 0.63 0.84 0.58 0.56 0.54 4.87 
2009-10 0.69 0.81 0.88 0.88 1.11 0.76 0.66 0.53 6.33 
2010-11 0.56 0.75 0.79 0.69 0.98 0.70 0.55 0.83 5.84 
2011-12 0.19 0.33 0.29 0.30 0.46 0.32 0.35 0.24 2.49 
2012-13 0.38 0.48 0.52 0.68 1.00 0.71 0.65 0.65 5.07 
2013-14 0.42 0.54 0.46 0.63 1.15 0.66 0.55 0.51 4.93 
2014-15 0.36 0.38 0.46 0.49 0.88 0.49 0.42 0.45 3.92 
2015-16 0.38 0.51 0.66 0.55 0.84 0.60 0.55 0.66 4.73 
Decade 
Average 

0.44 0.54 0.61 0.60 0.90 0.60 0.55 0.54 4.77 
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NEWINS values, the least severe winter season was 2011-12 with a value of 2.49 while 

the most severe winter season was 2009-10 with a value of 6.33 (Figure 4.8 and 

Table 4.32). These results generally align with the snowfall-based winter severity indices. 

At the district level, the NEWINS value summed across all districts would yield the 

statewide value. District 1 has the smallest contribution on average for the decade (0.44) 

while District 5 has the largest contribution for the decade (0.90) of any one single 

district (Table 4.32). This result is to be expected given the relative differences in event 

frequency and snow/snowfall days between the eastern and western parts of the state. A 

more detailed consideration of the district level NEWINS values also reveals that while 

the 2009-10 winter season was the most severe for the entire state, individual districts’ 

most severe winter seasons can be different. For example, District 8’s most severe was 

the 2010-11 winter season with an NEWINS value of 0.83 (Figure 4.9 and Table 4.32). 

Similar differences between districts were observed in the snowfall-based winter severity 

indices and it is important that the NEWINS also be able to capture the same level of 

variability to be reliable. Moreover, this result further highlights the challenge and 

difficulty of representing an entire state’s winter season with a single severity index 

value.  

  The advantages of the NEWINS become more apparent when the NEWINS 

anomalies (Figure 4.10) are compared with the aforementioned snowfall-based and 

climate-based index anomalies ranked from most severe to least severe for each 

respective index (Tables 4.33-4.34). For the snowfall-based anomalies (i.e., snowfall 

amounts, snow days and snowfall days), there is fair agreement that the 2011-12 winter 

season was the least severe in the decade and the 2009-10 winter season was the most  



108 
 

 
 

 

Figure 4.10. NEWINS winter season anomalies with positive (blue) and negative (red). 
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severe in the decade. The exception is that for the snowfall days anomaly, the 2009-10 

winter season is ranked as the third most severe winter season. While there is less 

consistency on the rank of each winter season’s severity, there is fair agreement between 

the cutoff threshold between positive (i.e., more severe) and negative (i.e., less severe) 

anomalies for each winter season. The exception to this is with the snowfall anomalies, 

particularly during the 2015-16 winter season which did have a positive snowfall 

anomaly (ranked third most severe) but average (i.e., zero anomaly) NEWINS, snow day 

and snowfall day anomalies (ranked seventh or eighth most severe).  

  As suggested from the frequency distributions, while there is consistency among 

the least and most severe winter seasons between the NEWINS and snowfall-based 

anomalies, the greatest variability is in the middle where subtle differences in the 

variables of interest can influence the rank of the winter seasons. While the NEWINS and 

snowfall-based anomalies both exhibit this intermediate variability, one advantage is that 

the NEWINS considers additional variables (Table 3.6) and not simply event frequency 

or snowfall amounts exclusively. For the climate-based index anomalies (Table 4.34), 

temperature anomalies also exhibited a clear cut-off between negative (i.e., more severe 

in the case of temperature) and positive (i.e., less severe in the case of temperature) 

anomalies for the corresponding NEWINS anomalies. The precipitation anomalies, 

though, did not exhibit any clear pattern that was in line with the observed NEWINS or 

snowfall anomalies. A reason for this is that precipitation anomalies consider both liquid 

and frozen precipitation; however, the NEWINS and other approaches are only interested 

in the frozen precipitation. A “wet” or “dry” winter season from the climatological 

precipitation standpoint can be very different than a “snowy” winter.   
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e. NEWINS Storm Classification Cluster Analysis 

A K-means cluster analysis was performed to further illustrate the separation of 

individual variables within the NEWINS storm classifications and to strengthen results of 

the NEWINS. K-means is one of the most widely applied clustering algorithms (Kanungo 

et al. 2002; Jain 2010). K-means is well-applicable in situations when all the attributes 

are quantitative, the dissimilarity measure is the squared Euclidean distance (Hastie et al. 

2009), and there is an adequate knowledge about the number of clusters (Pena et al. 

1999). Being a prototype-based method, K-means would develop clusters in which each 

observation is closer to its prototype (i.e., average or centroid with quantitative variables) 

than to the prototypes of other clusters (Zhang et al. 2005). K-means works as follows: 

(1) select K points randomly as the initial cluster centroids, (2) assign each observation to 

the closest centroid and form K clusters such that the within-cluster sum of squares is at 

its minimum, (3) calculate the new centroids and assign the observations to their closest 

centroids with, again, the goal of minimizing the within-cluster sum of squares, and (4) 

repeat steps 2 and 3 until centroids and consequently cluster assignments remain 

unchanged or until only 1% of points change clusters. It is apparent from the algorithm 

that the final clusters are sensitive to the selection of the initial centroids. While there are 

many methods to select the initial points, this study would rely on the results of Pena et 

al. (1999) and choose the initial points randomly. The R function kmeans() from the stats 

package was used for the analysis. This function applies a method introduced by Hartigan 

and Wong (1979). Given the six-category framework of the NEWINS, six clusters were 

selected to perform the K-means cluster analysis using the seven weather variables. The 

seven weather variables were standardized via the scale() R function which centers each 
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column with its mean and then scales by dividing each column by its standard deviation. 

The identified clusters were subsequently compared to the storm classification 

assignment. 

  Cluster numbers were assigned to match NEWINS storm classification categories 

(e.g., Cluster 1 represents Category 1, Cluster 2 represents Category 2, etc.). From 

consideration of the centroid distribution for each weather variable among the clusters 

(Table 4.35), reasonable alignment with the NEWINS classifications can be seen. For 

example, the centroid for duration is highest in Cluster 6 and lowest in Cluster 5. Air 

temperature is coldest in Clusters 2 and 4 and similar in the remaining four clusters. Wind 

speeds are highest in Cluster 3. Visibilities are lowest in Cluster 6 and highest in 

Cluster 2. Snowfall amount and rate are both maximized in Cluster 6. Last, district area is 

high in both Clusters 4 and 6. 

  From the consideration of variable centroids among the clusters, the clusters can 

be defined in terms of the NEWINS storm classifications.  Cluster 1 contains the lowest 

wind speeds, low snowfall amounts, short durations, moderate air temperature, low to 

mid-range visibility, and small district area which would likely be associated with 

Category 1 events. Cluster 2 contains low snowfall amount with high visibility, short 

durations, and some of the coldest temperatures which would likely align with Category 2 

events. Cluster 3 contains the highest wind speeds and air temperatures, second lowest 

average visibility; however, snowfall amount and rate are not as impressive in other 

clusters likely associating these with Category 3 events. Cluster 4 contains mid to long 

duration, the coldest temperatures, low wind speeds, medium snowfall with low snow 

rates and the largest district area which would align with Category 4 events. Cluster 5  
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Table 4.35. Cluster analysis centroid for each weather variable. 

  

  

 Cluster Number 

Variable 1 2 3 4 5 6 
Duration (hr.) 3.70 3.88 5.40 9.14 2.34 13.23 
Air Temperature 
(°F) 

26.35 18.93 27.39 18.25 27.36 24.19 

Wind Speed (mph) 8.43 11.25 21.94 11.43 14.54 15.68 
Visibility (mi.) 2.75 5.87 2.48 2.98 3.08 1.91 
Snow Fall (in.) 0.73 0.46 1.00 1.52 2.30 4.94 
Snow Rate 
(in. hr-1) 0.23 0.16 0.22 0.19 1.21 0.44 
District Area 
(Fraction Area) 

0.37 0.38 0.48 0.85 0.39 0.81 
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contained the highest snow rates, second highest average snowfall amounts, short 

duration, high temperature (second highest average), mid-range wind speed and visibility 

likely associating these with Category 5 events. Last, Cluster 6 represents the most severe 

Category 6 events with the highest snow amount, longest average duration, lowest 

visibility, mid-range to high wind speed, high snow rate, and the second highest district 

area. 

  From a cluster-based distribution of the NEWINS storm classifications 

(Table 4.36) Cluster 6 contains the highest number of Category 4, 5 and 6 events 

providing further evidence that this cluster contains the most severe, (i.e., high impact) 

storms. Cluster 5 contains the second highest number of combined Category 4 and 5 

storms suggesting that these are the second most severe (i.e., moderate impact) storms. 

The remaining clusters and storm classifications exhibit overlap; however, Cluster 1 

contains the highest number of Category 1 events likely associating this with the least 

severe (i.e., trace impact) events while Cluster 2, having few events above Category 2 is 

likely associated with these marginal impact events. From the observed distribution, 

Cluster 4 events are likely slightly more severe than Cluster 3 events, which suggests 

these two clusters are associated with Category 4 (i.e., enhanced) and Category 3 

(i.e., slight) events, respectively. The results show overlap among the variables and 

categorical assignment which underscores the difficulty in defining an event in a single 

category; however, the results also indicate there are similarities among the clusters and 

event classifications. Future inclusion of winter maintenance operations data may allow 

for increased separation of events among the clusters, though the cluster analysis does 

show reasonable separation among the events with expected high variability in the  
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Table 4.36. Cluster analysis centroid for each weather variable. 

 

Storm Classification Category 

Cluster 
Number 

1 2 3 4 5 6 

1 449 170 31 5 0 0 
2 316 38 4 1 0 0 
3 249 164 60 7 0 0 
4 153 287 147 37 0 0 
5 5 62 37 34 8 0 
6 0 1 10 115 70 7 
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intermediate ones where subtle differences can modify categorical classification. 

The same variability was observed in the manual event classifications as well.  

 

f. NEWINS 2015-16 Winter Season Maintenance Performance Comparison 

  NDOT’s performance objective for its winter maintenance operations is to 

maintain traffic speeds along the Interstate 80 corridor at or above 65 mph (29.1 m s-1) 

for both directions (i.e., eastbound and westbound) within six hours of the precipitation 

ending (NDOT 2016, personal communication). The 2015-16 winter season NDOT 

performance data was available for 15 events throughout the state (Table 4.37). Of these 

15 events, seven resulted in the performance objective not being met. Reasons for the 

performance objective not being met range from truly severe weather conditions to 

vehicular crashes and necessary road closures. Their performance data for the 2015-16 

winter season was related to the individual NEWINS storm classifications for each of the 

Interstate 80 districts (Table 4.37). The results show that, in general, the performance 

objective was met for lower impact Category 1-3 events (e.g., 16 November 2015, 

16 January 2016), but not for higher impact Category 4-6 events (e.g., 15 December 

2015, 1 February 2016). Some important caveats were identified in this comparison 

analysis. First, NDOT’s event definition is based on precipitation that causes a 

maintenance response (e.g., wet snow, freezing rain, potential for icy roads) regardless of 

the final snowfall accumulation (NDOT 2016, personal communication). Given that the 

NEWINS only considers events with accumulated snowfall, this results in events 

included in NDOT’s maintenance database that are missing from the NEWINS database 

(e.g., “NA” on 16 November 2015; Table 4.37). Future alignment of event definitions is  
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Table 4.37. Interstate 80 corridor district-level 2015-16 winter maintenance performance 

evaluation. NDOT’s event criteria (i.e., green and red boxes) was precipitation that 

resulted in maintenance activity (NDOT 2016, personal communication). Green boxes 

indicate where the performance objective was met. Red boxes indicate where the 

performance objective was not met. The numbers within the boxes represent the 2015-16 

winter season NEWINS storm classification and “NA” denotes the storm failed NEWINS 

criteria. This could be due to several reasons; for example, lack of accumulation (i.e., 

snow days versus snowfall days), snow melted before observation time, or freezing rain 

events which were omitted from the NEWINS.  

      

Storm Date District 5 District 6 District 4 District 1 District 2 

11/10/2015 2 - - - - 

11/16/2015 1 1 NA NA NA 

11/17/2015 - - - NA - 

11/26/2015 1 NA 2 NA 1 

11/29/2015 - 2 - - 3 

12/1/2015 - - 1 - - 

12/12/2015 2 1 1 1 2 

12/15/2015 6 4 2 - - 

12/22/2015 NA 1 - 2 1 

12/25/2015 5 2 1 3 4 

12/29/2015 - - 1 1 1 

1/7/2015 - - 2 1 2 

1/16/2016 1 - 1 - - 

1/18/2016 - - - 1 2 

2/1/2016 4 5 5 3 4 
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necessary to improve the usefulness of the NEWINS. An additional caveat is that some 

low events result in performance objectives not being met (e.g., 26 November 2015, 

District 5). Upon discussion with NDOT, it was revealed that this was due to the 

Wyoming DOT closing its roads due to significantly worse weather conditions creating a 

backup of traffic into Nebraska (NDOT 2016, personal communication). This is an 

important consideration as the NEWINS is a pure meteorological index and does not 

consider transportation-related incidents (e.g., road closures, highway crashes). NEWINS 

did exhibit skill in identifying higher impact/severity storms associated with more 

numerous road instances of road closures.  

 

g. NEWINS 2016-17 Winter Season Application 

  The 2016-17 winter season NEWINS was computed to provide further validation 

and verification of the methods. From a categorical frequency distribution perspective 

(Figure 4.11), the 2016-17 winter season was very similar to the 2011-12 winter season 

(Figure 4.7). Both winter seasons had a relatively low number of events. Consideration of 

the statewide and district NEWINS values (Figures 4.12 and 4.13) shows that 2016-17 

was well below average and rivaled the 2011-12 winter season for the lowest severity. 

Last, consideration of the NEWINS anomalies (Figure 4.14) provides further 

confirmation of the 2016-17 winter season’s place as the second least severe winter after 

the 2011-12 winter season. An important consideration regarding the addition of a new 

winter season is whether or not the average NEWINS value should be fixed based on the 

decadal period or adjusted to accommodate additional winter seasons. In the decadal 

anomalies (Figure 4.10), the 2015-16 winter season is slightly below average; however,  
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Figure 4.11. NEWINS 2016-2017 winter season categorical event distribution. 
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Figure 4.12. NEWINS winter season values with decadal (i.e., 2006-2016) average 

(black dashed line). 
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Figure 4.13. NEWINS winter season values with each district’s contribution. 

  



123 
 

 
 

 

Figure 4.14. NEWINS winter season anomalies based on 11-year average with positive 

(blue) and negative (red). 
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when considering the 11-year anomalies with an adjusted average, the 2015-16 winter 

season is slightly above average (Figure 4.14). This discrepancy is also apparent when 

considering a snowfall accumulation-based index and comparing decadal versus 11-year 

averages (Table 4.38). To prevent such variation as more winter seasons are incorporated 

into the NEWINS, it is recommended that the decadal average be fixed, and subsequent 

winter seasons compared to it. Only after an additional decade has passed should the 

average be considered based upon either the new decade or the entire two-decade period.  

  The snowfall accumulation-based index also yields an interesting result when 

comparing the least and greatest amounts at the district level. For the 2016-17 winter 

season, Districts 1, 2, 4 and 7 observed their least snowfall amounts in the 11-year period. 

Districts 3, 5, 6, 8 and the entire state, though, observed the least snowfall amounts 

during the 2011-12 winter season which has previously been identified as the least 

severe. District 8, however, had its highest seasonal snowfall amount during the 2016-17 

winter season while all other districts observed markedly lower amounts (Table 4.38). 

This is also apparent in the district NEWINS values where District 8 has a larger 

contribution to the overall severity during the 2016-17 winter season (Figure 4.13). This 

finding further supports the use of the NEWINS in lieu of snowfall-based indices given 

such high variability in seasonal meteorological conditions that must be captured.  
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Table 4.38. Decadal and 11-year district and statewide total snowfall. 

  

Snowfall Accumulation (in.) 

Winter 
Season 

District 
1 

District 
2 

District 
3 

District 
4 

District 
5 

District 
6 

District 
7 

District 
8 

State 
Average 

2006-07 36.6 37.0 32.8 26.0 61.4 46.3 47.7 31.8 40.0 
2007-08 36.5 30.6 46.1 43.2 75.0 38.6 42.7 42.1 44.3 
2008-09 23.1 32.5 46.6 40.1 57.0 40.9 40.4 41.0 40.2 
2009-10 57.7 63.5 63.4 66.7 87.6 60.6 49.9 31.9 60.2 
2010-11 38.5 51.4 54.3 53.0 66.5 53.2 41.4 59.6 52.2 
2011-12 15.6 28.8 21.1 24.9 31.2 23.0 30.8 17.6 24.1 
2012-13 27.2 40.2 37.6 47.9 74.2 51.3 53.6 52.1 48.0 
2013-14 21.7 22.6 24.2 33.5 82.7 40.6 36.4 32.9 36.8 
2014-15 22.8 22.1 26.6 33.9 69.9 27.6 25.1 30.3 32.3 
2015-16 23.0 34.6 59.5 42.6 75.7 47.5 49.4 51.8 48.0 
2016-17 8.5 15.0 34.6 12.7 54.1 29.4 18.4 61.6 29.3 
Decade 
Average 30.3 36.3 41.2 41.2 68.1 43.0 41.7 39.1 42.6 
11-Year 
Average 28.3 34.4 40.6 38.6 66.8 41.7 39.6 41.2 41.4 
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5. Summary and Conclusion 

The winter severity index developed specifically for NDOT is known as the 

NEWINS. The NEWINS serves an integral role in providing an independent, 

meteorological baseline for ten winter seasons beginning in July 2006 through June 2016 

for the state of Nebraska. Further, through the development of the NEWINS, a winter 

event categorical classification framework was developed. This classification framework 

allowed for a weighted linear combination of seven key weather variables to create a 

frequency distribution of events for each winter season. This frequency distribution 

ultimately resulted in the final seasonal NEWINS value. The NEWINS values were also 

compared alongside snowfall-based and climate-based index approaches.  

  A literature review and survey results highlight best practices for state DOTs 

regarding their needs, sources, perceptions, and use of weather information in addition to 

the existence and application of WSIs. The survey results highlight the need for a 

continuous close partnership between the transportation community and the weather 

enterprise to ensure forecast accuracy and WSIs are always refined, tailored to the needs 

of the end-user and caveats communicated. State DOTs rely on weather information 

typically in advance of a storm for preparation purposes, while tactical weather 

information during/after a storm is generally of lesser importance. These findings 

advocate for future research to focus on the forecasting aspect and allow WSIs to have 

predictive capabilities. 

  Consideration of the annual distribution of days with observed snowfall 

(i.e., snow days) versus days with observed snowfall accumulation (i.e., snowfall days) 

revealed an average 39% reduction between the two for the ten-year period. These results 
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also revealed that the western part of Nebraska receives twice as many days with 

snowfall compared to the eastern part of the state. From a snowfall accumulation 

perspective, the western part of Nebraska receives more than twice the amount of 

snowfall as the eastern part. A consideration of snow day, snowfall day and snowfall 

amount anomalies underscore the spatial and temporal variability that the NEWINS must 

consider. The snow data (i.e., days and amount) suggest the 2011-12 winter season was 

the least severe compared to the 2009-10 winter season which was the most severe.  

  Climatological liquid precipitation and temperature anomalies provided an 

additional context for the NEWINS results. Liquid precipitation anomalies were not well 

aligned with the snow anomalies and NEWINS results, likely due to the combination of 

both rain and snow events in precipitation data. The temperature anomalies showed better 

alignment with the snow data and NEWINS results, including a clear separation between 

positive and negative anomalies when compared to different winter season severities.  

  The NEWINS results highlight the 2011-12 winter season as the least severe and 

the 2009-10 winter season as the most severe during the study period. These two winter 

seasons were also identified similarly by the other index measures. The NEWINS also 

highlights the spatial differences in winter severity, especially between eastern and 

western regions of Nebraska. More substantial differences and inconsistency arose 

between the NEWINS and other (i.e., snowfall-based and climate-based) index 

approaches during the intermediate winter seasons where subtle differences could alter a 

particular season’s ranking. Inclusion of the 2016-17 winter season identified important 

considerations for an overall average, or baseline, NEWINS value. A fixed average 

NEWINS ensures that the inclusion of future winter seasons (e.g., 2016-17) does not 



128 
 

 
 

influence the anomalies of existing winter seasons (e.g., 2015-16). The average should 

only be adjusted upon the addition of several (e.g., five to ten) new winter seasons.  

  The overall strengths of the NEWINS are that it 1) considers a wide range of 

surface, ASOS-based meteorological variables, 2) incorporates a categorical frequency 

distribution framework related to weather impacts on road conditions and winter 

maintenance operations, 3) is robust and flexible enough to be computed easily at the 

statewide and district levels, 4) can be continuously and easily modified to include 

additional parameters such as freezing rain and road temperature, and 5) can be easily 

correlated to available transportation data (e.g., traffic speeds, winter maintenance 

operations costs) once available.  

  The benefits of the NEWINS are that it allows NDOT to assess the performance 

of its winter maintenance operations activities, resource allocations and other expenses 

with respect to the severity, or magnitude, of each winter season. NDOT’s goal is to 

efficiently maintain safety and mobility for the public and commercial transportation 

interests. This information can be used to increase efficiency in resource allocation and 

maintenance operations, in addition to the identification of conditions which would 

prompt the need for increases or reductions in assets. Further, the NEWINS considers 

multiple weather variables across spatiotemporal scales to provide the best resolution of 

true winter severity in a framework that can be tailored to the end-user needs. Moreover, 

it is flexible and robust enough to be transferred to other regions and applications 

(e.g., modification of variables and weight sensitivity for different industries). 

  Future avenues for research include adding a predictive, forecasting value to the 

NEWINS so that it can be used as a planning tool in addition to a post-winter season 
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assessment. To this end, machine and deep learning algorithms can take advantage of the 

categorical frequency distribution framework component of the NEWINS for future 

studies. Additional prospects for the NEWINS include correlation to more robust winter 

maintenance operations data such as salt usage, personnel hours, lane miles plowed, crash 

data or costs. To accomplish this, the NEWINS could be tailored to specific locations 

and/or road segments for more meaningful correlation with maintenance data. Given the 

present lack of freezing rain data in the NEWINS framework, further work could include 

incorporation of these data to allow for consideration of all winter weather precipitation 

types. Last, the NEWINS framework can be adaptive to provide meteorological guidance 

for diverse sectors (e.g., renewable energy, agriculture) and end-users (e.g., insurance 

adjusters, weather derivative traders) to quantify their exposure and sensitivity to 

atmospheric conditions.   
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APPENDIX A: Weather-Related Initial Survey Questions 

 

 

 

 

1. Please rate each of the following weather variables based on the importance for 

winter maintenance operations. 

Weather Variable Not Important         Moderately Important         Very Important Do not 

know 
1 2 3 4 5 

Snowfall O O O O O O 

Air 

Temperature 

O O O O O O 

Road 

Temperature 

O O O O O O 

Wind O O O O O O 

Blowing/drifting O O O O O O 

Freezing Rain O O O O O O 

Other (Please 

specify) 

 ___________ 

O O O O O O 
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2. How do you obtain your weather forecast at different stages of a storm? (Please check 

all that apply) 

Weather 

Information Source 
Before Storm 

During Storm 

(While 

Snowing) 

Post-Storm Not Used 

The Weather 

Channel 

    

National Weather 

Service 

    

Local TV / Radio     

Newspaper     

Mobile Application 

on Smartphone or 

Tablet 

    

Private Weather 

Consulting 

Company 

    

Maintenance 

Decision Support 

System 

    

Internal 

Meteorologist on 

Staff 

    

Other (Please 

specify) 

 ___________ 
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3. Please rate each of the following weather variables based on your perception of 

forecast accuracy. 

 

Weather Variable Not Accurate                    Moderately Accurate                        Very Accurate 

1 2 3 4 5 

Snow 

Occurrence 

O O O O O 

Snow Amount      

Air 

Temperature 

O O O O O 

Road 

Temperature 

O O O O O 

Wind O O O O O 

Blowing/drifting O O O O O 

Freezing Rain O O O O O 

Other (Please 

specify) 

 ___________ 

O O O O O 

 

4. What weather information triggers your preparation (including pre-treatment) for a 

storm? (Please check all that apply) 

  Any forecast threat of snow 

  Forecast for specific amount of snow (If selected, please specify amount) 

________ 

  Forecast for other specific weather conditions (e.g., high winds, if selected please 

specify conditions) ____________ 

  Wait until snow begins 

  Others (please specify) ______________ 

 

5. How far in advance does the weather forecast influence your decision-making for 

winter maintenance operations? 

O Less than 1 day 

O 1 day 

O 2 days 

O 3 days 

O 4 days 

O 5 days 

O 6-7 days 

O More than 1 week 

O Others (please specify) ______________ 



141 
 

 
 

6. Does your agency pre-treat the roads (e.g., brine)?   

O Yes 

O No 

 

7. What triggers deployment activities for a storm (e.g., plowing, material spreading 

excluding pre-treatment)? (Please check all that apply) 

  Snowfall begins 

  Certain amount of snowfall accumulation on road surface (If selected, please 

specify amount) ________ 

  Snowfall expected to begin within a particular time frame (If selected, please 

specify time frame) __________ 

  Accident reports 

  Request from law enforcement 

  Others (please specify) ______________ 

 

8. Does your agency use a winter severity index (WSI) for winter maintenance 

operations?   

O Yes 

O No 

 

a. If yes, please rate how well you feel the WSI accurately captures what 

happened?    

Level of 

Accuracy 

Not Accurate                    Moderately Accurate                        Very Accurate 

1 2 3 4 5 

Winter Severity 

Index 

O O O O O 

 

b. If you are not using a WSI, would you be interested in developing a WSI to 

support your winter maintenance operations?    

O Yes 

O No 

 

9. Are you willing to be contacted to provide follow-up information? 

O Yes 

O No   
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APPENDIX B: Weather and Winter Severity Index Follow-up Survey Questions 

 

 

 

 

1. What factors account for the accuracy of your agency’s WSI? 

__________________________________________________________________ 

__________________________________________________________________ 

 

2. What factors account for the inaccuracy / error of your agency’s WSI? 

__________________________________________________________________ 

__________________________________________________________________ 

 

3. Who developed your WSI? 

O Internal staff 

O Private weather consultant(s) 

O University research collaboration 

O Use pre-existing WSI 

O Others (please specify) ______________ 

 

4. At what time scale is your WSI computed? 

O Hourly 

O Daily 

O Weekly 

O Monthly 

O Seasonal 

O Annual 

O Others (please specify) ______________ 

 

5. At what spatial scale is your WSI computed?    

O Sensor Location 

O Road Segment 

O City 

O County 

O District 

O Statewide 

O Others (please specify) ______________ 

 

6. What do you believe would improve your agency’s WSI? 

__________________________________________________________________ 

__________________________________________________________________ 
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7. Please rank each of the following, from 1 = most important, how your agency uses its 

WSI? 

_ __Budget planning and forecasting 

_ __Previous budget justification 

_ __Expense verification 

_ __Performance improvement 

_ __Others (please specify) ______________ 

_  

8. Please explain how often your agency uses its WSI? 

_____________________________________________________________________ 

_____________________________________________________________________ 

  

9. Suppose the following seven (7) weather variables are possible in your agency’s WSI. 

Please rank each of the following, from 1 = most important to 7 = least important.  

_ __Snow duration 

_ __Snow amount 

_ __Snow intensity 

_ __Area receiving snowfall 

_ __Air temperature 

_ __Wind speed 

_ __Visibility 

_  

10. Please indicate which weather parameters are included in your WSI, or if they are not 

used. 

Weather Parameter 
Winter 

Severity Index 
Not Used 

Air Temperature   

Road Temperature   

Wind   

Freezing Rain   

Snow Amount   

Snow Frequency   

Snow Amount   

Blowing / Drifting   

Other (Specify)   

 

 

a. Which additional weather parameters would you like to see included in your 

WSI?  

_____________________________________________________________________ 

_____________________________________________________________________ 
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11. Please upload a copy of your agency’s WSI documentation or provide a current 

reference so we can obtain your documentation.  
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