APPENDIX H NOMOGRAPHS AND CHARTS FOR STORM SEWER DESIGN

Exhibit H.1	Flow for Circular Pipe Flowing Full Based on Manning's Equation	Н-3
Exhibit H.2	Nomograph for Computing Required Size of Circular Pipe Flowing Full N=0.012 (Concrete or n=0.014 (Clay)	.H-4
Exhibit H.3	Nomograph for Computing Required Size of Circular Pipe Flowing Full N=0.024 (CMP)	.H-5
Exhibit H.4	Manning's Formula for Flow in Circular Pipe Flowing Full	.H-6
Exhibit H.5	Critical Depth of Flow for Circular Conduits	
	N=0.012 (Concrete or n=0.024 (Corrugated Metal)	.H-7
Exhibit H.6	Hydraulic Elements Chart	.H-8
Exhibit H.7	Loss in Junction Due to Change in Direction of Flow in Lateral	.H-9

This Page Left Intentionally Blank

Exhibit H.2 Nomograph for Computing Required Size of Circular Pipe Flowing Full n=0.012 (Concrete) or n=0.014 (Clay)

Exhibit H.3 Nomograph for Computing Required Size of Circular Pipe Flowing Full N=0.024 (CMP)

Exhibit H.4 Manning's Formula for Flow in Circular Pipe Flowing Full (Source: Reference H.2)

August 2006 Page H-7

Exhibit H.5 Critical Depth of Flow for Circular Conduits N=0.012 (Concrete) or n=0.024 (Corrugated Metal)

Exhibit H.6 Hydraulic Elements Chart (Source: Reference H.3) NDOT – Drainage Design and Erosion Control Manual Appendix H: Nomographs and Charts for Storm Sewer Design August 2006 Page H-9

Exhibit H.7 Loss in Junction Due to Change in Direction of Flow in Lateral (Source: Reference H.2)

REFERENCES

- H.1 American Concrete Pipe Association. (<u>http://www.concrete-</u> pipe.org/index.php?cp_Session=805edca166f308d21f57c53735e572af)
- H.2 U.S. Department of Transportation, Federal Highway Administration, <u>Drainage of</u> <u>Highway Pavements</u>, Hydraulic Engineering Circular (HEC) 12, FHWA-TS-84-202, 1984. (<u>https://www.fhwa.dot.gov/engineering/hydraulics/pubs/hec/hec12.pdf</u>)
- H.3 American Society of Civil Engineers, <u>Design and Construction of Sanitary and Storm</u> <u>Sewers</u>, Manuals and Reports on Engineering Practice - No. 37, 1979 Edition.