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Executive Summary  

 

 This report documents a study of active traffic management on an urban freeway system 

in Omaha, Nebraska. The objective of this study was twofold: (1) evaluate the benefits and costs 

of ramp metering in terms of alleviating traffic congestion and reducing delay and crash risk and 

(2) report the feasibility of crash risk estimation and prediction using real-time speed information.  

This study demonstrates a systematic way to use multiple data sources for traffic 

condition monitoring and operations decision support. A comprehensive database was built by 

integrating traffic speed data from radar sensors, weather information from roadside weather 

stations, and crash reports from the police department. An automatic data visualization program 

was created to easily display traffic conditions with archived speed data in multiple time 

intervals and distance ranges. Various traffic performance measures were developed to help 

understand the traffic conditions across different road segments or different time periods and to 

identify bottlenecks in the urban freeway network. The data visualization program can also be 

used with a real-time data feed to monitor and analyze current traffic conditions.  

 With the comprehensive database, this study performed two levels of analysis for crash 

risk assessment. The aggregate-level analysis was used to identify the crash contributing factors. 

Statistical hypothesis tests were used to examine the relationships between crash occurrence and 

potential contributing factors such as traffic speed and weather conditions (e.g., precipitation). A 

binomial probit model was built and a sensitivity analysis was conducted to quantify the impacts 

of the crash contributing factors. The model found that a one mile per hour increase in traffic 

speed is associated with 7.5% decrease in crash risk.  

 A comprehensive analysis of five urban freeway segments was also performed. A 6.3 

mile long segment on I-80 eastbound near the downtown area was identified as a bottleneck. 

This segment was used as a study subject for implementing ramp metering strategy. A cost-

benefit analysis focusing on the impact of ramp metering on travel time and crash risk indicated 

that the ramp metering strategy was cost-effective.  

 The crash risk estimation and prediction models used disaggregate-level analysis. 

Multiple data mining methods were applied and compared. Related issues were considered, 

including attribute selection, sampling, ensemble learning, and performance metrics. The 

disaggregate-level analysis showed that using a combination of speed data from a series of time 

intervals for both the upstream and downstream segments and the target road segment can 

capture the details of traffic conditions and predict crash risk reasonably well. Also, it is possible 

to increase the buffer time to improve the reaction time of operations by moving the time 

window earlier. However, as a trade-off to acquiring more time to respond, the model prediction 

accuracy could degenerate. 

Some good insights can be drawn from this study. The integrated database, data 

processing platform, and data visualization methods developed in this study were found to be 

very helpful for understanding the traffic problem from a comprehensive perspective. The 

proposed real-time crash prediction mechanism is ready for real-world implementation in 

subsequent phases of the study.  
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1. Introduction 

 

While traffic congestion tends to increase continuously, the growth of transportation 

infrastructures is limited by the availability of financial and land resources, especially in urban 

areas. This has led to the use of intelligent transportation systems (ITS) to efficiently manage the 

existing capacities of transportation systems. Active traffic management (ATM) is a method of 

smoothing traffic flows on busy urban freeway segments based on real-time traffic conditions so 

that better traffic system performance can be achieved. ATM is different from the conventional 

passive traffic management because ATM can actively respond to traffic, weather, and other 

available information in real-time to increase traffic safety and operational reliability. Some of 

the most notable ATM strategies include ramp metering, speed harmonization, temporary 

shoulder use, junction control, and dynamic signing and rerouting.  

 In Nebraska, the main traffic management methods passively react to traffic conditions. 

These traditional management methods may not be capable of handling the increased travel 

demands during peak periods. Therefore, advanced traffic management methods like ATM are 

desired to provide a better understanding of current traffic conditions, predict short-term trends, 

and proactively apply optimal control strategies. For any effective traffic management system 

such as ATM, the basic requirement is a reliable, spatially dense network of traffic detectors that 

can obtain essential data. The Nebraska Department of Roads (NDOR) has been investing 

significant resources in ITS infrastructure such as sensors, dynamic message signs, and roadside 

weather stations. The existing traffic surveillance systems in NDOR’s jurisdiction collect an 

enormous amount of data in real-time. This data collection lays the foundation for implementing 

an advanced traffic management system and provides the data sources necessary for monitoring 

and identifying high crash risk locations.  

Crash prediction can be treated as a classification problem in the field of data mining. 

Observed instances (labeled as crash or non-crash) are used to build a classifier that can best 

distinguish crashes from non-crash cases using traffic sensor information. The likelihood of a 

crash has to be estimated on a real-time basis because the likelihood is significantly affected by 

short-term turbulence in the traffic flow. Therefore, high-resolution data, that is, data collected in 

short time intervals, are required. The high-resolution data for real-time crash prediction can be 

extremely imbalanced. For example, in a one-year data set aggregated in five-minute intervals 

for a road segment with 10 crashes, the ratio of crash instances to non-crash instances is as low 

as 10:105,110 (every five-minute interval is treated as an instance, and there are only 10 crash 

cases out of a total of 105,120 instances in one year). Consequently, real-time crash prediction 

can be seen as a classification problem with an extremely imbalanced class distribution. Here, 

“non-crash” is the major class and “crash” is the minor class. 

The size of the data set, along with the extreme imbalance, could become an issue due to 

the computational capacity of the hardware used to process the data. To address this concern, 

H2O, a big data tool, was introduced. This tool uses a batch processing technique that allows the 

training of a model on a large data set. Both imbalance and data size issues are carefully 

addressed in this report.  

To analyze the effect of a ramp metering strategy, FREEVAL (FREway EVALuation), a 

computational engine provided in the Highway Capacity Manual (HCM) by the Transportation 

Research Board of the National Academy of Sciences, was used as the tool to study the travel 

time reduction after the implementation of ramp metering.  
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This report is organized as follows. A literature review summarizing previous related 

studies is provided in Chapter 2. Chapter 3 presents the data used in this report and discusses the 

integrated database and data processing platform. The details of the data visualization procedure 

and its findings are described in Chapter 4. Chapter 5 presents the binomial probit model for 

identifying the crash contributing factors. Chapter 6 discusses the identification of traffic 

bottlenecks. The performance of ramp metering is evaluated in Chapter 7. Chapter 8 discusses 

real-time crash prediction comprehensively and explains some potential applications. Chapter 9 

concludes with the findings of this study and discusses future recommendations. 
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2. Literature Review 

 

This chapter provides a review of the literature on traffic crash prediction. The crash 

prediction techniques can be classified into two categories: aggregate level and disaggregate 

level. Aggregate-level models link crash statistics (such as number of crashes, crash rate, etc.) to 

potential effective factors and quantify the impact of each factor by estimating the coefficient for 

it. Disaggregate-level models focus on each individual crash or non-crash case. These models 

classify crash and non-crash cases based on observable factors and predict crashes in the short-

term future. Traffic crash data are extremely imbalanced, which highly influences the 

performance of disaggregate-level crash prediction models. Research related to imbalanced data 

is discussed in this chapter.  

 

2.1 Aggregate-Level Crash Model 

 

Most commonly, for aggregate models a crash performance function is built using 

regression models to grade the parameters of geometric and traffic characteristics according to 

their contribution to crash potential. Besides the regression models, some black-box algorithms 

such as artificial neural networks are used for constructing the crash performance function. 

Figure 2.1 summarizes some of the aggregate crash analysis models previously used.  

 

 
 

Figure 2.1 Previously used aggregate-level crash analysis models 

 

The models’ advantages and disadvantages are provided in Table 2.1. 
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Table 2.1 Comparison of aggregate-level models 

 

2.2 Disaggregate Level Crash Model 

 

Geometric and general traffic characteristics are analyzed as predictor variables while 

crash frequencies are treated as the response to identify the factors that contribute to high crash 

potential. Aggregate-level approaches are not an appropriate fit for the real-time crash prediction 

problem, but using them in a preliminary analysis helps to understand the impact of potential 

predictive factors and supports attribute selection. The aggregate-level preliminary crash analysis 

for this study is presented in Chapter 5. 

 For the real-time crash prediction problem, a disaggregate-level approach attempts to 

classify individual cases (e.g., a five-minute interval) as a “crash” case (i.e., a crash occurred 

within the five-minute interval) or “non-crash” case (i.e., no crash occurred within the five-

minute interval). For such analyses, previous studies have usually built models using data that 

contain predictors in a certain time interval prior to the occurrence of the accident and the 

corresponding crash data. The models are then used to predict crash occurrence in the near future. 

The major predictors used in disaggregate-level models are traffic-related characteristics such as 

speed, volume, and occupancy. The level of aggregation and the locations of traffic data 

collection can significantly influence the models’ performance. Some of the previous models 

used in disaggregate-level analysis and the most significant predictors are summarized in Figures 

2.2 and 2.3. 

 

Model/Method Advantage Disadvantage 

Poisson and negative 

binomial (NB) 
Easy estimation 

Poisson model cannot handle over- and 

under-dispersion, while NB can only 

deal with over-dispersed data 

Zero-inflated and 

random effect negative 

binomial 

Able to deal with all 

kinds of data 
Requires a specified functional form 

Classification and 

regression tree (CART) 

Does not require a 

specified functional form 

Has the risk of over-fitting and cannot 

handling the interactions between risk 

factors 

Artificial neural network 

(ANN) 

Does not require a 

specified functional form 

and can handle the 

interactions between the 

predictors 

Difficult to perform elasticity and 

elasticity analyses, which is important 

to provide the marginal effects of the 

variables on crash frequency 

Full Bayesian (FB) 

hierarchical approach 

Capable of accounting for 

uncertainty  
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Figure 2.2 Previously used disaggregate-level crash analysis models 

 

 
 

Figure 2.3 Best predictors found in the literature 

 

As shown in Figure 2.4, previous studies have chosen predictors in different time 

domains.  
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Figure 2.4 Predictor selection by Abdel-Aty et al. (2) 

 

For example, Abdel-Aty and Pande (0) found that the logarithm of the coefficient of 

variance (CV) of speed 10 to 15 minutes prior to the crash occurrence can significantly affect 

crash potential, and the authors used it as the only predictor. 

 

Figure 2.3 shows that some studies used a short time interval immediately before the 

study’s time point as the time domain of the crash prediction model. In practice, this kind of 

attribute selection strategy leaves no time for the operation system to respond to the predicted 

crash. A model built on such strategy is more likely to be a quick crash identification model. 

Other studies (such as the bottom five studies in Figure 2.3) used a time interval to identify crash 

propensity that is prior to (e.g., 10 to 15 minutes before) the study time point. This kind of 

attribute selection could be appropriate for practical use in traffic operations because it provides 

some time to take action to avoid the predicted crash. In addition to different time domains, 

different distance domains were also considered in the previous studies shown in Figure 2.3. The 

crash likelihood on a certain road segment may be influenced by the traffic conditions on 

adjacent segments. For example, the congestion at a certain location might influence the 

likelihood of rear-end crashes in the upstream segment, or a high-volume merging location may 

increase the likelihood of side-swipe crashes in the downstream segment because of the high lane 

change frequency. Therefore, to determine the influenced range, the study of predictors in 

different distance domains is critical. Abdel-Aty et al. (2) conducted a comprehensive case study 

of analysis window selection in both the time and distance domains. The researchers divided the 

time domain into six slices by five-minute increments (i.e., the first slice is zero to five minutes 

prior to study time point, the second slice is five to ten minutes prior to study time point, and so 

on). The distance to the study location was divided into eight segments according to the location 

of traffic detectors. The detectors are labeled A through H, from upstream to downstream, in 

Figure 2.4. For each time and location combination, six independent variables (AV: average 
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volume, SV: standard deviation of volume, AS: average speed, logCVS: logarithm of coefficient 

of variation of speed, logAO: logarithm of average occupancy, SO: standard deviation of 

occupancy) were used as predictor variables so that a total of 288 (6 × 8 × 6) variables were 

tested for each case. The crashes were also classified into low-speed and high-speed crashes and 

modeled separately. Figure 2.4 shows the significant predictor variables, and the point of the 

study target is marked as a red X. The most significant slots were located within the nearest two 

detectors both upstream and downstream and from 5 to 15 minutes prior to the study point. The 

optimal slots varied by target location.  

In Chapter 8 of this report, different data mining methods are used to develop a 

disaggregate-level crash prediction model, and the selection of the analysis window is carefully 

examined.  

 

2.3 Classification with Imbalanced Data 

 

Previous work has pointed out that class imbalance can significantly limit the 

performance attainable by most standard classifier learning algorithms (3). Most standard 

classifiers assume equal class distribution and equal misclassification costs, which does not hold 

true in most classification problems with an imbalanced data set. In using the standard 

classification approach in a real-time crash prediction problem, the crash cases tend to be ignored 

while the overall prediction accuracy can be close to 100% for non-crash cases (e.g., for 10 

crashes out of 105,120 cases, the accuracy is 105110/105120 = 0.9999905 if all cases are 

predicted as non-crash cases). Sun et al. (4) comprehensively reviewed solutions to address the 

problems of performing classification with imbalanced data and categorized the solutions into 

the data-level approach and the algorithm-level approach.  

For the data-level approach, the objective is to rebalance the class distribution by 

resampling the data space, including oversampling instances of the minor class and 

undersampling instances of the major class. Padmaja et al. (5) applied two data-level approaches 

to a highly overlapped and imbalanced data set of automobile insurance information to resample 

the fraud and non-fraud cases: (1) a hybrid sampling technique that is a combination of 

oversampling the minority data and undersampling the majority data and (2) an extreme outlier 

elimination data cleaning method for eliminating extreme outliers in minority regions. On using 

the resampled data set in analysis, improved performance of the classifier was reported.  

For the algorithm-level approach, the solution is to adapt existing classifier learning 

algorithms to create a bias towards the minor class. Ensemble learning techniques, such as 

adaptive boosting (AdaBoost), and cost-sensitive learning are the two main approaches. Sun et al. 

(6) introduced cost items into the learning framework of AdaBoost. On investigating the effect of 

this cost-sensitive meta-learning technique on most classifier learning algorithms, better results 

were found in most of the experiments.  

Rather than working specifically on either data-level or algorithm-level approaches, most 

previous studies combined the resampling method with a minor class–adapted algorithm to 

improve classification performance. Phua et al. (7) proposed an innovative fraud detection 

method named stacking-bagging that combined minor class oversampling with a meta-learning 

technique. Seiffert et al. (8) introduced random undersampling into AdaBoost. Tang et al. (9) 

applied both oversampling and undersampling and cost-sensitive items to support vector 

machine–based strategies. Khalilia et al. (10) combined repeated random subsampling with the 
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random forest method. The performance of these hybrid methods match or surpass most standard 

classifiers.  

As to real-time crash prediction, although most studies work on both the data level and 

the algorithm level to build a crash classifier, few studies have emphasized or focused on the 

data imbalance problem, which greatly hinders the performance of standard data mining 

algorithms. This data imbalance problem is a relative rarity rather than an absolute rarity (3) 

because a large amount of traffic surveillance and crash data are available. The simplest method 

to tackle relative rarity is to undersample the non-crash cases. This method is used in most 

models at the data level. Another reason for undersampling the non-crash cases is because the 

size of the data set for real-time crash prediction is usually too large to be handled by normal 

analytic tools.  

Other than randomly undersampling the non-crash cases, the most common method used 

is the matched case-control method, which has proven to be an efficient method for studying rare 

events in the field of epidemiology (11). For either randomly undersampling or matched case-

control methods, the key issue is to determine the optimal class distribution. Weiss and Provost 

(12) implemented a thorough experimental study on the effect of a training set’s class 

distribution on a classifier’s performance using artificial data sets. The findings indicated that a 

balanced class distribution (a class size ratio of 1:1) performed relatively well but is not 

necessarily optimal. Optimal class distributions vary by the data used. Abdel-Aty et al. (13) used 

matched case-control sampling with a control-to-case ratio of 5:1, while Zheng et al. (14) and Xu 

et al. (15) used a control-to-case ratio of 4:1. Pande and Abdel-Aty (16) studied 49 lane change–

related collisions along with 1,096 randomly selected non-crash cases. Another study by these 

authors (17) used a distribution of 2,179 crashes and 150,000 (0.04% of a total of 362,862,720 

cases) randomly selected non-crashes. Data sets with different class distributions have been 

documented in the literature, but few studies have investigated the impact of class distribution on 

model performance for real-time crash prediction.  

In most of the previous research on algorithm-level models, logistic regression or 

classifiers based on probabilistic neural networks (PNN) have been applied with little concern 

for the data imbalance problem. Abdel-Aty and Pande (18) and Oh et al. (19) applied PNN to 

real-time crash prediction in 2004. Abdel-Aty et al. (13) then conducted an analysis using a 

logistic regression model in 2005. Xu et al. (20) built a sequential logit model to predict crashes 

with severity in 2012. In 2013, Hossain and Muromachi (21) introduced an ensemble learning 

method, which is recognized as an effective approach for tackling the imbalanced classification 

problem. In their study, a random multinomial logit model (RMNL), a random forest of logit 

models, was applied to very high-resolution traffic data (eight-millisecond raw data grouped into 

five-minute aggregate data) collected in Tokyo for real-time crash prediction; good prediction 

performance was reported.  

 Another issue that can be identified in studies on real-time crash prediction models is 

inappropriate or unclear model performance metrics. Because the cost of ignoring a crash case 

(positive) is much higher than misclassifying a non-crash case (negative), the overall accuracy is 

not as important as the true positive rate (or sensitivity or recall) and the false positive rate (or 

false alarm rate). A high true positive rate and a low false alarm rate are desired, but there is a 

trade-off between the two. A higher true positive rate can always be achieved by increasing the 

classification cut-off threshold, but the false positive rate can also rise as a result. The optimal 

threshold for the performance metric varies across models. The receiver operating characteristic 

(ROC) curve and the total area under the curve (AUC) are the most appropriate performance 
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metrics for classifiers (12). Most of the aforementioned studies provided the model performance 

metric at the threshold with highest overall accuracy, which makes it difficult to compare the 

performance of the model across different studies. 

This chapter summarized previous studies on urban freeway crash analysis. At the 

aggregate level, statistical models and long time-scaled data (e.g., data aggregated monthly) have 

been used to examine the impact of factors contributing to crash risk. At the disaggregate level, 

short time-scaled data (e.g., data aggregated every 20 seconds) have been used to develop crash 

prediction models. In order to improve the accuracy of crash prediction models in a way that has 

more practical value, both data-level and algorithm-level approaches were studied. In this study, 

both aggregate- and disaggregate-level crash analyses were conducted using traffic speed data 

collected by field sensors, and this report includes a comprehensive discussion on ways to 

improve crash prediction accuracy. The following chapter describes the data and the data 

processing platform. 
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3. Database Development 

 

Good data sources and high-quality data are essential for any analysis. This chapter 

describes the data sources as well as the integrated database and automated data processing 

platform used in this study. 

 

3.1 Road Network  

 

 This study focuses on urban freeways and major arterials in the Omaha, Nebraska, area. 

NDOR has installed permanent remote traffic microwave sensors (RTMS) on five routes in 

Omaha, including I-80, I-480, I-680, US-75, and West Dodge Street. Figure 3.1 shows the geo-

locations of the RTMS. The sensors on I-80, I-480, I-680, US-75, and West Dodge Street are 

colored in red, yellow, pink, violet, and green, respectively. The studied road segments are those 

covered by the sensors shown in Figure 3.1. 

 
 

Figure 3.1 RTMS locations in the Omaha area 

 

3.2 Data Description 

 

 Three data sources were available for this study: 

 Traffic speed data: The RTMS vendor, Speed Info, provides one-minute speed data 

for each sensor from 2008 to 2014. These speed data were obtained from NDOR’s 

Microsoft SQL Server database. 

 Weather data: The temperature and precipitation data collected from roadside sensors 

were also obtained from NDOR’s Microsoft SQL Server database. Due to the low 
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quality and incompleteness of the data, additional weather data (in CSV format) were 

downloaded from MesoWest (http://mesowest.utah.edu/) for validation purposes. 

 Crash data: The crash records (in CSV format) of Douglas County and Sarpy County 

from 1997 to 2012 were provided by the Omaha Police Department. 

 

3.3 Data Integration 

 

In this study, data integration is defined as the process of storing all the related data from 

different sources in a single database with the same format. This method of data processing 

ensures consistency throughout the database and makes the data processing procedure easier to 

automate. For crash prediction purposes, data integration and data processing automation are 

important because the data processing system should be able to quickly handle a large amount of 

data.  

Because the majority of the data for this study were stored in Microsoft SQL Server, data 

in all other formats were integrated into a Microsoft SQL Server research database to ensure easy 

access to the data and to allow querying and editing of the data in one place. This integration 

made it easy to query and process the data by linking the Microsoft SQL Server database to 

MATLAB.  

The data sources were processed as follows: 

 Traffic speed: The Microsoft SQL Server tables remained unchanged. 

 Weather data: The original data in the Microsoft SQL Server tables remained 

unchanged. The CSV tables of weather data from MesoWest were imported into the 

Microsoft SQL Server database through the Microsoft SQL Server import wizard.  

 Crash data: The crash-related data, including crash-level description data, vehicle-

level description data, and traffic crash coordinates, were stored in large Microsoft 

Excel files with more than half a million rows on each sheet. Due to the large file size, 

the Microsoft SQL Server import wizard could not process the crash data files. 

Therefore, MATLAB was used to create the data set. A Java database connectivity 

(JDBC) connection was created between the MATLAB and Microsoft SQL server 

programs. A program was developed in MATLAB to read crash data from CSV files 

and insert them into SQL tables line by line.  

In addition to the data sources mentioned above, the geo-locations of speed sensors and 

weather sensors were also uploaded into the Microsoft SQL Server database. The integrated data 

in the Microsoft SQL Server research database could be accessed from any machine on the same 

network as the research database. 

 

3.4 Data Processing Platform 

 

After the Microsoft SQL Server database was created, MATLAB was used as a 

processing platform to query and edit the data and perform data analytics. The workflow of the 

MATLAB- Microsoft SQL Server data processing platform is described below: 

 All the data processing code was written and run in MATLAB. 

 A JDBC connection was established between MATLAB and Microsoft SQL Server. 

 When a data processing job was requested, a query to retrieve the needed data was sent 

by MATLAB and executed in Microsoft SQL Server.  
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 When a data table was generated by Microsoft SQL Server as a query result, it was 

returned to the MATLAB workspace as a MAT-file. 

 All necessary analytics were performed on the MAT-file in MATLAB. Appropriate 

graphics were generated as needed. 

 Any updates to the database were also executed through SQL commands run using 

MATLAB. 

The data processing procedure was semi-automated using computer programming, as 

described above. With the integrated database and the data processing platform, it was possible 

to quickly generate performance measures or compute crash likelihood between different sensor 

groups or between different time periods. Also, with this platform new crash-related data could 

be easily added into the existing database for analysis.  

In summary, this chapter provided a description of the study road network, the data, and 

the design of the data processing platform. This platform can be of great use when the data 

processing procedures are automated. The following chapter introduces data visualization 

methods that take advantage of the capability of this data processing platform for both single-

layer information (traffic speed) and multi-layer information (traffic speed, weather, and crashes). 
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4. Exploratory Data Analysis 

 

A clear visualization of the traffic data is usually the best way to understand the 

actual traffic conditions in the field. This chapter describes the visualization methods that 

were used in this study, which were powered by the aforementioned data processing platform. 

 

4.1 Data Visualization – Traffic Speed Heat Maps 

 

It is always desirable to visualize traffic speed data in order to understand traffic 

conditions. A traffic speed heat map is a good way to display speed information in both the 

temporal and spatial domains. An example of a speed heat map is shown in Figure 4.1.  

 

 
 

Figure 4.1 Annual average speed of I-80 westbound in Omaha in 2008 

 

In a two-dimensional speed heat map, the two axes are scaled by time and distance, 

respectively. Each pixel, representing a certain time and distance interval, is colored 

depending on the speed value. The heat map provides an overview of traffic conditions on a 

roadway segment at different distances from a reference point during a certain time period. 

From the heat maps, the times and locations with high congestion or low speeds can also be 

easily identified. The heat maps presented in this chapter have time of day on the horizontal 

axis and distance on the vertical axis. The speed is colored from green to red with decreasing 

values of speed, with green representing high speed and red representing low speed.  

The speed sensors are usually not equally distanced along the road. In this study, to 

scale the vertical axis by the actual distance, the speeds on the segment between any two 

adjacent sensors were linearly interpolated by 0.1 mile along the direction of traffic. The 

speed data are aggregated into five-minute intervals. To deal with the missing data, the 

following assumptions were made for data interpolation: 
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 First, for each plotted time interval, the percentage of missing data was verified. If the 

percentage of missing data exceeded a predetermined threshold, and thus not enough 

data were available to make a meaningful interpolation, the entire time interval was 

omitted. (For example, in Figure 4.2, all sensors are treated as having missing data 

around 3 p.m. on December 2.) 

 If enough data were available for interpolation, the algorithm only interpolated speeds 

between two points with known speeds and never extrapolated. (For example, in 

Figure 4.2, speed data recorded around 6 p.m. on December 28 are reported for the 

segments between 2 to 12 miles from the start point.) 

Heat maps were plotted for both annual average speed and daily average speed for all 

studied roads. Figure 4.1 shows the annual average speed heat map of I-80 westbound in 

Omaha in 2008. Each pixel is colored based on the average speed over the entire year for the 

corresponding location at a specific time of day. The vertical axis is ticked at each actual 

sensor location along the direction of traffic. On this segment, vehicles travel from the east 

end (bottom of the vertical axis) to the west end (top of the vertical axis). The lowest speed 

was observed on the segment within two miles from the east end, which is roughly in the 

downtown area. On average, the most congested time appeared to be from 5 p.m. to 6 p.m. 

and the evening peak hours were more congested than the morning peak hours. The general 

trend of traffic conditions on I-80 westbound in Omaha can be easily determined by reading 

this annual average speed heat map. 

 

 
Note: blue stars represent mainline crashes, blue Xs represent on-ramp crashes, and blue plus signs 

represent off-ramp crashes 

 

Figure 4.2 Daily speed heat map of I-80 westbound in Omaha in December 2008 

 

To investigate the finer details, daily speed heat maps were created. Figure 4.2 

displays the historical traffic speed of I-80 in December 2008. Each subplot in this figure is a 

one-day speed heat map. The daily heat maps are arranged in calendar order, with Sundays in 
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the left column. From Figure 4.2, December 16, 18, and 19 appear to be the most congested 

days in that month. Heavy congestion is evident during the morning peak hours on December 

19, while continuous low speeds can be observed from 6 p.m. to midnight on December 18. 

Slow traffic can be seen to have lasted throughout the daytime on December 16, which could 

be related to a traffic incident or a special event on that day, such as a crash or severe weather. 

As expected, the congestion subsides during the Christmas holiday, with more people staying 

at home. These daily traffic heat maps show the general trend of traffic conditions and are 

very useful to determine if there is any recurring congestion. For example, Figure 4.2 shows 

that there was no clearly evident recurring congestion on I-80 westbound in Omaha in 

December 2008. This finding could be attributed to variable time schedules or the absence of 

office traffic due to the December holiday season. As a comparison, Figure 4.3 gives the 

daily speed heat maps for I-80 eastbound in Omaha in September 2013. Distinct recurring 

congestion was observed during the morning peak hours, evident in the repeating red pattern 

on every weekday morning, and the highest congestion was observed on Thursday mornings. 

 

 
 

Figure 4.3 Daily speed heat map of eastbound I-80 in Omaha in September 2013 

 

As discussed in Chapter 3, the data processing platform makes it possible to automate 

the data visualization procedure. Heat maps can therefore be easily and quickly created for 

all studied segments. Due to limited space, however, not all heat maps have been included in 

this report. 

 

4.2 Speed, Weather, and Crashes 

 

Taking advantage of the integrated database described in the previous chapter, data 

visualization can combine information from multiple data sources to reveal the underlying 

correlations among speed, weather, and crashes. In Figure 4.2, the crashes that occurred in 

December 2008 on I-80 westbound in Omaha are marked on the heat maps according to the 

crash time and location information. Blue stars on the maps represent mainline crashes, blue 

Xs represent on-ramp crashes, and blue plus signs represent off-ramp crashes. Most crashes 

occurred during peak traffic hours and were associated with low traffic speeds. Several 
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crashes occurred on December 16, in parallel with one of the worst congestion periods 

observed for the segment in the month of December. 

Weather information such as rain or snow events can also be included in the speed 

heat maps. To make the maps easy to read, speed data were made more brief and concise, 

and only clustered low-speed events (speeds lower than or equal to 45 mph) are displayed. 

Figure 4.4 shows the clustered daily low-speed events overlaid with crashes and precipitation 

for I-80 westbound in Omaha in December 2008.  

 

 
Note: light blue: rain, dark blue: snow, *: mainline crash, +: on-ramp crash, ×: off-ramp crash 

 

Figure 4.4 Clustered daily congestion overlaid with crashes and precipitation  

 

The red points represent low-speed clusters. This figure shows that some correlation 

exists among crashes, low-speed events, and precipitation. The summary statistics for speed, 

crashes, and precipitation for the studied segment on I-80 westbound in 2008 are listed in 

Table 4.1.  

 

Table 4.1 Data summary statistics of I-80 westbound in Omaha in 2008 

Variables Value 

Mean speed (mph) 62.05 

Standard deviation of speed (mph) 5.54 

Number of crashes 257 

Total hours of rain (hour) 647.4 

Total hours of snow (hour) 45.7 

 

The model developed to investigate the relationship between crashes and contributing 

factors will be discussed in Chapter 5. Furthermore, if certain patterns of speed events and 

precipitation are frequently observed before the occurrence of a crash, some identification 

mechanism for the hazardous condition could be developed for crash prediction. This topic 

will be discussed in Chapter 8.  



 

17 

This chapter demonstrated several data visualization methods. The annual average 

speed heat map reveals the trends in traffic speed by time of day. The daily average speed 

heat maps, plotted in calendar order, display the traffic speeds of a certain segment in detail, 

and speed trends can be identified by different measures (day of the week, month, mile 

marker, etc.). In addition, through the integrated database and data processing platform, 

speed, weather, and crash data can be displayed together to show the correlation among these 

data. To verify and quantify this correlation, the impacts of different factors on crash risk 

based on aggregate-level crash analysis are studied in the next chapter  
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5. Crash Risk Assessment 

 

Safety is an important aspect of traffic management. Crash risk assessment can reveal the 

relationships between crashes and contributing factors and can help to quantify the benefits of 

traffic operation strategies in improving safety. In this chapter, preliminary hypothesis tests were 

conducted to analyze the correlations among traffic speeds, ambient weather conditions, and 

crash occurrences. A binomial probit model was developed to identify the crash contributing 

factors. A sensitivity analysis of these factors was conducted and is discussed in this chapter. 

  

5.1 Correlation among Crashes, Speed, and Weather Conditions 

 

Using the MATLAB-Microsoft SQL Server data processing platform presented in 

Chapter 4, descriptive statistics were obtained and a preliminary data analysis was conducted for 

the traffic, weather, and crash data. Table 5.1 summarizes the crash occurrences by traffic and 

weather conditions on I-80 westbound in Omaha in 2008. 

 

Table 5.1 Crash summary for I-80 westbound in Omaha in 2008 

Crash Summary 

Weather Condition 

Clear Rain Snow 

Traffic 

Condition 

Speed > 50mph 

Crash counts 187 28 0 

Crash percentage 72.76% 10.89% 0.00% 

Time percentage 92.09% 5.84% 0.29% 

Speed ≤ 50mph 

Crash counts 26 16 0 

Crash percentage 10.12% 6.23% 0.00% 

Time percentage 0.020% 1.53% 0.23% 

 

A threshold of 50 mph divides the traffic conditions into two categories: uncongested 

conditions (speeds greater than 50 mph) and congested conditions (speeds less than or equal to 

50 mph). This threshold was selected based on the traffic characteristics of the studied road 

segment. The weather conditions were categorized into clear, rain, and snow. A total of 257 

crashes were observed on this road segment. The crash percentage was calculated by dividing the 

crash counts in each category by the total number of crashes. The time percentage is the time 

duration of a certain combination of traffic and weather conditions out of the entire study period. 

For 92% of the time in 2008, this road segment was uncongested and in clear weather, and 73% 

of the crashes in that year occurred in this combination of traffic and weather conditions. The 

segment was congested and in clear weather for 0.02% of the time in 2008, and 10% of the total 

crashes occurred in such conditions. The relationships implied by the data in Table 5.1 are as 

follows: (1) the conditional probability of a low-speed event given different weather conditions 

varied significantly, which indicated a potential correlation between weather and traffic speed, 

and (2) the conditional probability of a crash given different traffic and weather conditions 

differed, which indicated the impact of speed and weather on crash occurrence.  



 

19 

For the interrelationship between weather and traffic conditions, if these two factors are 

independent, the probability of a combined traffic and weather event should be equal to the 

product of the individual probabilities of the corresponding traffic event and weather event. The 

hypothesis that the traffic and weather conditions are independent was tested by a chi-square test 

using a contingency table. The test results are shown in Table 5.2. Because some of the expected 

counts of events were lower than five, Fisher’s exact test was appropriate. The null hypothesis 

was rejected at a 95% confidence level, and there was no evidence that the traffic and weather 

conditions were independent of each other. The highest chi-square values were observed for low 

speed with rain and low speed with snow, which shows that rain and snow significantly 

increased the chance of congestion. 

For the crash likelihood, if the crash occurrence has an equal likelihood across different 

combinations of traffic and weather conditions, the crash percentage values presented in Table 

5.2 should follow the distribution of time percentage.  

 

Table 5.2 Contingency analysis of weather conditions by traffic speed 

 

Weather 

Clear Rain Snow Marginal Total 

Speed > 

50mph 

Total % 

Expected % 

Chi-square 

92.09 

90.4704 

0.0290 

5.84 

7.238 

0.2703 

0.29 

0. 5107 

0.0954 

98.22 

Speed ≤ 

50mph 

Total % 

Expected % 

Chi-square 

0.02 

1.6395 

1.5998 

1.53 

0.1312 

14.9153 

0.23 

0.0092 

5.2645 

1.78 

Marginal Total 92.11 7.37 0.52 100.00 

Test Results 

Log likelihood 4.6249 

R square 0.1567 

p-value 

Pearson 0.0098 

Likelihood Ratio <0.0001 

Fisher’s Exact Test 0.0007 

Note: A small p-value indicates that the null hypothesis should be rejected 

 

This hypothesis that crash percentage and time percentage have the same distribution was 

tested by a nonparametric chi-square test. The results are shown in Table 5.3. 
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Table 5.3 Nonparametric chi-square test results for crash distribution 

Conditions 

(speed-weather) 
Crash 

Counts 

Observed 

Probability 

Hypothesis 

Probability 

High-clear 187 0.7275 0.9209 

High-rain 28 0.1089 0.0584 

High-snow 0 0.00004 0.0029 

Low-clear 26 0.1012 0.0002 

Low-rain 16 0.0622 0.0153 

Low-snow 0 0.00004 0.0023 

Total  257 1.0000 1.0000 

Test Results 

 chi-square p-value 

Likelihood Ratio 315.2836 <0.0001 

Pearson 13,158.78 <0.0001 

Note: A small p-value indicates that the null hypothesis should be rejected 

 

The null hypothesis was rejected at a 95% confidence level, which indicates that the 

likelihood of a crash varies by traffic and weather conditions. From Table 5.3, the observed 

probabilities of high speed and rain, low speed and clear weather, and low speed and rain are 

much higher than the hypothesized values, which provides evidence that these three conditions 

increase the likelihood of a crash. A high crash likelihood was usually associated with low speed 

and rain. Rain is an important causal factor for low speed and high crash likelihood. Although 

the causal relationship between low speed and crash occurrence was difficult to determine for 

each individual case, the interaction was statistically detected. 

 

5.2 Crash Risk Modeling and Sensitivity Analysis 

 

After the preliminary hypothesis tests, a binomial probit model was built to identify the 

crash contributing factors, and the data for I-80 westbound in Omaha in 2008 were used. The 

descriptive statistics of the model variables are provided in Table 5.4.  
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Table 5.4 Descriptive statistics of variables 

Variable Mean S.D. Min Max Sum Obs. 

Dependent variables 
      

Indicator of crash occurrence 0.028 0.164 0 1 285 10,285 

Independent variables 
      

speed (mph) 62.456 5.258 5.88 76.84  10,285 

indicator of weekend 0.275 0.447 0 1 2,828 10,285 

indicator of Monday 0.137 0.344 0 1 1,408 10,285 

indicator of Tuesday 0.148 0.355 0 1 1,518 10,285 

indicator of Wednesday 0.142 0.349 0 1 1,459 10,285 

indicator of Thursday 0.154 0.361 0 1 1,587 10,285 

indicator of Friday 0.144 0.351 0 1 1,485 10,285 

indicator of Saturday 0.144 0.351 0 1 1,481 10,285 

indicator of Sunday 0.131 0.337 0 1 1,347 10,285 

indicator of 12am-6am 0.239 0.427 0 1 2,459 10,285 

indicator of 6am-8am 0.090 0.286 0 1 922 10,285 

indicator of 8am-10am 0.083 0.276 0 1 853 10,285 

indicator of 10am-12pm 0.084 0.278 0 1 869 10,285 

indicator of 12pm-2pm 0.084 0.277 0 1 862 10,285 

indicator of 2pm-4pm 0.080 0.271 0 1 820 10,285 

indicator of 4pm-6pm 0.090 0.287 0 1 929 10,285 

indicator of 6pm-8pm 0.084 0.278 0 1 869 10,285 

indicator of 8pm-12pm 0.165 0.372 0 1 1,702 10,285 

indicator of 0 mile - 3 mile 0.184 0.387 0 1 1,892 10,285 

indicator of 3 mile - 6 mile 0.182 0.386 0 1 1,869 10,285 

indicator of 6 mile - 9 mile 0.157 0.363 0 1 1,610 10,285 

indicator of 9 mile - 12 mile 0.136 0.343 0 1 1,399 10,285 

indicator of 12 mile - 15 mile 0.176 0.381 0 1 1,807 10,285 

indicator of 15 mile - 18 mile 0.166 0.372 0 1 1,708 10,285 

indicator of clear weather 0.926 0.262 0 1 9,520 10,285 

indicator of rain 0.060 0.238 0 1 618 10,285 

indicator of snow 0.014 0.119 0 1 147 10,285 

 

Besides speed and weather conditions, the time of day, day of the week, and location on 

the road were also considered in the model. Indicators were created for each day of the week. 

The time of day was classified into nine intervals (12 a.m. to 6 a.m., 6 a.m. to 8 a.m., 8 a.m. to 10 

a.m., 10 a.m. to 12 p.m., 12 p.m. to 2 p.m., 2 p.m. to 4 p.m., 4 p.m. to 6 p.m., 6 p.m. to 8 p.m., 

and 8 p.m. to 12 a.m.). The 18 mile long freeway was divided into six equal-length segments (0: 

east end, 18 miles: west end), and indicators were created for modeling. The period of 8 p.m. to 

12 a.m. and the location between 15 and 18 miles on Monday on this segment was used as the 

baseline to evaluate the impacts of the other variables. 

Using the indicator of crash occurrence as a dependent variable, a binomial probit model 

was built. The estimated coefficients of the independent variables are shown in Table 5.5.  
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Table 5.5 Estimated parameters by the binomial probit model 

Independent Variable Coefficient t-statistic Confidence Level 

Constant -0.1153 -0.37  

speed (mph) -0.0451 -11.79 *** 

indicator of weekend -0.3057 -3.02 *** 

indicator of Tuesday -0.0253 -0.25  

indicator of Wednesday -0.0575 -0.55  

indicator of Thursday 0.0172 0.18  

indicator of Friday -0.1639 -1.53  

indicator of 12am-6am -0.1075 -0.95  

indicator of 6am-8am 0.4436 3.84 *** 

indicator of 8am-10am 0.1599 1.19  

indicator of 10am-12pm 0.3206 2.50 ** 

indicator of 12pm-2pm 0.2764 2.18 ** 

indicator of 2pm-4pm 0.1887 1.41  

indicator of 4pm-6pm 0.5746 5.26 *** 

indicator of 6pm-8pm 0.2257 1.73 * 

indicator of 0 mile - 3 mile 0.7483 3.88 *** 

indicator of 3 mile - 6 mile 1.3577 7.23 *** 

indicator of 6 mile - 9 mile 0.6375 3.21 *** 

indicator of 9 mile - 12 mile 0.5220 2.53 ** 

indicator of 12 mile - 15 mile 0.1976 0.90  

indicator of rain 0.1572 1.47  

indicator of snow 0.3504 1.68 * 

Model performance    

Log Likelihood -1028.6419   

Restricted log likelihood -1303.0108   

R-squared 0.2106   

Note: ***, **, and * indicate confidence at a 99%, 95%, and 90% level, respectively 

 

The model results are summarized in the following: 

 The crash risk is higher on this road when the road is operated at a lower traffic speed. 

 The crash risk was consistent on different weekdays but significantly lower on weekends. 

 During the 6 a.m. to 8 a.m., 10 a.m. to 2 p.m., and 4 p.m. to 6 p.m. intervals, the crash 

risk was higher than at other times of day. The highest crash risk appeared to be between 

the 6 a.m. to 8 a.m. and 4 p.m. to 6 p.m. intervals. 

 The western 12 miles had a higher crash risk than the rest of the road, and the hot spot 

appeared to be 3 to 6 miles toward the western end. 

 Rain and snow did not have a significant impact on crash risk at a 95% confidence level. 

However, there was some evidence that the impact of snow was larger than that of rain. 

To better quantify the impacts of contributing factors on crash risk, a sensitivity analysis 

was conducted. The estimated elasticities are shown in Table 5.6.  
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Table 5.6 Sensitivity analysis: Estimated elasticity 

Independent Variable Elasticity t-statistic Confidence Level 

speed (mph) -0.0750 11.16 *** 

indicator of weekend -0.7762 3.32 *** 

indicator of 6am-8am 0.9887 5.04 *** 

indicator of 4pm-6pm 1.1879 7.88 *** 

indicator of 3 mile - 6 mile 1.7899 28.90 *** 

indicator of rain 0.3984 1.55  

indicator of snow 0.8134 2.04 ** 

Note: ***, **, and * indicate confidence at a 99%, 95%, and 90% level, respectively 

 

These elasticity results show the following: 

 Every one mile per hour increase in speed was associated with a 7.5% decrease in 

crash risk.  

 The crash risk on weekends was 77.6% lower than on weekdays. 

 The crash risk approximately doubled during morning peak hours (6 a.m. to 8 a.m.) 

and afternoon peak hours (4 p.m. to 6 p.m.) compared to the rest of the day. 

 The crash risk on the segment three to six miles toward the western end of the road 

was much higher than on all other segments. 

 Rain did not have a statistically significant impact on crash risk, while snow could 

increase the crash risk by 81%. 

This chapter analyzed the impact of speed, weather, time, and location on crash 

occurrence at the aggregate level. A binomial probit model for predicting crash count was 

developed to identify the contributing factors, and a sensitivity analysis was conducted to 

quantify their impacts. The crash analysis found that a one mile per hour increase in speed was 

associated with a 7.5% decrease in crash risk. The crash risk on weekends was 77.6% lower than 

the crash risk on weekdays. The rate of crash risk during the peak hours (6 a.m. to 8 a.m. and 4 

p.m. to 6 p.m.) was approximately twice the rate of the crash risk during the rest of a given day. 

The crash risk was also affected by the location of the road. Rain, observed during the analysis 

period, was found to have no significant impact on crash risk, while snow could increase the 

crash risk by 81%. These results are used in the cost-benefit analysis of ramp metering discussed 

in Chapter 7. The following chapter introduces speed-based performance measures, identifies the 

bottleneck locations on the Omaha urban freeway system, and prioritizes these locations for 

potential ramp metering implementation.  
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6. Traffic Performance Measure and Bottleneck Identification 

 

In Chapter 5, traffic speed, snow, certain time periods of the day, and certain segments on 

the road were identified as statistically significant factors impacting the expected number of 

crashes per year. Among these factors, traffic speed is the topic of focus for this study because it 

is most commonly used as the control variable in active traffic management strategies. As 

described in this chapter, several traffic speed–based performance measures were developed and 

used to identify the bottlenecks on the Omaha urban freeway system. 

 

6.1 Speed Based Performance Measure 

 

To quantify and compare the traffic conditions across different locations and time periods, 

a series of performance measures was developed in this study. In this study, congestion is 

defined as traffic speeds lower than a threshold of 40 mph. A colored three-dimensional (3D) bar 

chart was developed to show the congestion at different times and locations. Figure 6.1 shows 

congestion counts and illustrates the congestion conditions on weekdays on an 18 mile road 

segment of I-80 westbound in Omaha in 2008.  

 

 
 

Figure 6.1 Congestion counts for I-80 westbound in Omaha on weekdays in 2008 

 

Data were aggregated in five-minute intervals for each 0.1 mile section along this 

segment. The x and y axes represent the time of day and location on the road, respectively. Each 

bar represents a grid of 0.1 mile × five minutes, and the height of the bar represents congestion 

count, that is, the number of days that congestion was observed on a 0.1 mile segment (specified 

by location axis) during a five-minute period (specified by the time of day axis). A higher value 

for congestion count implies a higher frequency or higher likelihood of congestion. The 

congestion count is also color coded. Dark blue represents no congestion, and yellow and red 
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represent a medium to high likelihood of congestion. For the studied road on I-80 westbound in 

Omaha, the heaviest congestion was observed on the segment between one to six miles from the 

eastern end during the period from 4 p.m. to 7 p.m. Similar bar charts can be created for each day 

of the week or weekend to show the congestion distribution patterns on different days of the 

week. 

The 3D bar chart of congestion counts treats speed as a categorical variable (congestion 

or non-congestion) and can be a good illustration of congestion frequency. However, the chart is 

unable to accurately quantify the severity of congestion. Travel time delay can be used as a 

performance measure to capture the severity of congestion. A colored 3D bar chart of travel time 

delay was developed, as shown in Figure 6.2, and is similar to the chart of congestion counts.  

 

 
 

Figure 6.2 Average travel time delay for I-80 westbound in Omaha on weekdays in 2008 

 

The horizontal axis represents the grid of the time of day and the location on the road. 

Travel time delay was calculated for each grid (1 mile × 15 minutes). The vertical axis represents 

travel time delay, or travel time deficiency. Travel time delay is the additional time required to 

travel through a road segment at an observed speed compared to traveling at a reference speed. 

In this study, the posted speed limit was used as the reference speed. The height of each bar in 

Figure 6.2 represents the amount of travel time delay for the location and time period specified 

by the horizontal axis. The colors of the bars also indicate the congestion levels, with dark blue 

representing no congestion and red representing high congestion levels. As seen in Figure 6.2, 

the location and time period with the highest travel time delay was similar to the location and 

time period with the highest congestion frequency identified in Figure 6.1.  

On average, the segment between one to two miles from the eastern end of the road 

experienced longer delays than all other road segments throughout the day. 

Two new performance charts, travel time profile and speed profile, were designed to 

visualize and compare the temporal and spatial trends in traffic conditions. Travel time profiles 
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provide a description of expected travel time and travel time reliability along the road by time of 

day. The travel time profiles can be created for a wide range of analysis periods. Figure 6.3 

shows the monthly travel time profile for an 18 mile segment on I-80 westbound in Omaha in 

2008. The black line in the figure represents the median travel time at a particular time of day, 

and the red line marks the 85th percentile travel time. The difference between the median and the 

85th percentile travel time is used as a measure of travel time reliability. In Figure 6.3, all of the 

missing data were replaced by the mean; therefore, the accuracy of this travel time profile 

depends greatly on the quality of the sensor data. The data quality could be improved by using 

additional data sources, such as INRIX (INRIX, Inc. http://inrix.com/) data. INRIX provides 

better data completeness and provides segment speed instead of point speed from roadside 

sensors. The percentage of missing data is shown on top of each subplot in Figure 6.3.  

 

 
 

Figure 6.3 Monthly travel time profile for I-80 westbound in Omaha in 2008 

 

There were relatively higher percentages of missing data during February and July, and 

hence, in these cases, the travel time profiles would fail to capture parts of the real variation. 

Overall, the average travel time on this road was stable. There were more variations during the 

morning peak hours and afternoon peak hours, specifically during the afternoon peak hours. The 

highest travel times observed were during the afternoon traffic peak hours in the months of 

January, September, October, and December.  

A travel speed profile illustrates the number of hours during the analysis period that the 

operational speed on a segment is within a predefined range. Figure 6.4 shows the monthly speed 

profile for the aforementioned road on I-80 westbound in 2008.  

http://inrix.com/
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Figure 6.4 Monthly traffic speed profile for I-80 westbound in Omaha in 2008 

 

The speed profile is a stacked bar chart drawn horizontally. The colors from dark brown 

to green represent speed ranges from lowest to highest, respectively. The vertical axis is scaled 

by 0.l mile increments and labeled by mile marker. Due to space limitations, only the top 100 

hours with the lowest operational speeds are shown for each month. The locations near mile 

marker 452.5 (at the eastern end of the road) had longer travel times with lower operational 

speeds, and December was found to be the month with the most frequent observations of low 

speeds. 

The charts for travel time profile and speed profile are also useful for comparing the 

traffic characteristics between different travel directions along a corridor or among different 

roadways. Benefiting from the integrated database and data processing platform, the data 

visualization methods and performance measure charts can be easily applied to any road segment 

in the database for a wide range of analysis periods. This technique provides the ability to 

quickly investigate traffic conditions on multiple corridors and display key findings.  

 

6.2 Bottlenecks on the Omaha Urban Freeway System 

 

This part of the analysis used data collected for the years 2008 and 2009 on five major 

corridors in Omaha, including I-80, I-480, I-680, US-6, and US-75. To identify the traffic 

bottlenecks, daily traffic speed heat maps were created for the entire two years in both travel 

directions of these five corridors. These heat maps include a total of 7,310 subplots (731 days × 5 

corridors × 2 directions). All of the heat maps used a uniform color scale for easy comparison. 

The findings from the daily heat maps are summarized below:  

 I-80: For the westbound direction, recurring congestion during the afternoon (PM) peak 

hours was observed, while there was no congestion observed during the morning (AM) 

peak hours. For the eastbound direction, recurring congestion was observed during both 
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the AM and PM peak hours on weekdays, specifically during the PM peak hours on 

Fridays. It was also observed that the congested locations were different between the AM 

and PM peak hours. During the PM peak hours, the most congested area was near the 

eastern end near downtown (mile markers 450 to 454), while during the AM peak hours 

the most congested area was near the western end (mile markers 445 to 448). 

 I-480: The average speed was slightly lower than that on I-80. The eastbound direction of 

I-480 experienced recurring congestion during the AM peak hours, and the westbound 

direction experienced congestion during the PM peak hours.  

 I-680: The overall speed was above the speed limit (60 mph). There was some recurring 

congestion during the AM and PM peak hours on I-680 northbound, but no obvious 

issues were observed for the southbound traffic. 

 US-6: The speed sensors on both directions of US-6 were not in good working condition, 

and hence there was a significant amount of missing data. However, the data showed 

some evidence that US-6 eastbound experienced congestion during the AM peak hours, 

and minor congestion was observed during the PM peak hours for the westbound traffic.  

 US-75: US-75 had similar patterns to I-680 and US-6. The northbound traffic 

experienced congestion during the AM peak hours, and the southbound traffic was 

slightly worse during the PM peak hours than the AM peak hours.  

Overall, the traffic on the analyzed freeways in 2008 and 2009 demonstrated some 

similar patterns: the roads going into the Omaha central district experienced recurring congestion 

during the AM peak hours, and those roads going out of the Omaha central district experienced 

severe congestion during the PM peak hours. The recurring congestion could most likely be 

attributed to commuter traffic. The most congested segments are shown in Figure 6.5.  
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Figure 6.5 Summary of AM and PM congestion in 2008 and 2009 

 

The yellow arrows in the top two windows represent the congested areas during the AM 

peak hours. The red arrows in the bottom two windows represent the congested areas during the 

PM peak hours. The left two windows show the congested areas in 2008, and the right two 

windows show the traffic in 2009. The traffic direction is indicated by the direction of the arrow, 

and the congestion level is indicated by the width of the arrow. The traffic in the years 2008 and 

2009 had similar congestion patterns. Out of the five studied corridors, I-80 experienced the 

highest congestion and was selected for further analysis.  

Three-dimensional charts for travel time delay were created for I-80 westbound and are 

shown in Figure 6.6. Similar charts for I-80 eastbound are shown in Figure 6.7. The 

corresponding AM and PM congestion locations are marked on the map below each bar chart by 

a yellow circle and a red circle, respectively. 
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Left: 2008, Right: 2009 

 

Figure 6.6 Cumulative travel time delay on I-80 westbound in 2008 and 2009 

 

 
Left: 2008, Right: 2009 

 

Figure 6.7 Cumulative travel time delay on I-80 eastbound in 2008 and 2009 
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To better visualize the bar charts, a 180 degree rotated view is provided for both 2008 

and 2009 in Figure 6.7. The traffic patterns for travel time delay are consistent with the findings 

from the daily heat maps. The travel delay slightly decreased in 2009, but the patterns remain the 

same. Comparing the travel time delay shown in Figures 6.6 and 6.7, it is clear that the 

eastbound traffic on the studied segment experienced higher travel delay than the westbound 

traffic and that several miles near the western end performed consistently well. Therefore, a ramp 

metering cost-benefit analysis was conducted for the segment on I-80 eastbound from the I-680 

interchange to the eastern end.  

The average daily traffic condition on I-80 eastbound is shown on the heat map in Figure 

6.8.  

 

 
 

Figure 6.8 Average daily traffic condition on I-80 eastbound in 2008 

 

The vertical axis of the map shows sensor ID. Widespread congestion was observed 

during the PM peak hours. To further investigate the speed distribution of the eastbound traffic 

on this road, daily traffic speed heat maps were plotted for the entire year of 2008. The daily 

traffic conditions in August 2008 are illustrated in Figure 6.9.  
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Figure 6.9 Daily traffic conditions on I-80 eastbound in August 2008 

 

Recurring congestion was identified during the PM peak hours, and the most severe 

congestion occurred on Fridays. Figure 6.10 shows the average daily traffic conditions on 

Fridays from May 1 to September 30, 2008.  

 

 
Based on data from May 1 to September 30, 2008 

 

Figure 6.10 Average traffic conditions on I-80 eastbound on Fridays 

 

Comparing Figures 6.8 and 6.10, it can be seen that the congestion on Fridays was the 

main cause of the low speed trend during the PM peak hours. The most congested period was 

between 3 p.m. and 8 p.m. on Fridays along the road from sensor 590 to sensor 612, and the 

congestion lasted for about four hours. 
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The analysis above ultimately identified a 6.3 mile segment on I-80 eastbound as the 

main recurring bottleneck among the five major corridors in Omaha. This segment is shown in 

Figure 6.11.  

 

 
 

Figure 6.11 Bottleneck on I-80 eastbound near downtown Omaha 

 

This segment was covered by nine sensors (IDs 590 to 612) and included four 

interchanges near the Omaha downtown district. The heaviest congestion occurred from 3 p.m. 

to 8 p.m. on Fridays. This segment was selected as a potential location for ramp meter 

installation. The analysis of ramp metering is discussed in Chapter 7. 

Because the bottleneck analysis used traffic data from 2008 and 2009, which is six years 

before this study was conducted, there was a concern that the data may not reflect the current 

traffic conditions. To check this issue, daily speed heat maps similar to those in Figure 6.9 were 

plotted using INRIX data for both travel directions on the five studied corridors in 2013 and 

2014. These daily heat maps are included in the Appendix. There were work zones in Council 

Bluffs during 2013 and 2014, which potentially influenced the eastbound traffic from Nebraska 

to Iowa. The heat maps show that the overall traffic conditions on I-80 eastbound in 2013 and 

2014 were better than those in 2008 and 2009, but several heavy congestion areas were still 

observed near the western end of I-80 eastbound during the PM peak hours on Fridays.  

This chapter introduced several speed-based traffic performance measures, including 3D 

bar charts of congestion counts, 3D bar charts of travel time deficiency, monthly travel time 

profiles, and monthly traffic speed profiles. After comparing the performance measures as well 

as the speed heat maps of different roadway segments, a 6.3 mile segment on I-80 eastbound 

(from sensor 590 to sensor 612) was identified as the main recurring bottleneck among the five 

major corridors in Omaha. The following chapter delves into the costs and benefits of providing 

a ramp metering solution for the section of the road identified as having the most critical 

recurring congestion. 
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7. Evaluating the Impacts of Ramp Metering 

 

This chapter presents a case study that evaluates the costs and benefits of implementing a 

ramp metering solution for the congested corridor identified in the previous chapter. The change 

in travel speed after applying the ramp metering strategy was analyzed using FREEVAL. 

FREEVAL requires traffic volume as one of the inputs, but the radar sensors on the corridor only 

provide speed measurements. Due to the lack of traffic volume data, several assumptions were 

made to estimate the volume from the speed data. The following two sections describe in detail 

the modeling of the bottleneck segment and the assumptions made for the calculation of the 

traffic volumes. The benefits obtained from ramp metering were quantified in dollar values and 

are reported in subsequent sections. 

 

7.1 Modeling the Bottleneck Segment 

 

A 6.3 mile segment on I-80 eastbound was selected for ramp metering analysis. A total of 

nine speed sensors were installed along this segment, as shown in Figure 7.1.  

 

 
 

Figure 7.1 Segment selected for ramp metering analysis with nine sensors on I-80 eastbound 

 

The segment included eight on-ramps and five off-ramps, which are indicated by arrows 

in Figure 7.2 along with the locations of the speed sensors. 

 

 
 

Figure 7.2 Ramps and sensor locations on the studied roadway 

 

The studied road was further divided into 18 segments based on the on-ramp and off-

ramp locations. Segments included basic, merging, diverging, and weaving sections and were 

classified according to the criteria in the Highway Capacity Manual (HCM) 2010. These 

segments included eight basic freeway segments, five merging segments, two diverging 
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segments, and three weaving segments. The characteristics of each segment are presented in 

Table 7.1. 

 

Table 7.1 Summary of characteristics for the 18 studied segments 

 
 

The length and number of lanes on each segment were checked using Google Earth. The 

free flow speed was determined using the HCM 2010 methodology. Seven out of the nine speed 

sensors were located on basic freeway segments, while sensors 625 and 598 were located on a 

diverging segment and a weaving segment, respectively. Generally, the traffic conditions on the 

basic freeway segments were more stable, and the detectors performed more reliably. The data 

for the 18 segments were used for ramp metering analysis in FREEVAL. 

 

7.2 Speed to Volume Conversion and Model Validation 

 

While FREEVAL requires traffic volume data to conduct the analysis, only speed data 

were available from the radar sensors deployed on the study corridor. The HCM speed-flow 

curves, shown in Figure 7.3, were used to estimate traffic volume from the observed speed data.  

 

 
 

Figure 7.3 Speed-flow curves from HCM 2010 
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The average daily speed data on all Fridays between May 1 and September 30, 2008 were 

used to calculate the average traffic volume on Fridays for the studied segments. The data were 

aggregated in 15 minute intervals. After estimating the traffic volume from the speed data, the 

estimated speed-flow curve was created, as shown in Figure 7.4.  

 

 
 

Figure 7.4 Speed-flow curves for the study segments 

 

Three regimes are shown in this figure. Regime 1 indicates an uncongested condition and 

corresponds to the straight horizontal line in Figure 7.3. To be conservative, the highest 

uncongested flow rate was used, and any speed greater than or equal to the free flow speed was 

mapped to this volume. Regime 2 indicates an undersaturated congested condition and 

corresponds to the curved lines in Figure 7.3. In this regime, speed and flow rate are highly 

correlated; thus, the volume can be estimated at a much higher confidence level compared to the 

other regimes. Regime 3 indicates an oversaturated condition, and all the speeds in this regime 

were mapped to the capacity flow rate. Most of the points were located in regimes 2 and 3, which 

reflects the congestion observed on the study segment. 

The average speed and converted volume between 12:00 p.m. and 1:00 p.m. on Fridays 

were used as the validation samples. The reason for choosing this sample is that all the data 

points for this period were in regime 2, and it is therefore reasonable to assume that the traffic 

behavior during this hour would be similar to that during the upcoming PM peak hours. The 

converted volumes were first calculated for the nine segments with speed sensors. The ramp 

volume was then estimated. To estimate the ramp volume, two assumptions were made due to 

the lack of information: (1) the on-ramps have the same volume in each lane and (2) the 

minimum ramp flow rate is 100 passenger cars per hour per lane (pc/hour/lane). After the ramp 

volume was obtained, the speed data were simulated in FREEVAL based on the converted 

volume. The simulated speed data were compared back to the sensor data for validation. The 

validation results are listed in Table 7.2.  

 

1 

2 

3 
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Table 7.2 Model validation summary 

Segment 

Segment 

Type 

Detector 

ID 

Observed 

Speed 

(mph) 

Converted 

Volume 

(veh. /hour) 

Calculated 

Ramp Volume 

(veh. /hour) 
Simulated 

Speed 

(mph) on off 

1 B 590 57.56 7,657   61.25 

2 M    1,256   

3 W    1,257 2,084  

4 B 614 60.68 8,086   59.53 

5 M    1,256   

6 M    1,257   

7 B 586 59.05 10,599   60.20 

8 D     100  

9 B 578 58.98 10,582   61.38 

10 M    1,256   

11 W    1,257 7,129  

12 B 581 63.41 5,966   61.29 

13 D 625 62.32 5,966  2,117 61.29 

14 B       

15 W 598 62.24 6,362 2,513 2,277 31.32 

16 B 622 61.07 4,085   63.13 

17 M    2,458   

18 B 612 62.71 6,542   61.59 

B: basic freeway segment; M: merging segment; D: diverging segment; W: weaving segment 

 

The differences between the observed speed and simulated speed were acceptable, except 

for segment 15. Segment 15 is a small weaving segment in the simulation, and a potential 

explanation for the speed difference is that the sensor might be situated beyond the weaving 

effect.  

 

7.3 Ramp Metering Evaluation 

 

In order to simulate the over-congested condition, the inflow volume from the mainline 

and the volumes on all the ramps in the study segments were increased based on the calibration 

case using the following assumptions: 

 The inflow volume from the mainline segment upstream of the study segments 

was assumed to be at capacity.  

 The increases of all ramp volumes were in proportion to the increase of inflow 

volume from the mainline segment upstream of the study segments. 

The results of the ramp metering evaluation are subject to the accuracy of these 

assumptions. However, the methodology used here can easily be transferred to another study if 

the actual volumes are measured in the field. 
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Four 15 minute periods were modeled. Figure 7.5 shows the speed profiles for the Friday 

p.m. peak hours without ramp metering. The average travel time on the 6.3 mile long segment 

was 9.3 minutes.  

 

 
 

Figure 7.5 Speed profile for the studied segment without ramp metering 

 

Alternatively, if ramp meters were used on all eight on-ramps along the studied road and 

the ramp metering flow rate was set at 1,000 pc/hour/lane (one vehicle per 3.6 seconds), the 

average travel time could be reduced from 9.3 minutes to 8.1 minutes. The speed profile with 

ramp metering is shown in Figure 7.6.  

 

 
 

Figure 7.6 Speed profile for the study segment with ramp metering 
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7.4 Cost-Benefit Analysis  

 

The analysis in Section 7.3 shows that after ramp metering was implemented, the travel 

time saved was 1.2 minutes per vehicle for the eastbound traffic on the studied segment. The 

average travel time was reduced by 14.8%, and the average speed was increased by 14% (from 

40.7 mph to 46.7 mph). Some studies conducted in other states have also identified the benefits 

of ramp metering in terms of speed and travel time improvements (22): 

 9% increase in speed – Long Island, NY 

 7.5% increase in speed – Minneapolis, MN 

 16.3% increase in speed – Denver, CO 

 11.5 to 22 minute decrease in average travel time – Seattle, WA 

The sensitivity analysis of the effect of speed on crash risk presented in Section 5.2 found 

that a one mile per hour increase in speed was associated with a 7.5% decrease in crash risk. 

After applying ramp metering, a speed increase of 6 mph was obtained; consequently, the crash 

risk is expected to decrease to 62.5% of the crash risk before the implementation of ramp 

metering, resulting in a 37.5% reduction in crash risk. The results of this study are comparable 

with similar findings reported in the literature, listed below (22): 

 26% reduction in collisions during the peak period – Minneapolis, MN  

 34% reduction in the collision rate – Seattle, WA 

 50% reduction in rear-end and sideswipe collisions – Denver, CO 

 50% reduction in total collisions – Detroit, MI 

 43% reduction in collisions – Portland, OR 

 15% reduction in the collision rate – Long Island, NY 

A cost-benefit analysis was conducted using the estimated benefits of the mobility and 

safety improvements. These benefits include the travel time savings and crash cost savings. 

Some assumptions were made for the cost-benefit analysis: 

 The volume on the studied segment was assumed to be 10,000 vehicles per hour (assume 

five lanes, with each lane operating at a capacity of 2,000 vehicles per hour) during 

congestion hours. 

 The average congestion duration was assumed to be four hours every week. 

 The value of time was assumed to be $20.45 per hour (average Nebraska hourly wage in 

2015, according to the Nebraska Department of Labor). 

The total travel time savings can be estimated using the equation below: 

 Total travel time savings on mainline freeway 

=  4
ℎ𝑜𝑢𝑟

𝑤𝑒𝑒𝑘
× 52

𝑤𝑒𝑒𝑘

𝑦𝑒𝑎𝑟
× 10,000

𝑣𝑒ℎ

ℎ𝑜𝑢𝑟
× 1.2

𝑚𝑖𝑛𝑢𝑡𝑒

𝑣𝑒ℎ
×

ℎ𝑜𝑢𝑟

60 𝑚𝑖𝑛𝑢𝑡𝑒
×

$20.45

ℎ𝑜𝑢𝑟
 

= $850,720/𝑦𝑒𝑎𝑟 (7-1) 

The crash cost savings were estimated based on the crash risk reduction due to the increased 

speed. The crash cost was estimated using the capital monetary losses related to emergency 

services, medical care, property damage, and lost productivity. Table 7.3 lists the cost estimates 

for motor vehicle crashes in Nebraska 2013 provided by the Nebraska Office of Highway Safety 

(http://www.transportation.nebraska.gov/nohs/pdf/trcostest.pdf).  

 

http://www.transportation.nebraska.gov/nohs/pdf/trcostest.pdf
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Table 7.3 Nebraska cost estimate for motor vehicle crashes in 2013 

Type of Crash 

Cost per each 

type of Crash 

Number of each 

type of Crash Total cost 

Death $1,500,000 225 $337,500,000 

Injury $80,700 1,620 $130,734,000 

Property damage crash 

(including minor 

injuries) 

$9,300 35,350 $328,755,000 

Total $21,427 37,195 $796,989,000 

 

The average cost per crash in Nebraska in 2013 was $21,427. (Because the average cost 

of Death and Injury crashes indicate the average cost per person and not per crash, the actual 

average cost per crash should be higher than $21,427.) This number was used for the following 

safety benefit analysis. 

According to the crash statistics in Table 4.1, a total of 257 crashes occurred in one 

direction of I-80 in Omaha (Table 4.1 gives the westbound crashes, and we assume the number 

of crashes in both directions is equal). By applying ramp metering, the number of crashes could 

be reduced by 37.5%. The cost savings of reducing 96 crashes is calculated as follows: 

Total crash savings on mainline freeway per year 

 =  96 × $21,427 = $2,056,992 (7-2) 

The total benefit from using ramp metering was calculated by obtaining the sum of travel 

time savings and crash cost savings. For the studied segment on I-80 eastbound, the total benefit 

was $2,907,712 per year. 

The cost of using ramp metering was determined based on the cost estimates of ramp 

metering projects in other states. The cost of installing a ramp meter ranged from $10,000 to 

$100,000 per site. Assuming that the cost for each ramp metering installation is $50,000 and one 

ramp meter is needed for each of the eight ramps on the studied road, the total cost of ramp 

metering would be $400,000. This cost can be easily recovered by the travel time savings and 

crash cost savings in one year. Therefore, the ramp metering strategy is recommended for traffic 

operations during peak hours on the identified bottleneck segment. 

In this chapter, FREEVAL was used to analyze the impact of ramp metering on the 

selected 6.3 mile long segment. The characteristics and traffic volumes of each subsegment were 

carefully modeled and calibrated. The simulation results show that the mainline travel time on 

the 6.3 mile segment can be reduced from 9.3 minutes to 8.1 minutes and that the crash risk can 

be reduced by 37.5% after applying a ramp metering strategy. The cost-benefit analysis shows 

that the benefits from travel time savings and crash cost savings can easily offset the cost of 

implementing ramp metering. The following chapter discusses the feasibility of real-time crash 

risk prediction as an active traffic management approach.  

 



 

41 

8. Crash Estimation/Prediction and Potential Applications 

 

The analyses in previous chapters have shown that traffic speed is an important indicator 

of crash risk. Compared to a statistical analysis of the relationship between speed and crash risk, 

crash estimation/prediction using real-time traffic speed data is a relatively new research topic 

and is of more practical value in traffic operations. This chapter describes a comprehensive study 

of real-time crash estimation/prediction. A method of crash estimation/prediction based on traffic 

speed was developed and is described, and potential applications are discussed. 

 

8.1 Crash Estimation/Prediction Using a Single Speed Variable  

 

The original data set used for this part of the analysis was described in detail in Section 

5.2 (data for I-80 westbound in Omaha in 2008) and consists of 10,000 non-crash instances and 

285 crash instances. Two data sets were generated from the original one: in the “No 

Discretization” data set, the original numeric attributes were kept unchanged, and in the 

“Discretization” data set, the numeric attributes were converted into categorical attributes by the 

minimum description length discretization algorithm. The impact of different input data formats 

can be investigated by comparing the model outputs for the two data sets. The indicator of crash 

occurrence was used as the response variable for the crash estimation/prediction model, and the 

predictors included traffic speeds, weather conditions, time of day, day of the week, and road 

location.  

Both data sets, each with 10,000 non-crash instances and 285 crash instances, were split 

into two subsets: a training set and a test set. A large portion of each data set, including 9,000 

non-crash instances and 256 crash instances, was used to form a training set, and a smaller 

portion, with 1,000 non-crash instances and 29 crash instances, was preserved as a test set. 

Considering the imbalanced ratio of crash to non-crash instances, a resampling method 

combining bootstrap oversampling of the minority class (crash instances) and random 

undersampling of the majority class (non-crash instances) was applied to the larger subset (9,000 

non-crash and 256 crash instances) to form a training set with balanced data. The final training 

set included 4,644 non-crash instances and 4,612 crash instances.  

Several data mining algorithms were investigated in the modeling, including Bayesnet, 

J48 decision tree, random tree, and random forest. The widely used ensemble learning techniques, 

bagging and AdaBoost, were also applied to check whether they could improve model 

performance. All of the models were developed in Weka (23). The model results are summarized 

in Table 8.1.  
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Table 8.1 Summary of model results 

 
 

All of the attributes in the “No Discretization” column in Table 8.1 remained in their 

original data format. In the “Discretization” column, “Time,” “Mileage,” and “Speed” were 

binned into five, eight, and four groups, respectively, using the minimum description length 

discretization algorithm. For the “No Discretization” group, the total precision was above 92%, 

and the accuracy could be raised up to near 95% by ensemble learning. However, the best 

prediction accuracy for the minority class (marked by colored cells in Table 8.1) among all 

models was 55%, which was still much lower than the prediction accuracy for the majority class. 

For the “Discretization” group, the models provided a more balanced prediction accuracy 

between the minority class and the majority class, though the total precision is lower than that of 

the “No Discretization” group. Compared to the “No Discretization” group, the overall accuracy 

decreased to 85% while the accuracy for the minority class rose to 68%. 

Based on the analysis discussed above, none of the classification models produced a 

perfect prediction result. There appeared to be a trade-off between the prediction accuracies of 

the majority class and minority class. One possible explanation could be that the distinction 

between crash cases and non-crash cases in the training set was not strong enough to be captured 

by the models. In the models presented in Table 8.1, speed was the only variable related to traffic 

characteristics, and this one variable may not be able to capture the detailed traffic fluctuations 

causing the crashes. Multiple speed variables are recommended to increase the distinction 

between crash and non-crash cases. 

 

8.2 Crash Estimation Using Multiple Speed Variables 

 

This section presents a comprehensive study of real-time crash estimation. Different 

related issues are discussed, including attribute selection, sampling, ensemble learning, and 

performance metrics.  
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8.2.1 Data Structure, Window Selection, and Distinction 

 

The essential data-level feature influencing model prediction accuracy is the distinction 

between classes. All data-level approaches focus on increasing this distinction. Therefore, the 

distinction defined within the original data set can be critical. 

In this analysis, an 11.7 mile segment on I-80 eastbound from mile marker 442.9 to mile 

marker 454.6 in the metropolitan area of Omaha, Nebraska, was studied. The data set consisted 

of archived traffic speed data and crash data from 2008 with 313 crashes. Figure 8.1 shows the 

daily traffic speed heat maps overlaid with crashes for the study segment in September 2008. 

  

 
 

Figure 8.1 Daily speed heat maps overlaid with crashes for the studied segment  

 

Each pixel on the heat maps is a five-minute by 0.1 mile grid. Each grid is colored based 

on speed and marked based on crash history (i.e., no “×” marker means no crashes). As evident 

in these heat maps, a large portion of crashes occurred when the traffic speed was low. If crash 

occurrence is predictable by speed, a normal speed pattern and a certain speed pattern as a 

precursor to crash occurrence could be classified; in other words, the speed pattern captured by a 

small window on the heat map should be classifiable into normal and hazardous conditions.  

Three window selection strategies (the three squares identified by the labels 1, 2, and 3) 

are illustrated in Figure 8.2.  

 

 
 

Figure 8.2 Attribute selection for crash likelihood prediction 
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In this figure, the target study point where the crash risk will be estimated for a given 

time is marked as “Current” in the grid and is colored red. On the vertical axis, the “+” marker 

indicates the downstream direction and the “-” marker indicates upstream. Intuitively, the 

downstream traffic should have a greater impact on the current study point than the upstream 

traffic. Large speed differences resulting from the low speed of downstream traffic could 

possibly lead to a higher risk of rear-end crashes. In the real-time crash prediction problem, 

Window 2 in Figure 8.2 represents a “crash prediction” scenario because there is a buffer time 

(five minutes in this case) between speed measurement and the target interval (the red box). Both 

Window 1 and Window 3 represent “crash risk estimation” scenarios because the target interval 

is included in the measurement frame. A model based on Window 1 or Window 3 might be more 

reliable because the traffic condition immediately before the crash occurrence is most predictive. 

However, a model based on Window 2 might have more practical value because it leaves a 

buffer time for traffic operations. The window size is also critical. If the window is too small, it 

is possible that important information might be missed; if the window is too large, unrelated 

information could decrease the model’s accuracy.  

In this analysis, Window 1 was first selected. This window is reasonably large enough to 

ensure that no critical information is missing and can be broken down into smaller windows for 

further analysis. The speed heat maps for 14 randomly selected samples are shown in Figure 8.3, 

which includes seven non-crash cases in the top row and seven crash cases in the bottom row. 

 

 
 

Figure 8.3 Speed heat maps for randomly selected non-crash cases (top row) and crash cases 

(bottom row) 

 

For four of the seven crash cases in Figure 8.3, the speed pattern in the window is 

significantly different from the speed pattern for the corresponding non-crash cases. The other 

three crash cases have speed patterns similar to the speed patterns of their corresponding non-

crash cases and therefore would not be easy to differentiate from non-crash cases. In real-time 

crash prediction modeling, the risk of crash occurrence at a certain study point is explained by 

the traffic speed pattern in each grid within the selected window.  

The distributions of traffic speeds at the target intervals for both crash and non-crash 

cases are shown in Figure 8.4.  
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Figure 8.4 Distribution of speed for crash and non-crash cases 

 

In each of the left two subplots of this figure, the blue bars represent the speed 

distribution and the red curve is the fitted normal distribution. The two fitted normal distributions 

are displayed together in the subplot on the right, with crash cases in red and non-crash cases in 

blue. At the target interval, the speed distributions for crash and non-crash cases had a large 

overlap, and the distinction between the two cases was not very good.  

The scenario described above is a one-grid window case. If more grids are introduced, the 

combination of speeds may enhance the classification accuracy. Hence, it is essential to select 

the right window for maximizing the distinction of data. 

 

8.2.2 Resampling 

 

Data resampling is the most widely used data-level approach for dealing with imbalanced 

data. The idea behind data resampling is to create a new training set with a more balanced class 

rate from the raw data to better fit the modeling algorithm. Commonly used resampling methods 

include oversampling the minority class, undersampling the majority class, and a combination of 

both. In this analysis, a base data set was created using the matched case control method, and 

seven training sets with different crash to non-crash ratios were generated using resampling 

methods. Two “bad” training sets with very small crash to non-crash ratios were also created for 

comparison purposes. These sets were created by intentionally selecting crash and non-crash 

cases from the overlaid regime. 

 

8.2.3 Modeling Algorithms and AdaBoost 

 

Two approaches are often used to handle imbalanced data. One approach is to introduce 

extra cost-sensitive factors to make the individual modeling algorithm robust for the data with an 

unbalanced class rate. The other is to develop a robust model by combining several non-robust 

individual models together. The AdaBoost ensemble learning algorithm represents the latter 

approach. In the following sections of this chapter, four different common classification models 

are tested with and without AdaBoost on all the training sets. 

 

8.2.4 Model Performance Metric 

 

Because the cost of ignoring a crash case (positive) is much higher than misclassifying a 

non-crash case (negative), the overall accuracy of crash prediction is not as important as the true 
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positive rate (or sensitivity or recall) or the false positive rate (or false alarm rate). A high true 

positive rate and a low false alarm rate are desired, but there is trade-off between these two. A 

higher true positive rate can always be achieved by increasing the classification cut-off threshold, 

but the false positive rate will rise in response. The optimal classification cut-off threshold varies 

by application. In most cases, the ROC curve and the AUC are more appropriate performance 

metrics for classifiers than a confusion matrix using 0.5 as the cut-off threshold. Figure 8.5 

shows two similar ROC curves from two different models.  

 

 
 

Figure 8.5 ROC curve colored according to cut-off threshold 

 

The vertical and horizontal axes of a ROC curve are the true positive rate and false 

positive rate, respectively. On a ROC curve, the point closest to the upper left corner is usually 

the best choice for the cut-off threshold. If a value of 0.5 is used as the threshold, the model 

shown on the left of Figure 8.5 will classify most of the data as negative (i.e., ignore most of the 

positive cases), and both the true positive rate and false positive rate will be close to zero; 

conversely, the model on the right will classify most of the data as positive, and both the true 

positive rate and false positive rate will be close to one. Under this performance metric, neither 

of the two models is desired. The two ROC curves have similar shapes. If a threshold of 0.3 is 

used for the model on the left and a threshold of 0.7 is used for the model on the right, both 

models can achieve a high true positive rate with a low false positive rate. 

 

8.2.5 Model Comparison 

 

Using the nine training sets described in Section 8.2 and the eight algorithms introduced 

in Section 8.3, a total of 72 classification models were developed. The performance of the 

models is shown in Figure 8.6 with the AUC as a performance criterion. 
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Figure 8.6 AUC of different classifiers on nine training sets 

 

The classifiers with the AdaBoost algorithm are shown in blue in Figure 8.6, and the 

other single classifiers are shown in red. Overall, the AdaBoost algorithm improved the models’ 

performance in handling imbalanced data, and the algorithm was not very sensitive to the ratio of 

crash to non-crash cases in the data set. As expected, the two “bad” training sets resulted in bad 

model performance. This demonstrates to some degree the importance of data distinction. The 

Adaboost_J48 decision tree classifier was found to be the best model, especially when the 

training set has a large ratio of non-crash to crash cases. 

 

8.2.6 Window Selection Strategy Comparison 

 

The Naive Bayes algorithm, although simple, was shown to perform reasonably well in 

Section 8.2.5. This algorithm has good scalability and is time-efficient for processing huge data 

sets. Here, the Naive Bayes algorithm was selected to compare different window selection 

strategies. Eleven training sets were created using different window selection strategies. These 

eleven windows are shown in Figure 8.7. 

 

 
 

Figure 8.7 Eleven windows used for building a big data model 

 

The AUC values for Windows 1 to 9 in Figure 8.7 are shown in the bar chart on the left 

of Figure 8.8.  
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Figure 8.8 Impact of window size and location on model performance 

 

The bar chart is arranged by window size. This chart indicates that adding more 

information from old time slices would reduce model performance. Also, adding information 

from downstream segments could make the mode more predictive. The ROC curves for 

Windows 9, 10, and 11 are displayed together on the right of Figure 8.8. These curves show that 

when the window was moved to an earlier period, the speed information became less predictive. 

However, the performance deterioration was not very significant. Therefore, in practice it is 

possible to perform both crash risk estimation and crash risk prediction for up to 10 minutes with 

reasonable accuracy. 

  

8.3 Potential Applications 

 

The analyses in this chapter have shown that using a combination of speeds from a series 

of time intervals from both the upstream and downstream segments of the target segment 

captures the details of traffic conditions and improves the accuracy of crash risk predictions. The 

combination of speeds can be represented as a rectangular window frame on a speed heat map. 

An appropriate window selection strategy can enhance the model’s performance. A pre-trained 

model can continue predicting crash risk based on the window of speed (time and location) 

specified by the user. The real-time data feed can be obtained from either field sensor data or 

probe data provided by a company such as INRIX. With this kind of real-time application, 

proactive traffic management can be deployed against predicted upcoming high crash risk events; 

for example, appropriate geo-sensitive information could be provided to the drivers entering the 

area with an elevated crash risk. Furthermore, based on this real-time crash risk prediction 

system, more applications, such as rerouting and coordinated dynamic message signs, can be 

developed. 

This chapter explored real-time crash estimation and prediction using high-resolution 

traffic speed data from field sensors. The first section developed several preliminary crash 

prediction models and illustrated the challenge of achieving prediction accuracy by comparing 

the model results. The second section discussed modeling issues, including attribute selection, 

sampling, ensemble learning, and performance metrics. The Adaboost_J48 decision tree 

classifier was found to be the best model, and more buffer time to improve the reaction time of 

operations can be gained by trading some model prediction accuracy. The last section 

recommended several useful applications that can be developed to improve traffic operations 

based upon real-time crash estimation and prediction. 
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9. Conclusions and Recommendations 

 

9.1 Findings 

 

This report described a comprehensive study of active traffic management on the urban 

freeway system in Omaha, Nebraska. The study presented a systematic way to use data and 

provide support for understanding traffic conditions and making effective operational decisions.  

The use of an integrated database and the developed data processing platform 

demonstrated the advantages of automating data processing procedures, developing data 

visualization applications, speeding up data reduction, and reducing calculation errors. Built 

upon this data platform, a speed heat map–based data visualization system was developed to 

provide an overview of traffic conditions on selected roadway segments during specified time 

periods. General traffic trends and the exact ranges of congestion were easily identified using 

traffic speed heat maps. In addition, crash occurrences, weather conditions, and other related 

information were overlaid together on the heat maps to reveal potential traffic problems and 

causal factors by relating multiple layers of information both temporally and spatially. The traffic 

speed heat map visualization system is a good use of traffic sensor data and has high practical 

value in daily traffic operations. Another advantage of the integrated database and data 

processing platform is that the system is flexible enough to build new features onto it. For 

example, programs for fusing new data sources or calculating new performance measures can be 

coded and embedded into the existing systems. This system is a sustainable way to handle large 

amounts of traffic data and to gain knowledge from integrating multiple data sources. 

Based on the data for a segment on I-80 westbound in Omaha in 2008, a crash risk 

analysis was conducted using traffic, weather, and crash data. A binomial probit model was 

developed to identify the crash contributing factors, and a sensitivity analysis was conducted to 

quantify those factors. The crash analysis found that a one mile per hour increase in speed was 

associated with a 7.5% decrease in crash risk. The crash risk on weekends was 77.6% lower than 

the crash risk on weekdays. The rate of crash risk during the peak hours (6 a.m. to 8 a.m. and 4 

p.m. to 6 p.m.) was approximately twice the rate of crash risk during the rest of a day. Crash risk 

was also affected by location of the road. Rain was found to have no significant impact on crash 

risk, while snow could increase crash risk by 81%. These results were used in the cost-benefit 

analysis to evaluate the ramp metering strategy. 

Using the proposed visualization methods and travel time–related performance measures, 

the traffic conditions on five major freeways in Omaha were scanned, and a 6.3 mile segment on 

I-80 eastbound was identified as the main recurring bottleneck. The FREEVAL software 

provided with the HCM 2010 was used to analyze the impact of ramp metering. The results 

showed that the mainline travel time on the 6.3 mile segment can be decreased from 9.3 minutes 

to 8.1 minutes and that crash risk can be reduced by 37.5% after applying a ramp metering 

strategy. The cost-benefit analysis showed that the benefits from travel time savings and crash 

cost savings can easily offset the cost of implementing ramp metering. 

A comprehensive study on real-time crash estimation and prediction was described in this 

report. Modeling issues, including attribute selection, sampling, ensemble learning, and 

performance metrics, were discussed. The Adaboost_J48 decision tree classifier was found to be 

the best model, and more buffer time to improve the reaction time of operations can be gained by 

trading some model prediction accuracy. This study also recommended several useful 
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applications that can be developed to improve traffic operations based upon real-time crash 

prediction. 

 

9.2 Limitations and Future Work 

 

There are some limitations of this study. The data available for this study were collected 

during the years of 2008 and 2009, and traffic conditions may have changed drastically over the 

intervening six to seven years. Near-term history data are preferred for this type of study. 

Although some of the results related to the descriptive traffic conditions, such as the bottleneck 

location, may not hold true today, the analysis methods are completely transferable. 

In future studies, efforts should be made to develop the capability of the data processing 

platform for processing and visualizing traffic and road weather sensor data in real-time. Other 

real-time applications like real-time crash prediction and rerouting driver guidance systems could 

be built on the real-time data processing platform. 
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Appendix: Daily Speed Heat Maps 2013–2014 

 

 
A. 1 Daily speed heat maps of I-80 eastbound Omaha in January 2013 

 
A. 2 Daily speed heat maps of I-80 eastbound Omaha in February 2013 

 
A. 3 Daily speed heat maps of I-80 eastbound Omaha in March 2013 
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A. 4 Daily speed heat maps of I-80 eastbound Omaha in April 2013 

 
A. 5 Daily speed heat maps of I-80 eastbound Omaha in May 2013 

 
A. 6 Daily speed heat maps of I-80 eastbound Omaha in June 2013 
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A. 7 Daily speed heat maps of I-80 eastbound Omaha in July 2013 

 
A. 8 Daily speed heat maps of I-80 eastbound Omaha in August 2013 

 
A. 9 Daily speed heat maps of I-80 eastbound Omaha in September 2013 
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A. 10 Daily speed heat maps of I-80 eastbound Omaha in October 2013 

 
A. 11 Daily speed heat maps of I-80 eastbound Omaha in November 2013 

 

 
A. 12 Daily speed heat maps of I-80 eastbound Omaha in December 2013 
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A. 13 Daily speed heat maps of I-80 eastbound Omaha in January 2014 

 
A. 14 Daily speed heat maps of I-80 eastbound Omaha in February 2014 

 
A. 15 Daily speed heat maps of I-80 eastbound Omaha in March 2014 
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A. 16 Daily speed heat maps of I-80 eastbound Omaha in April 2014 

 
A. 17 Daily speed heat maps of I-80 eastbound Omaha in May 2014 

 
A. 18 Daily speed heat maps of I-80 eastbound Omaha in June 2014 
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A. 19 Daily speed heat maps of I-80 eastbound Omaha in July 2014 

 
A. 20 Daily speed heat maps of I-80 eastbound Omaha in August 2014 

 
A. 21 Daily speed heat maps of I-80 eastbound Omaha in September 2014 
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A. 22 Daily speed heat maps of I-80 eastbound Omaha in October 2014 

 
A. 23 Daily speed heat maps of I-80 eastbound Omaha in November 2014 

 
A. 24 Daily speed heat maps of I-80 eastbound Omaha in December 2014 
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