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Many rural towns and cities throughout Nebraska have experienced consistent 

population decline over the past 50 years, and the highway system once built to 

accommodate hoped-for growth is not serving the population as well as it could. These 

towns and cities would benefit from implementing a road diet conversion on their main 

highways. Within rural communities, road diets are an increasingly popular method of 

improving safety along major arterials through the reduction of excess capacity in favor 

of increasing refuge areas for turning vehicles. A typical application might be the 

restriping of a four-lane undivided highway into a three-lane highway comprised of two 

lanes of through movement and a two-way left-turn lane. Deciding when or if to 

implement a road diet conversion involves the consideration of many factors. The 

consideration of numerous factors can often lead to explanations on the feasibility of road 

improvement projects saturated with technical language. Since support for road 

improvement projects such as road diets lies in the public sector, the decision making 

process needs to be made easy to understand. 

Public edification of the decision making process involves streamlining the 

process as well as reducing criteria which are technically sound yet abstract to the public. 

To streamline the decision making process, a case study and sensitivity analysis is 



 

 

conducted to determine best practices, evaluation methodology, and decision making 

processes. A before and after simulation analysis is performed using VISSIM, examining 

delay. Existing literature on road diets is used to establish broad guidelines and determine 

long-term effects, such as changes in crash rates. Existing literature is also used to help 

measure the effects of road diet improvements on roadway performance as economic 

benefits and costs, metrics which are more easily understood by the public. Existing 

volume conditions at the case study locations are found to be well-below capacity, and 

the facility performs equally well when modeling with and without the road diet 

improvements.  Subsequently, sensitivity analysis is conducted to determine the impact 

of volume demands on the bottom line costs and benefits of a road diet conversion. This 

information is then used to create guidelines, with easily understood criteria, for making 

decisions on whether or not a road diet improvement should be implemented.
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CHAPTER 1 INTRODUCTION 

This chapter provides an introduction to the research presented as part of this study. The 

background section introduces the general concepts of road diet implementations, and the 

factors that impact whether they should be pursued. The research questions and analysis 

methodology are presented in the second and third sections of this chapter. Finally, a 

description of the document layout is provided. 

 

1.1 Background 

In many rural towns, a two-lane undivided highway expands to a four-lane undivided 

highway as it arrives at the edge of town, and narrows back to two lanes as it exits the 

other side.  However, these rural towns rarely have the traffic volumes to warrant four 

lanes.  Transportation engineers have been looking for different methods of improved 

sustainability for rural roadways.  In recent years, there has been an increase in the 

implementation of road diets.  A road diet is the reduction in the number of lanes of a 

roadway.  Typically for rural applications, this would be a four lane undivided highway 

that is restriped to three lanes, one being a two-way left-turn lane (TWLTL).  The 

remaining lane space can then be used for a variety of possibilities; most frequently it is 

left as additional shoulder space, but in some cases it may alternatively be used as on-

street parking or landscaping.  Some of the major benefits of a road diet include better 

mobility and access, and an enhancement to the livability and walkability of the roadway, 

and some improvement to safety where conflicts between turning and through 

movements are reduced. [1] 
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1.2 Research Questions 

This research seeks to address the feasibility of road diet conversions in Nebraska by 

identfying expected impacts to operations and other performance metrics that result from 

a road diet implementation. The primary objective is to develop the framework to 

determine road diet feasibility using inputs which are readily available to regional and 

local decision makers. There are two main questions examined to develop this 

framework: (1) because the information is readily available, how accurate of a predictor 

is AADT regarding the feasibility of a road diet conversion, and (2)  beyond AADT, what 

are other readily available factors which are predictive of the feasibility of road diet 

conversions. 

 To answer the first question of AADT as an indicator for road diet feasibility, four 

roadway corridors from separate sites throughout Nebraska are assessed with before-and-

after analysis for road diet conversions. This analysis is performed using both Synchro, 

implementing the methodology from the Highway Capacity Manual [2], and VISSIM, 

implementing traffic microsimulation analysis. The sites selected exhibit different levels 

of congestion, indicated by the AADT for the corridor, to establish a baseline for the 

range of AADT for which a road diet conversion is expected to be feasible. Then, 

congestion sensitivity analysis is conducted by running traffic operations analysis on 

multiple volume scenarios at each location. The volume conditions will be used to 

establish the ability of AADT to predict road diet feasibility across differing roadway 

geometries, seeking to make broader assumptions about the feasibility of road diet 

implementations in Nebraska. Recommendations are made regarding the range of AADT 

for which road diets are expected to be universally feasible, the range over which further 
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study is needed, and the range of AADT for which road diets are expected to be 

infeasible. 

 To investigate the second question regarding other indicator variables for the 

feasibility of road diet implementations, a cost-benefit analysis will be conducted for all 

sites and volume conditions. Results of the cost-benefit analysis will be examined, 

relative to a variety of parameters such as average delay and change in average delay, to 

determine which factors have the greatest influence on the economic feasibility of road 

diet conversions. 

 

1.3 Methodology 

This research study involves the analysis of predicted impacts of road diet 

implementations converting four-lane roadways to two-lane roadways with a two-way 

left-turn lane (TWLTL).  The primary inputs for the study are the existing roadway 

geometry and the observed peak-hour traffic at the case study sites selected. The primary 

performance metric for the roadway facilities is the operational analysis of both existing 

and proposed conditions, using the average delay per vehicle as a service measure.  

Secondary output measures include other measures of mobility such as average stops per 

vehicle, as well as cost-benefit analysis of the case study sites. A set of volume scenarios 

will be examined which increase the traffic demands until failure of the facility, to aid in 

investigating a broader range of AADT than what is able to be observed through field 

data collection. To collect the necessary data for this study, five MioVision Scout 

cameras were placed at major intersections along each study corridor. 
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The data was analyzed using two separate software applications, Synchro and 

VISSIM. Synchro is a traffic modeling software based on the Highway Capacity Manual 

(HCM) [2] methodology, utilizing macroscopic flow parameters to analyze traffic 

performance. VISSIM is a micro-simulation traffic modeling software, modeling the flow 

of each car through a road network and aggregating the individual results to generate 

performance measures. These programs were used for a “before and after” analysis by 

comparing the movement of vehicles for the current four-lane roadway cross-section to 

the movement of vehicles for the reduced capacity two-lane cross-section. 

To establish an analysis baseline for the case study sites, the existing network 

performance is analyzed in Synchro, which is based on the Highway Capacity Manual. 

VISSIM analysis of the case study corridors was conducted by creating two models for 

each site. One model for the existing condition and one model for the road diet condition. 

An economic analysis of the effects of road diet improvements is conducted, performed 

in accordance with guidelines and procedures set forth by the American Association of 

State Highway and Transportation Officials (AASHTO) in the User and Non-User 

Benefit Analysis for Highways. [3] 

 

1.4 Document Layout 

This thesis is divided into nine chapters. Chapter 1 is the introduction. Chapter 2 reviews 

road diets: examining factors affecting feasibility and post-implementation impacts, and 

the current state of practice in cost-benefit economic analysis. Chapter 3 reviews the 

methodology for the data collection, operational analysis, and economic analysis required 

by the research. Chapter 4 reviews the case study sites selected for analysis as well as the 
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methodology for selecting those sites. Chapter 5 reviews the collection and reduction of 

traffic data used as input in the research. Chapter 6 discusses the results of the 

simulations performed during the research. Chapter 7 discusses the limitations of the 

work performed during the course of the research. Chapter 8 presents the decision matrix 

created from the results of the simulations and analysis. Chapter 9 is the conclusion and 

recommendations for further research. 
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CHAPTER 2 LITERATURE REVIEW 

The literature review for this study is broken out into four sections. The first section 

examines the current literature on the use of AADT to make determinations about the 

feasibility of reducing capacity through the repurposing of lanes as part of a road diet 

implementation. The second section reviews the literature on the safety improvements 

experienced as a result of road diet implementations; ideally a road diet should be 

implemented in a location where the existing facility has excess capacity, such that a 

reduction in lanes can provide opportunities for safer travel without reductions to 

operational performance. The third section of the literature review examines the inter-

related operational performance metrics of speed, travel time, and average delay. The 

fourth and final section of the literature examines which additional feasibility factors 

have been utilized by other studies when assessing road diet implemenations. 

 

2.1 Traffic Volume Impacts on Road Diet Feasibility 

Many studies have conducted research on the effectiveness of road diet conversions in 

relation to the AADT of the roadway corridor on which the road diet is being 

implemented. 

Welch conducted a study with sites in Seattle, Washington, and found that road 

diets to be feasible on roadways with AADT up to 20,000+ vehicles per day, with results 

shown below in Table 2.1. [4] The primary concern of Welch’s investigation was to look 

into changes to crash rates and ADT; the author found that ADT increased on all 

locations despite the constrained capacity, while reported crash rates reduced or were 

held constant. 
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Table 2.1 Results of road diet conversion in Seattle, Washington [4] 

 
 

Studying road diet conversions across the United States, Knapp and Giese found 

successful road diet conversions for roadways with AADT ranging from 8,400 to 24,000 

vehicles per day, based on improvements to safety with negligible impacts to traffic 

operations, shown below in Table 2.2. [5] 
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Table 2.2 Results of 2001 road diet conversion study by Knapp and Giese [5] 

 

 

The Highway Safety Information System (HSIS) evaluated and found road diets 

to be successful on sites in Iowa with AADT volumes ranging from 3,718 to 26,376 
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vehicles per day in a 2010 study. [6] This study is notable for the large number of sites 

investigated, both of road diet implementations as well as control locations not 

undergoing geometric changes, as shown below in Table 2.3. 

 

Table 2.3 Results of 2010 road diet study by HSIS [6] 

 

 

A report published by the Kentucky Transportation Center, conducted by 

Stamatiadis, Kirk, Wang, and Cull, concluded that road diets may be a feasible 

alternative on roadways with AADT as high as 23,000 vehicles per day but may also fail 

on roadways with low ADT depending upon side street volume. [7] Expanding on their 

previous research, Stamatiadis and Kirk refined their finding to recommend combined 

ranges of ADT for the major and minor roadways at which a road diet implementation 
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would be recommended, not recommended, or requiring additional evaluation, as shown 

below in Figure 2.1. [8] 

 
Figure 2.1 Results of 2012 road diet study by Stamatiadis and Kirk [8] 

 

Pawlovich, Li, Carriquirry, and Welch found that AADT volumes for effective 

road diet conversions range from 2,030 to 15,350 vehicles per day. [9] Tan reported 

successfully implemented road diet conversions on sites with AADT ranging from 12,000 

to 20,000 vehicles per day. [10] 

 

2.2 Safety Impacts of Road Diets 

So long as the demand flow-rate on the roadway is less than the reduced capacity, there is 

negligible impact on traffic operations with the implementation of a road diet, with the 

primary impact being an increase in safety on the facility. With ranges of appropriate 
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AADT values for road diets fairly well established, a study by Gates, Noyce, Talada, and 

Hill concluded that road diets are a recommended option within a given range of average 

daily traffic values if the roadway is experiencing safety problems related to the conflict 

of left-turn traffic with through traffic vehicles. [11] 

 Data previous presented in the context of AADT analysis of road diet 

implementations shed some light on the safety benefits experienced. Table 2.1, 

previously shown, reflects data from several street conversions in Seattle, Washington. It 

appears a 20 to 30% reduction in crashes would be a reasonable estimate of the potential 

safety improvement of a four- to three-lane conversion. [4] Research conducted by 

Knapp and Giese studied 13 road diet sites from Montana, Minnesota, California, 

Washington, and Iowa. The authors found that road diet conversions resulted in total 

crash reductions ranging from 17 to 62 percent, as previously shown in Table 2.2. [5]  

A study by Pawlovich et al. compared 15 road diet sites against 15 comparison 

sites in Iowa to assess crash reduction due to road diets. Utilizing data provided over 23 

years, the results of this research indicate a 25.2 percent reduction in crash frequency and 

an 18.8 percent reduction in crash rate. [9] Gates et al. examined nine road diet sites in 

Minnesota in 2007. Of the nine sites studies, seven sites had crash data available and it 

was determined that the road diets resulted in an overall crash reduction of 44.2 percent. 

[11] In an attempt to better consolidate road diet impacts, Persuad and Lyon reanalyzed 

previous studies with consistent analysis methods. This included a study with data from 

Washington and California as well as a more recent data from Iowa in an attempt to 

reduce differences in results by standardizing methodology. The combined study with 

revised methodology found a 47 percent reduction in total crashes for Iowa (25 percent 
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originally) and a 19 percent reduction in total crashes for the HSIS study (6 percent 

originally). When all of the data sets are combined, crashes are reduced on average by 29 

percent. [6] The results of this study are shown previously in Table 2.3.  

In a study on the safety implications of road diet conversions, Welch assessed the 

change in collision rates for nine sites in Iowa. [4] The research identified collision rate 

reductions ranging from 0 percent to 61 percent for the individual sites and established an 

average, collision rate reduction of 34 percent across all sites. Table 2.4 shows the three-

year before- and after- midblock and non-signalized intersection crash information for a 

four to three-lane conversion project on Minnesota Trunk Highway 49 (Rice Street) in 

Ramsey County, Minnesota. The ADT on Rice Street during the after period was 16,400 

vehicles per day.  

 

Table 2.4 Collision results for 1999 study by Welch [4] 
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A study by Huang et al. analyzed 30 road diet sites from California and 

Washington using 50 additional control sites to determine the reduction in crash rates. 

The research found a 6 percent reduction in total crashes on average for road diet sites. 

[12] The results are reported in Table 2.5 and Table 2.6, below. 

 

Table 2.5 Results of 2003 road diet study by Huang, Stewart, Zegeer, and Esse [12] 
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Table 2.6 Results of 2003 road diet study by Huang, Stewart, Zegeer, and Esse [12] 

 
 

 

Stamatiadis et al. studied the impacts of road diets at four sites in Kentucky. This 

2011 study found that total crashes were reduced an average of 36 percent across the four 

sites. [7] Also conducted in 2011, a study by Tan analyzed road diets from Florida, 

Georgia, Iowa, and Washington. From the study sites, crash rates were reduced anywhere 

from 14 percent to 53 percent. [10] In 2014, Knapp et al. documented the results of 10 

separate road diet studies while compiling the FHWA Road Diet Informational 

Guidebook. The compilation of this data noted that road diets resulted in a reduction in 

total crashes ranging from 6 percent to 53 percent. [13] The results of this study are 

shown in Table 2.7, below. Finally, a 2015 road diet cost-benefit analysis by Noland et 

al. in New Jersey found that road diet conversions result in a 19 percent crash reduction. 

[14] 
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Table 2.7 Results of 2014 Knapp et al. study in FHWA Road Diet Guidebook [13] 

 

 

2.3 Operational Impacts of Road Diets – Speed, Travel Time, and Average Delay 

Aside from impacts on collision rates, road diet conversions have a potential impact on 

travel time. This can be due to a reduction in free flow speed due to the loss of a lane, or 

the increase in control delay at intersections. Welch found road diet conversions to reduce 

average travel speed by 1.7 miles per hour. [4] The results of this study’s speed reduction 

analysis are shown in Table 2.8. 
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Table 2.8 Speed reduction results from 1999 study on road diets by Welch [4] 

 
 

 

Knapp and Giese found that road diet conversions reduce the average arterial or 

85th percentile speed by 5 miles per hour or less. Results from the 2001 study also noted 

that road diet conversions reduce the number of drivers traveling 5 miles per hour or 

more above the posted speed limit, this reduction typically ranged from 60 to 70 percent. 

[5] See Tables 2.9, 2.10, and 2.11 for more detailed information on speed reduction 

effects of road diets from this study. 

 

Table 2.9 Speed impact results from 2001 road diet study by Knapp and Giese [5] 
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Table 2.10 Speed impact results from 2001 road diet study by Knapp and Giese [5] 

 
 

 

Table 2.11 Speed impact results from 2001 road diet study by Knapp and Giese [5] 
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A 2007 study conducted by Gates et al. observed a median reduction of 2 miles 

per hour each in both the mean speed and the 85th percentile speed. [11] In 2008, a study 

evaluating road diets in New Jersey found that average speeds were reduced between 1 

and 9 miles per hour. [15] The 2010 HSIS study to standardize evaluation methods also 

examined road diet impacts on speed. Iowa sites experienced a 4 to 5 mph reduction in 

85th percentile free-flow speed and a 30 percent reduction in the percentage of vehicles 

traveling in excess of 5 mph above the speed limit. [6] In a 2008 report, Tan documented 

speed reductions ranging from 18 percent to 52 percent across multiple sites. The total 

number of drivers traveling above the speed limit experienced a reduction of 8 to 10 

percent. [10] Li and Tian conducted a road diet case study in Reno, Nevada that found 

average speeds to be reduced by 2 to 3 miles per hour. [16] 

The change in travel time as the result of road diet conversions can have an 

impact on the Level-of-Service (LOS) of the roadway corridor. However, each LOS 

regime has a range of values of delay under which that particular grade is constant, based 

on the criteria established in the Highway Capacity Manual. [2] Therefore, small 

increases in travel time may or may not impact the LOS calculated for a facility, based on 

how close the original delay value is to the threshold between LOS regimes. An example 

of how average delay per vehicle and LOS regimes are related is shown below, in Table 

2.12. 
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Table 2.12 Motorized vehicle LOS criteria for signalized intersections [2] 

 
 

 

In his 1999 study on road diet conversions, Welch concluded that although total 

delay increases for both the corridor and individual intersections, the delay is not 

significant enough to affect LOS. [4] Results from the LOS analysis for this study are 

shown in Tables 2.8, above and 2.13, below. 
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Table 2.13 Results of LOS analysis from Welch’s 1999 road diet study [4] 

 
 

 

When analyzing the effects of road diet conversions in their 2001 study, Knapp 

and Giese found the LOS of both the existing and road diet cross sections was either LOS 

B or LOS C. Therefore, the cross sections primarily had the same LOS, except for a small 

number of input variable combinations. Average intersection stop delay was also used to 

determine the LOS at the signalized intersections along the simulated corridor. Overall, it 

was determined that the signalized intersections in the simulations operated at LOS B for 
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all sensitivity analysis factor combinations. [5] Tables 2.2, 2.9, 2.10 and 2.11 show the 

results of examining the impact of road diet conversion on operations for this study. A 

study by Li and Tian found that road diet conversions increase the LOS of intersections 

along the corridor by one level at most. [16] Tables 2.14 and 2.15 show the changes in 

LOS as a result of road diet conversion for this study. 

 

Table 2.14 Results of road diet LOS analysis from study by Li and Tian [16] 

 
 

 

Table 2.15 Results of road diets LOS analysis from study by Li and Tian [16] 
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2.4 Additional Feasibility Factors 

Several studies looked at factors to determine the feasibility of implementing road diet 

improvements on a roadway corridor. Knapp, Welch, and Witmer examined feasibility 

determination factors that include: roadway function; total traffic volume; turning 

volumes and patters; weaving, speed, and queues; accident type and patters; pedestrian 

and bike activity; right-of-way availability and cost. [17] 

In a follow-up study, Knapp et al. identify several feasibility factors. Factors 

considered to determine feasibility include the need for improved safety for all road 

users; a desire to incorporate context sensitive solutions and complete street features; 

roadway function/operation; vehicle speed; ADT; multimodal LOS; peak hour volumes 

and directions; turning volumes and patters; presence of slow-moving or frequently 

stopping vehicles; a desire to better accommodate bicycles, pedestrians, and transit 

service; right-of-way availability and cost; existence of parallel roadways, parallel 

parking, and at-grade railroad crossings; public outreach, public relations, and political 

considerations. [13] 
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CHAPTER 3 ANALYSIS METHODOLOGY 

This research study involves the analysis of predicted impacts from converting four-lane 

roadways to two-lane roadways with a two-way left-turn lane (TWLTL).  The primary 

inputs for the study are the existing roadway geometry and the observed peak-hour traffic 

at the sites selected for study. The primary output of the study is the operational analysis 

of the roadway with both existing and proposed conditions, using the average delay per 

vehicle as a service measure.  Secondary output measures include other measures of 

mobility, such as average stops per vehicle, operations relative to various levels of 

average annual daily traffic, and cost-benefit analysis of sample road diet 

implementations. 

 

3.1 Data Collection and Reduction 

To collect the necessary data for this study, five MioVision Scout cameras were placed at 

major intersections along each study corridor. An example of the equipment setup is 

shown in Figure 3.1. Given that the number of intersection of interest exceeded the 

number of cameras, peak hour video data collections were conducted on multiple days, 

alternating the intersections being studied to provide a more comprehensive coverage for 

turning movement data. 
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Figure 3.1 Setup of MioVision Scout cameras 

 

The collected video data was uploaded for processing by MioVision, which 

analyzes the video data and provides traffic volume measurements as turn movement 

counts for each fifteen-minute period for the duration of the video recording. 

 

3.2 Operational Analysis of Roadway Conditions 

The data was analyzed using two separate software applications: Synchro and VISSIM. 

Synchro is a traffic modeling software based on the Highway Capacity Manual (HCM) 

[2] methodology, which utilizes macroscopic flow parameters to analyze traffic 

performance. VISSIM is a micro-simulation traffic modeling software, modeling the flow 

of each car through a road network. [18]  
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These programs were used for a “before and after” analysis by comparing the 

movement of vehicles for the current highway configuration to the movement of vehicles 

for the reduced-capacity configuration.  Currently, the four-lane highway is comprised of 

two through lanes in each direction without any median.  The road diet configuration 

would include one through lane in each direction and a two-way left-turn lane, similar to 

the configuration shown in Figure 3.2. 

 
Figure 3.2 Typical section for existing (top) and road diet conditions (bottom) [19] 

 

3.2.1 Synchro (HCM) Analysis of Existing and Road Diet Conditions 

To establish an analysis baseline for the case study sites, the existing network 

performance is analyzed in Synchro, which implements analysis based on the HCM 

methodology. [2] Using an HCM-based analysis software is beneficial to further analysis 

of the case study sites since three of the sites have at least one signalized intersection 

along the corridor of interest: analysis performed using Synchro can determine the 

optimal cycle lengths and phase splits for signalized intersections. The website Google 

Maps was utilized to measure the roadway geometrics along the corridors. Across the 
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corridors of interest during the two-hour data collection window, recorded heavy vehicle 

percentage ranged from 1.73% to 2.16%. Therefore, the heavy vehcile percentage used in 

analysis was standardized at 2% across each corridor. The lane configuration at each 

intersection was set to match the existing intersection geometry, including both number 

of lanes as well as storage length of auxiliary turn lanes. Because Synchro does not have 

a built in option for modeling a two-way left-turn lane, the functionality of the road diet 

cross section was modeled using a dedicated left turn lane and single lane shared by thru 

and right turn movements at every intersection. Speed limits along the corridor were 

entered in the model based on field observations of posted signage. Each intersection 

along the study corridors was assigned a unique numerical identifier. This allowed the 

turning movement volumes to be imported from a UDTF input file. 

After turning movement volumes were imported from the input file, signal timing 

for signalized intersections was optimized using Synchro’s internal signal optimization 

tool. The information on the performance reports includes control delay and traffic 

volume for each movement. This information was then used to calculate the total network 

delay using Equation 3-1: 

D =
∑diVi
∑Vi

(𝟑 − 𝟏) 

 

Where D is the average delay per vehicle for the network in seconds per vehicle, 

di is the control delay for turning movement i in seconds per vehicle, and Vi is the vehicle 

volume for turning movement i. 
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3.2.2 VISSIM Analysis of Existing and Road Diet Conditions 

VISSIM analysis of the case study corridors was conducted by creating two models for 

each site. One model for the existing condition and one model for the road diet condition. 

To measure vehicle travel times and determine delay, “Vehicle Travel Time 

Measurement” objects were created in the network. These devices were placed 5 units 

from the beginning of any link and at the terminating location of any previous 

measurement device. This placement ensures that there is no position along the modeled 

corridor at which a simulated vehicle is not having travel time recorded. To determine 

network delay, an extra delay measurement was added to the model, which included the 

data collected by all of the vehicle travel time measurements and generated an aggregate 

delay for the whole network. VISSIM does not have a specific setting to allow for the 

creation and modeling of a two-way left-turn lane. To work around this and model the 

road diet condition, a dedicated left turn lane was added along the corridor of interest at 

every intersection. These dedicated lanes were then extended upstream of the intersection 

to allow for separate queuing as would be expected in the field. In the models, the 

simulation parameters were set to allow for loading, recording, and unloading times.  

Because of the queuing issues associated with high volumes the side streets were 

extended to provide room for queuing and recording of queued vehicles. The first five 

minutes of simulation time was used for loading the network, recording the data of all 

vehicles scheduled to enter the network between 5 minutes and 20 minutes from the start 

of the simulation, allowing each run of the simulated scenario to last for 25 minutes to 

clear all vehicles through the system. The sensitivity analysis is performed by varying the 
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input demand flow-rates for the models. The input volumes include 100, 150, 200, 250, 

300, 350, and 400 percent of the observed demand flow-rate. 

 

3.3 Economic Analysis of Road Diet Impacts 

3.3.1 Economic Analysis Procedure 

As it is an easily understood metric, assigning a dollar value to more abstract quantities 

allows the benefits and costs of a project to be laid out in a simpler manner. In 1991, 

Zeeger et. al published a study assessing cost-effective geometric improvements to 

horizontal curves for safety considerations. The general methodology used in the study 

involved determining the impact of geometric improvements on accident severity and 

rates. Changing severity and rates were then assigned dollar values based on the cost of 

individual accident severity types and the difference between the current and expected 

frequency of accidents. This established the general economic benefit of the geometric 

improvement, which could then be compared against the cost of implementation to 

determine the net benefit or cost. [20] Valuating changes in travel times has been notably 

assessed by the Transportation Research Board in 1999. The research laid out processes 

of valuing travel time on the basis of differing incomes as well as assigning additional 

value for metrics such as the time of day and the predictability of travel times. [21] The 

primary source for methodology on economic analysis of roadway improvement projects 

is AASHTO’s User and Non-User Benefit Analysis for Highways. [3] In this guidebook, 

a general procedure is laid out for identifying and assigning costs to factors such as delay. 

The effects of delay on costs are shown to be quantified in multiple ways: from the 

change in travel time cost to changes in operating costs from fuel consumption. 
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3.3.2 Economic Analysis Methodology 

While delay is quantifiable, as is the change in delay that’s anticipated to occur due to a 

road diet improvement, it is a more complicated analysis to measure and quantify the 

impact of this change in terms of cost or value. To address this issue, an economic 

analysis of the effects of road diet improvements is conducted. The effects of a roadway 

improvement are identified as affecting three types of costs: travel time costs (Hc), 

operating costs (OCc), and accident costs (ACc) for each vehicle class, c. These individual 

cost categories are then used to determine the total cost (Bc), or benefit, imposed on the 

user by the roadway improvement project using Equation 3-2: 

Bc = ∆Uc (
Vc,0 + Vc,1

2
) L = (∆Hc + ∆OCc + ∆ACc) (

Vc,0 + Vc,1
2

)L (𝟑 − 𝟐) 

Where Bc is the user benefit, ΔUc is the change in user cost per vehicle mile 

traveled (VMT), ΔH is the change in the value of travel time per VMT (or per-user), 

ΔOC is the change in operating costs per VMT (or per-user), ΔAC is the change in 

unreimbursed accident costs per-VMT (or per-user), V0 is the demand flow rate of 

vehicles (or users) without the improvement, V1 is the demand flow rate of vehicles (or 

users) with the improvement, and L is the segment or corridor length in miles. [3] The 

change in individual costs are calculated using Equation 3-3. 

∆Hc =
100McOc∆Dc

3600
(𝟑 − 𝟑) 

In Equation 3-3, ΔHc is the value of travel time due to delay in cents per vehicle, Mc is 

the unit value of time for users in dollars per hour, Oc is the occupancy rate of vehicles, 

and ΔDc is the change in delay in seconds. [3] For the case study locations, information 

collected by the United States Census Bureau was used to determine the unit value of 
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time, in 2015 dollars, and occupancy rate. The values used in this analysis are shown in 

Table 3.1. 

 

Table 3.1 Unit value of time and occupancy rates for case study locations 

 

 

∆OCc = (galc,min)(D0 − D1)Pc (𝟑 − 𝟒) 

In Equation 3-4, ΔOCc is the change in operating costs in cents per vehicle, 

galc,min is the fuel consumption in gallons per minute, D0 is the average delay per vehicle 

(in minutes) without the improvement, D1 is the average delay per vehicle (in minutes) 

with the improvement, and Pc is the fuel price in cents per gallon. [3] Inferring from 

Table 3.2, shown below, by assuming a free flow speed of 35 miles per hour and an 

equal mix of small and big cars, galc,min is taken to be 0.026 gallons per minute for this 

analysis. Pc is taken to be $2.51 per gallon based on information provided by the Official 

Nebraska Government Website for 2017. [22] 
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Table 3.2 Fuel consumption (gallons) per minute of delay [3] 

 

 

∆ACc = vD∆D + vI∆I + vP∆P (𝟑 − 𝟓) 

In Equation 3-5, ΔACc is the change in accident costs in cents per vehicle mile, 

vD is the perceived cost associated with a fatal accident in cents, vI is the perceived cost 

associated with an injury accident in cents, vP is the perceived cost associated with a 

property damage accident in cents, ΔD is the change in expected number of fatal 

accidents per mile, ΔI is the change in expected number of injury accidents per mile, and 

ΔP is the change in expected number of property damage accidents per mile. [3] From 

existing literature, a road diet improvement is estimated to reduce accident rates of all 

types by 33 percent. [4], [6], [7], [9]–[14] Because the Nebraska Department of 

Transportation does not report crash data for three of the case study sites specifically, but 

rather reports the data by county, the crash rates used in analysis will be the county 

average. The specific data and rates used are shown in Table 3.3. Note that the values for 

perceived cost are shown in year 2000 dollar values. 
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Table 3.3 Crash data reported by Nebraska DOT [22]–[24] 

 

 

Since the traffic data collected and delay results all correspond to the peak hour, 

the user benefit calculated (Bc) must corresponds to one peak hour. However, peak hour 

benefits can be estimated as equivalent values for longer periods of time, as shown in 

Equation 3-6, below. To expand a peak hour benefit to a daily benefit: 

Bdaily,total = [
1

(−0.057b2 + 1.636b + 1.34) (
Vh

Vdaily
) + 0.004b2 − 0.098b − 0.03

] Bh,total

= ηBh,total (𝟑 − 𝟔)

 

Where Bdaily,total is the benefits to all traffic in a weekday, Bh,total is the peak hour 

benefits to all traffic, Vh is the peak hour traffic volume, Vdaily is the AADT, b is the 

exponent in the BPR-type volume-delay formula (b is also β), and η is the peak-to-daily 

benefit expansion factor (1<η<24). [3] Because the case study sites are small in 

population and traffic volume, b is assumed to be one. Daily benefits are expanded to 

monthly benefits using Equation 3-7, below. 

Bmonthly = μBweekly = μκBdaily (𝟑 − 𝟕) 

Where Bmonthly is the monthly benefits to all traffic, Bweekly is the weekly benefits 

to all traffic, Bdaily is the benefits to all traffic in a weekday, μ is the weekly-to-monthly 

expansion factor (4.345 typically), and κ is the daily-to-weekly expansion factor (5.0 to 
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5.5 typically). [3] For this analysis, μ is assumed to be 4.345 and κ is assumed to be 5.0. 

Finally, monthly benefits are expanded to yearly benefits using Equation 3-8, below. 

Byearly = [
1

(0.076b + 0.206) (
ADT
AADT − 1) +

1
12

] Bmonthly (𝟑 − 𝟖) 

Where Byearly is the yearly benefits to all traffic, Bmontly is the monthly benefits to 

all traffic, b (β) is the exponent in the BPR-type volume-delay formula, and ADT/AADT 

is the ratio of monthly average daily traffic to annual average daily traffic. [3] Since 

traffic counts were collected in different months for different case study sites, 

ADT/AADT differs from site to site. David City traffic data was collected in May: for 

May in Nebraska, ADT/AADT equals 1.060. Aurora traffic data was collected in June: 

for June in Nebraska, ADT/AADT equals 1.098. Alliance and Ord traffic data was 

collected in August: for August in Nebraska, ADT/AADT equals 1.052. [24] 

 For the economic analysis to be conducted, dollar values must be converted to the 

same year. The data collected used dollar values from the years 2000, for perceived 

accident costs, 2015, for value of trip maker’s time, and 2017 for gas prices. For the 

analysis, these values will all be converted to year 2017 dollar values. Converting the 

dollar value year is performed by multiplying the known dollar value by the ratio of 

consumer price index, hereafter CPI, for the desired year to CPI for the known year. The 

average CPI’s for 2000, 2015, and 2017 are 172.2, 237.0, and 245.1 respectively. 
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CHAPTER 4 CASE STUDY SELECTION 

In determining case study site locations, several criteria were used. Sites were considered 

desirable for the study based on the presence of a four-lane cross section, the perceived 

receptiveness of local decision makers to a possible road diet conversion, and a desire to 

have a variety of each for the location within the state, the population, and the AADT. 

Based on these criteria, four case study site locations were selected with the input of 

NDOT. The four locations selected are Alliance, Aurora, David City, and Ord. These 

sites were chosen because they represented a range of locations throughout the state as 

well as a range of AADT. Aurora and David City were identified as being receptive 

towards the idea of road diet conversions and Alliance and Ord were identified as being 

resistant towards the idea of road diet conversions. 

 

4.1 Case Study Site Location – Alliance, Nebraska 

The first location selected for the case study is in Alliance, Nebraska. A segment of road 

along Highway 2 from Flack Avenue to Black Hills Avenue was selected, approximately 

one mile in length, and encompassing 17 intersections, as shown in Figure 4.1.  Alliance 

is a town in northwestern Nebraska with a population of approximately 8,500 people. The 

population in 1970 was 6,862 people, indicating slight growth over the past 50 years.  

While many towns in rural Nebraska have experienced similar growth, there are many 

others that have experienced a decrease in population over the past few decades [25]. 
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Figure 4.1 Site location in Alliance, Nebraska [26] 

 

Although the population has increased, the amount by which it has done so is not 

sufficient to necessitate the expansion to four lanes on Highway 2.  Although the traffic 

volume on this corridor is the highest volume of all the case study sites, with an AADT of 

10,040 on record with the Nebraska Department of Transportation (NDOT), the volume 

is toward the middle of the effective road diet AADT ranges established by existing 

literature. [27] 

Figure 4.2 shows the typical street cross-section for Highway 2 in Alliance, 

Nebraska. The cross-section shown looks east along Highway 2 between Sweetwater 

Avenue and Yellowstone Avenue. The overall width of the traveled way is 68 feet. This 

includes four 12-foot lanes for traffic, two in each direction, and a 10-foot shoulder along 

the outer sides of the street. Separated from the roadway by a 10-foot buffer, a 4-foot 

sidewalk runs along both the north and south sides of Highway 2. The land-use 

surrounding the highway is primarily commercial, and a majority of the lots have 

driveways connecting directly to Highway 2, creating the potential for a high degree of 
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midblock friction depending on the trip generation characteristics of each lot. A road diet 

implemented in Alliance would result in a typical cross-section consisting of a 12-foot, 

two-way left-turn lane, two 12-foot, through lanes, and a 16-foot shoulder on each side. 

 
Figure 4.2 Typical street cross-section – Alliance, Nebraska [26] 

 

4.2 Case Study Site Location – Aurora, Nebraska 

The second location selected for the case study is in Aurora, Nebraska. A segment of 

road along Highway 34 from 1st Street to 16th Street was selected, approximately one 

mile in length, and encompassing 12 intersections, as shown in Figure 4.3.  Aurora is a 

town in central-southeastern Nebraska with a population of approximately 4,500 people.  

The population in 1970 was 3,180 people, indicating slight growth over the past 50 years.  

Of the four case study sites, Aurora has experienced the most significant population 

growth at approximately 40 percent growth whereas Alliance and David City have both 

registered approximately 20 percent growth, and Ord has experienced negative growth. 



45 

 

 
Figure 4.3 Site location in Aurora, Nebraska [26] 

 

Although the population has increased, the amount by which it has done so is not 

sufficient to necessitate the expansion to four lanes on Highway 34. With an AADT of 

5,850 on record with NDOT, Aurora’s traffic volumes are in the lower end of the range 

of effective road diet volumes established in existing literature. [27]   

Figure 4.4 shows the typical street cross-section for Highway 34 in Aurora, 

Nebraska. The cross-section shown looks east along Highway 34 between 8th Street and 

9th Street. The overall width of the traveled way is 48 feet. This includes four 12-foot 

lanes for traffic, two in each direction, and no shoulders. Separated from the roadway by 

a 6-foot buffer, a 4-foot sidewalk runs along both the north and south sides of Highway 

34. The land-use surrounding the highway is a mix between residential and commercial, 

and just under half of the lots have driveways connecting directly to Highway 34. A road 

diet implemented in Aurora would result in a typical cross-section consisting of a 12-foot, 

two-way left-turn lane, two 12-foot, through lanes, and a 6-foot shoulder on each side. 
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Figure 4.4 Typical street cross-section – Aurora, Nebraska [26] 

 

A specific feature of the Highway 34 in Aurora that makes it a good candidate for 

a road diet is a crosswalk that connects a community swimming pool and a convenience 

store, with high pedestrian volume passing between them during the summer months.  A 

desire for an improvement in the safety along this highway, specifically at the crosswalk 

mentioned, as well as the lower traffic volumes currently present at this location made it a 

good option for a case study site location. Passing through Aurora, there is one signalized 

intersection on Highway 34 at the 16th Street crossing. 

 

4.3 Case Study Site Location – David City, Nebraska 

The third location selected for the case study is in David City, Nebraska. A segment 

along Highway 15 from Lakeside Road to O Street was selected, approximately one and 

a half miles long, and encompassing 21 intersections, as shown in Figure 4.5. David City 

is a town in east-central Nebraska with a population of approximately 2,815 people.  The 

population in 1970 was 2,380 people, indicating slight growth over the past 50 years. 
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Figure 4.5 Site location at David City, Nebraska [26] 

 

Although the population has increased, the amount by which it has done so is not 

sufficient to necessitate the expansion to four lanes on Highway 15. With an AADT of 

4,510 on record with NDOT, David City’s traffic volumes are in the lower end of the 

range of effective road diet volumes established in existing literature. [27]  

Figure 4.6 shows the typical street cross-section for Highway 15 in David City, 

Nebraska. The cross-section shown looks north along Highway 15 between H Street and I 

Street. The overall width of the traveled way is 48 feet. This includes four 12-foot lanes 

for traffic, two in each direction, and no shoulders. Separated from the roadway by a 30-

foot buffer, a 4-foot sidewalk runs along both the east and west sides of Highway 15. 

With the exception of the three blocks between C Street and F Street representing the 

downtown business district, the land-use surrounding the highway is residential, and 

approximately two-thirds of the lots have driveways connecting directly to Highway 15. 
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A road diet implemented in David City would result in a typical cross-section consisting 

of a 12-foot, two-way left-turn lane, two 12-foot, through lanes, and a 6-foot shoulder on 

each side. 

 
Figure 4.6 Typical street cross-section – David City, Nebraska [26] 

 

A specific feature of the roadway that makes it a good candidate for a road diet 

are the crosswalks traversing the highway within the main business district of the town. 

Additionally, David City began a resurfacing project in June 2017, stated to culminate in 

restriping the street as a three-lane roadway as opposed to its current four-lane state. This 

allows true before-and-after analysis to validate the results of the study simulations. 

Passing through David City, there is one signalized intersection on Highway 15 at the D 

Street crossing. 

 

4.4 Case Study Site Location – Ord, Nebraska 

The final location selected for the case study is in Ord, Nebraska. A segment of road 

along Highway 11/70 from 17th Street to 27th Street was selected, approximately three-

quarters of a mile long, and encompassing 10 intersections, as shown in Figure 4.7.  Ord 

is a town in central Nebraska with a population of approximately 2,078 people. The 

population in 1970 was 2,658 people, indicating slight negative growth over the past 50 
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years.  Of the four case-study sites, Ord is the only location that has not experienced at 

least marginal population growth over the past 50 years. 

 
Figure 4.7 Site location at Ord, Nebraska [26] 

 

With an AADT of 3,800 along Highway 11/70, the corridor in Ord has the lowest 

traffic volume of the four case-study sites, and like Aurora and David City, Ord’s traffic 

volumes are in the lower end of the range of effective road diet volumes established in 

existing literature. [27] 

Figure 4.8 shows the typical street cross-section for Highway 11/70 in Ord, 

Nebraska. The cross-section shown looks east along Highway 11/70 between 18th Street 

and 19th Street. The overall width of the traveled way is 48 feet. This includes four 12-

foot lanes for traffic, two in each direction, and no shoulders. Separated from the 

roadway by a 10-foot buffer, a 4-foot sidewalk runs along both the north and south sides 

of Highway 11/70. The land-use surrounding the highway is overwhelmingly residential, 
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and approximately two-thirds of the lots have driveways connecting directly to Highway 

11/70. One and a half blocks north of the highway is Ord High School. Crosswalks have 

been placed on the highway at 18th and 19th Streets in service of the pedestrian volume 

generated by the high school. A road diet implemented in Ord would result in a typical 

cross-section consisting of a 12-foot, two-way left-turn lane, two 12-foot, through lanes, 

and a 6-foot shoulder on each side. 

 
Figure 4.8 Typical street cross-section – Ord, Nebraska [26] 
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CHAPTER 5 DATA COLLECTION AND REDUCTION 

For each case study site location, traffic data and roadway geometry data was collected 

for inputs in simulation and analysis. Video data was obtained during the peak hour of the 

different car movements at each intersection. These video recordings were uploaded to 

MioVision for data processing to acquire traffic counts and turn movements for each 

intersection and pedestrian counts where relevant. Roadway geometry data was collected 

using Google Earth Pro, with measurments taken for the various roadway geometry 

aspects of interest. 

 

5.1 Alliance Data Collection 

In Alliance, technical issues with the camera units limited data collection to 5 of 17 

intersections; video was recorded and recovered at Flack, Mississippi, Niobrara, Big 

Horn, and Black Hills Avenues. The recorded intersections were spread evenly across the 

corridor ensuring that the data collected provides a complete picture of the traffic 

conditions in Alliance. The intersection coverage is shown in Figure 5.1 through Figure 

5.5. The view of the camera recording at the Flack Avenue intersection is shown in 

Figure 5.1; this camera was positioned on the north-east quadrant of the intersection. The 

view of the camera recording at the Mississippi Avenue intersection is shown in Figure 

5.2; this camera was positioned on the south-east quadrant of the intersection. The view 

of the camera recording at the Niobrara Avenue intersection is shown in Figure 5.3; this 

camera was positioned on the north-east quadrant of the intersection. The view of the 

camera recording at the Big Horn Avenue intersection is shown in Figure 5.4; this 

camera was positioned on the north-west quadrant of the intersection. The view of the 
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camera recording at the Black Hills Avenue intersection is shown in Figure 5.5; this 

camera was positioned on the north-west quadrant of the intersection. 

 
Figure 5.1 Camera view at Flack Avenue and Highway 2 

 

 
Figure 5.2 Camera view at Mississippi Avenue and Highway 2 
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Figure 5.3 Camera view at Niobrara Avenue and Highway 2 

 
Figure 5.4 Camera view at Big Horn Avenue and Highway 2 

 
Figure 5.5 Camera view at Black Hills Avenue and Highway 2 
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5.2 Aurora Data Collection 

In Aurora, 10 of 12 intersections were recorded; the studied intersections include 1st, 3rd, 

5th, 7th, 9th, 10th, 12th, 13th, 14th, and 16th Streets. The cameras were set up on two 

consecutive days on alternating intersections to record video on 5 streets each day. The 

intersection coverage is shown in Figure 5.6 through Figure 5.15. The view of the 

camera recording at the 1st Street intersection is shown in Figure 5.6; this camera was 

positioned on the north-east quadrant of the intersection. The view of the camera 

recording at the 3rd Street intersection is shown in Figure 5.7; this camera was positioned 

on the south-west quadrant of the intersection. The view of the camera recording at the 

5th Street intersection is shown in Figure 5.8; this camera was positioned on the south-

east quadrant of the intersection. The view of the camera recording at the 7th Street 

intersection is shown in Figure 5.9; this camera was positioned on the south-east 

quadrant of the intersection. The view of the camera recording at the 9th Street 

intersection is shown in Figure 5.10; this camera was positioned on the south-east 

quadrant of the intersection. The view of the camera recording at the 10th Street 

intersection is shown in Figure 5.11; this camera was positioned on the north-west 

quadrant of the intersection. The view of the camera recording at the 12th Street 

intersection is shown in Figure 5.12; this camera was positioned on the south-east 

quadrant of the intersection. The view of the camera recording at the 13th Street 

intersection is shown in Figure 5.13; this camera was positioned on the south-east 

quadrant of the intersection. The view of the camera recording at the 14th Street 

intersection is shown in Figure 5.14; this camera was positioned on the north-east 

quadrant of the intersection. The view of the camera recording at the 16th Street 
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intersection is shown in Figure 5.15; this camera was positioned on the north-east 

quadrant of the intersection. 

 
Figure 5.6 Camera view at 1st Street and Highway 34 

 

 
Figure 5.7 Camera view at 3rd Street and Highway 34 
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Figure 5.8 Camera view at 5th Street and Highway 34 

 
Figure 5.9 Camera view at 7th Street and Highway 34 

 
Figure 5.10 Camera view at 9th Street and Highway 34 
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Figure 5.11 Camera view at 10th Street and Highway 34 

 
Figure 5.12 Camera view at 12th Street and Highway 34 

 
Figure 5.13 Camera view at 13th Street and Highway 34 
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Figure 5.14 Camera view at 14th Street and Highway 34 

 
Figure 5.15 Camera view at 16th Street and Highway 34 

 

5.3 David City Data Collection 

In David City, 10 of 20 intersections were recorded; the studied intersections include 

Lakeside Drive, Iowa, A, C, E, G, I, K, M, and O Streets. This placement method allowed 

for every other intersection along the corridor of interest to be recorded. The intersection 

coverage is shown in Figure 5.16 through Figure 5.25. The view of the camera recording 

at the Lakeside drive intersection is shown in Figure 5.16; this camera was positioned on 

the north-west quadrant of the intersection. The view of the camera recording at the Iowa 

Street intersection is shown in Figure 5.17; this camera was positioned on the north-west 
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quadrant of the intersection. The view of the camera recording at the A Street intersection 

is shown in Figure 5.18; this camera was positioned on the north-east quadrant of the 

intersection. The view of the camera recording at the C Street intersection is shown in 

Figure 5.19; this camera was positioned on the north-east quadrant of the intersection. 

The view of the camera recording at the E Street intersection is shown in Figure 5.20; 

this camera was positioned on the north-east quadrant of the intersection. The view of the 

camera recording at the G Street intersection is shown in Figure 5.21; this camera was 

positioned on the north-east quadrant of the intersection. The view of the camera 

recording at the I Street intersection is shown in Figure 5.22; this camera was positioned 

on the south-east quadrant of the intersection. The view of the camera recording at the K 

Street intersection is shown in Figure 5.23; this camera was positioned on the north-west 

quadrant of the intersection. The view of the camera recording at the M Street 

intersection is shown in Figure 5.24; this camera was positioned on the north-west 

quadrant of the intersection. The view of the camera recording at the O Street intersection 

is shown in Figure 5.25; this camera was positioned on the north-east quadrant of the 

intersection. 

 
Figure 5.16 Camera view at Lakeside Drive and Highway 15 
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Figure 5.17 Camera view at Iowa Street and Highway 15 

 
Figure 5.18 Camera view at A Street and Highway 15 

 
Figure 5.19 Camera view at C Street and Highway 15 
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Figure 5.20 Camera view at E Street and Highway 15 

 
Figure 5.21 Camera view at G Street and Highway 15 

 
Figure 5.22 Camera view at I Street and Highway 15 
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Figure 5.23 Camera view at K Street and Highway 15 

 
Figure 5.24 Camera view at M Street and Highway 15 

 
Figure 5.25 Camera view at O Street and Highway 15 
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5.4 Ord Data Collection 

Similar to Alliance, technical issues limited data collection in Ord; of the 10 intersections 

along the corridor of interest, video was recorded and recovered at 17th, 20th, 22nd, 23rd, 

and 24th Streets. The resulting collection points were spread across the corridor such that 

the data collected is still comprehensive for the corridor. The intersection coverage is 

shown in Figure 5.26 through Figure 5.30. The view of the camera recording at the 17th 

Street intersection is shown in Figure 5.26; this camera was positioned on the south-west 

quadrant of the intersection. The view of the camera recording at the 20th Street 

intersection is shown in Figure 5.27; this camera was positioned on the south-east 

quadrant of the intersection. The view of the camera recording at the 22nd Street 

intersection is shown in Figure 5.28; this camera was positioned on the north-east 

quadrant of the intersection. The view of the camera recording at the 23rd Street 

intersection is shown in Figure 5.29; this camera was positioned on the north-east 

quadrant of the intersection. The view of the camera recording at the 24th Street 

intersection is shown in Figure 5.30; this camera was positioned on the north-east 

quadrant of the intersection. 

 
Figure 5.26 Camera view at 17th Street and Highway 11/70 
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Figure 5.27 Camera view at 20th Street and Highway 11/70 

 
Figure 5.28 Camera view at 22nd Street and Highway 11/70 

 
Figure 5.29 Camera view at 24th Street and Highway 11/70 



65 

 

 
Figure 5.30 Camera view at 24th Street and Highway 11/70 

 

5.5 Data Reduction 

Because the number of cameras and data collection periods was insufficient to collect 

video data at all intersections, the turning movement counts at several intersections were 

inferred. The turning movements for non-recorded intersections were determined using 

the movements for the recorded intersections immediately adjacent to the intersection of 

interest. Along the direction of the highway, traffic volumes entering and exiting are 

calculated from the exiting volumes of the previous intersection and entering volume of 

the subsequent intersection. For example, to calculate northbound turning movements at 

the non-recorded intersection, the entering volume is equal to the sum of NBT, EBL, and 

WBR movements at the recorded intersection immediately to the south, and the exiting 

volume is equal to the sum of NBL, NBT, and NBR movements at the recorded 

intersection immediately to the north. These volume balancing equations are shown as 

Equation 5-1 and Equation 5-2, below.  

 

(NBT + EBL +WBR)south = Enteringnon−recorded (𝟓 − 𝟏) 
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(NBL + NBT + NBR)north = Exitingnon−recorded (𝟓 − 𝟐) 

 

The difference between the entering and exiting volumes is then used to 

determine whether more traffic turns into or out of the primary directional flow. If the 

entering volume is greater than the exiting volume, more traffic turns out of the flow than 

into the flow and vice versa. Non-thru turning movements are then calculated by 

distributing the difference between entering and exiting traffic between the remaining 

turning movements (NBL, NBR, EBL, and WBR continuing from the previous example). 

This distribution is performed using multiples of 1/9. If entering volumes are greater than 

exiting volumes, 12/9 of the difference is assigned to movements turning out of the flow 

and 3/9 of the difference is assigned to movements turning into the flow. Inversely, if 

entering volumes are less than exiting volumes, 3/9 of the difference is assigned to 

movements turning out of the flow and 12/9 of the difference is assigned to movements 

turning into the flow. 

To account for any impact driveway traffic of houses or businesses might have on 

the traffic flow, counts were obtained from the video data for any driveways that had a 

significant number (more than 10) of vehicles entering or exiting during the peak hour.  

For the driveways that did not have a significant number of vehicles, the Institute of 

Transportation Engineers Trip Generation Manual was used to determine the rate at 

which vehicles could be assumed to be entering or exiting these driveways during the 

peak hour. [28] 
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CHAPTER 6 RESULTS 

Because two unique traffic modeling software applications were used in analysis, the 

results of each application can be compared as a form of validation, to assess the 

likelihood of success for a road diet implementation for a given level of traffic. The 

results indicate the level of traffic at which the conventional facility will fail, the level of 

traffic at which a road diet implementation for a given facility will fail, and difference 

between the two, representing the impact of the road diet conversion. Because this study 

is concerned primarily with feasibility and factors deciding implementation, the average 

delay per vehicle experienced by the reduced-capacity (road diet) facility at varying 

volume input levels is the primary result of interest. 

 

6.1 Operational Impacts of Road Diet Implementations 

6.1.1 Results of Existing Conditions Analysis 

The results of the existing condition analysis are shown here both in tabular and graphical 

form. The compilation of existing condition analysis results for all case study locations is 

shown in Table 6.1. 
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Table 6.1 Results of existing condition analysis for all case study locations 

 

 

This table shows the results from both VISSIM and Synchro (HCM methodology) 

analysis for each site and volume condition. In Synchro analysis, some of the volume 

conditions exceed the model capacity, which invalidates the results of the analysis 

condition. For these cases, “N/A” replaces the results in Table 6.1. From the table, the 

relationship between volume and delay is observed to be more sensitive in Synchro 
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analysis than in VISSIM analysis. Graphical results of existing roadway geometry from 

the Synchro (HCM methodology) analysis is shown below in Figure 6.1, with results of 

the VISSIM (micro-simulation) analysis shown below in Figure 6.2. 

 
Figure 6.1 Results of existing condition analysis from Synchro 

 

 
Figure 6.2 Results of existing condition analysis from VISSIM 

 

Examining the results graphically reveals a difference between the Synchro (HCM 

methodology) and VISSIM (micro-simulation) methodologies. These results indicate that 
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Synchro is more conservative, in predicting that the capacity of the roadway will be 

reached faster than the VISSIM results indicate. Seeking to maintain the average delay 

per vehicle at less than 35 seconds, consistent with a level of service (LOS) C or better 

for a given signalized intersection, the results are analyzed to determine threshold AADT 

levels for which the existing geometry is anticipated to sufficiently accommodate traffic. 

The Synchro results, being the more conservative of the two, indicate that a four-

lane section is sufficient for all locations up to an AADT of around 10,000 vehicles/day. 

The Synchro results for Alliance indicate a much higher threshold of more than 22,000 

vehicles/day. The difference between the performance of the Alliance facility and the 

other facilities can likely be attributed to the additional turn lanes provided at the 

signalized intersections at this location, further identifying the signalized intersections as 

the limiting factor for the four-lane cross section roadways. 

The VISSIM results predict acceptable operational performance at significantly 

higher volumes than did the Synchro results. In the case of the micro-simulation analysis, 

Aurora was predicted to experience LOS D or worse conditions beyond 16,000 AADT, 

with Alliance predicted to operation sufficiently up to and beyond 30,000 AADT. 

The findings for the existing condition will be governed by the more-conservative 

Synchro results, as no chances should be taken with regard to a reduction in capacity of a 

roadway. The four lane cross-section is found to be universally sufficient up until around 

10,000 AADT for a corridor, with further study necessary between the range of 10,000 

and 25,000 AADT. The design of the signalized intersection is expected to be the limiting 

condition for roadways in the 10,000 to 25,000 AADT range, with the four lane cross 

section sufficient once traffic is able to pass beyond the signalized intersections. 
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6.1.2 Results of Road Diet Analysis 

The results of the road diet condition analysis are shown here both in tabular and 

graphical form. The compilation of road diet condition analysis results for all case study 

locations is shown in Table 6.2. 

 

Table 6.2 Results of road diet condition analysis for all case study locations 
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This table shows the results from both VISSIM and Synchro (HCM methodology) 

analysis for each site and volume condition. In Synchro analysis, some of the volume 

conditions exceed the model capacity, which invalidates the results of the analysis 

condition. For these cases, “N/A” replaces the results in Table 6.2. Similar to the results 

of the existing roadway geometry, the relationship between volume and delay is observed 

to be more sensitive in Synchro analysis than in VISSIM analysis. Graphical results of 

reduced-capacity road diet geometry from the Synchro (HCM methodology) analysis is 

shown below in Figure 6.3, with results of the VISSIM (micro-simulation) analysis 

shown below in Figure 6.4. 

 
Figure 6.3 Results of road diet analysis from Synchro 
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Figure 6.4 Results of road diet analysis from VISSIM 

 

As with the existing roadway geometry, examining the results of the road diet 

analysis graphically reveals a difference between the Synchro (HCM methodology) and 

VISSIM (micro-simulation) methodologies. These results indicate that Synchro is more 

conservative, in predicting that the capacity of the road diet geometry capacity will be 

reached faster than the VISSIM results indicate. Seeking to maintain the average delay 

per vehicle at less than 35 seconds, consistent with a level of service (LOS) C or better 

for a given signalized intersection, the results are analyzed to determine threshold AADT 

levels for which the road diet geometry is anticipated to sufficiently accommodate traffic. 

The Synchro results, being the more conservative of the two, indicate that a two-

lane section is sufficient for all locations up to an AADT of around 10,000 vehicles/day, 

no change from the four-lane cross section. The Synchro results for Alliance indicate a 

much higher threshold of more than 22,000 vehicles/day, again, no change from the four-

lane cross section. This highlights the significance of the auxiliary lanes at the signalized 

intersections, that reducing the capacity of the unimpeded traffic lanes by half has 
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marginal impact on the travel times experienced by drivers, while additional lanes at 

signalized intersections can greatly reduce the average delay per vehicle for the entire 

corridor. 

The VISSIM results predict acceptable operational performance at significantly 

higher volumes than did the Synchro results. In the case of the micro-simulation analysis, 

Aurora was predicted to experience LOS D or worse conditions beyond 15,000 AADT, 

with Alliance predicted to operation sufficiently up to around 27,000 AADT, both 

slightly decreased from the original four-lane cross section. 

 

6.1.3 Results of Road Diet Impact Analysis 

Further analysis of the results will be limited to only the results from Synchro (HCM 

methodology), as this has been shown to be the more conservative method of the two. 

Comparing the performance of existing condition models against road diet condition 

allows the impact of road diet to be assessed, with results shown in Table 6.3, below. 
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Table 6.3 Impacts of road diet improvement on delay (Synchro results) 

 

 

Values within plus or minus one second when examining the column displaying 

the Increase in Average Delay indicate values that have negligible change from existing 

roadway cross section to road diet geometry, and are within the margin of error for the 

analysis methodology.  
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 The primary concern with implementing a road diet on a facility is that the 

existing travel times will increase significantly due to congestion experienced by the 

traffic currently utilizing two lanes being forced to utilize one lane. The results in Figure 

6.5, below, indicate that the change in average delay is strongly influenced by the degree 

to which the existing facility is approaching capacity. 

 
Figure 6.5 Increase in average delay at varying levels of AADT 

 

Implementing a road diet conversion for facilities similar to Aurora, David City, 

and Ord will result in less than a 5-second increase in average travel time at values of 

AADT less than 10,000. At facilities similar to Alliance, where additional capacity is 

built into the signalized intersections along the corridor, implementing a road diet at 

volumes less than 20,000 is expected to result in a similar 5-second increase in average 

travel time of all vehicles in the network. Examining the relationship between existing 

congestion and the implementation of a road diet, Figure 6.6, below, plots the increase in 

delay caused by implementing a road diet against the existing condition average delay for 

the facility. 
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Figure 6.6 Road diet impact on existing average delay 

 

The results displayed above in Figure 6.6 show that the existing average delay 

per vehicle on a roadway network is a much better indicator of expected road diet impact 

than is AADT. The dashed black line defines acceptable traffic operational conditions, 

with delay to the left and below the dashed line having an average delay of less than 35 

seconds per vehicle, indicating that an induced delay of up to 10 seconds due to a road 

diet implementation should be acceptable. Examining the general trend that is indicated 

by the results at all four locations, it is seen that a road diet increases existing delay by 

approximately 50% for existing conditions delay values of 30 seconds/vehicle or less, 

and at rates less than that for higher levels of existing delay. 

Referring back to the literature on road diet implementations, the results for the 

Nebraska case-study locations are consistent with the national findings, including both 

simulation and field observation results. Maintaining an average delay per vehicle in the 

network of 35 seconds or less is predicted to be consistently possible at AADT values of 

less than 12,000, with much higher values up to 20,000 AADT possible depending on the 
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capacity of the signalized intersections along the corridor. The average delay per vehicle 

of the existing facility was found to be a more accurate predictor of road diet 

functionality than was AADT, with a value of 25 seconds of delay per vehicle for the 

existing condition found to be the threshold at which the road diet facility results in a 

delay of 35 seconds per vehicle. 

 

6.1.4 Impact of Percentage of Turning Vehicles on Road Diet Operations 

In between 12,000 and 20,000 vehicles per day, the values for delay are disperse which 

means a road diet would be feasible in some cases and infeasible in others. One 

hypothesis is that the percentage of turning movements in the corridor is having an 

impact on the road diet performance, since the removal of the second lane requires all 

through vehicles to wait for slowing right-turning vehicles. Table 6.4, below reports the 

delay and AADT values, as well as the corresponding right-turn percentage. 
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Table 6.4 Right turn percentages corresponding to delay and AADT (Synchro) 

 

 

As previously established, an average delay of less than 35 seconds per vehicle is 

desirable. All road diet implementations at sites with less than 10,000 AADT were found 

to be successful, with negligible impacts to average delay per vehicle due to the reduction 

in capacity. Two sites beyond this threshold were found to have acceptable levels of 
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delay, being Ord at 11,400 AADT, and Alliance at 15,060 AADT. Their right-turn 

percentages are 2.9 and 4.1 respectively, indicating that a lower percentage of turning 

vehicles may fair better than a higher percentage of turning vehicles. However, due to the 

limited number of sites investigated for this study, there is not sufficient evidence to 

support the hypothesis that turn percentage has a significant impact on the performance 

of a reduced-capacity roadway, relative to the observed AADT for the facility. 

 

6.2 Assessment of User Cost Impacts from Road Diets 

Referring to Table 6.4, there are 8 cases with an AADT that falls within the range 12,000 

to 20,000 vehicles per day. To understand further the feasibility limits within the AADT 

range 12,000 to 20,000 vehicles per day, the results of the economic analysis are 

examined. Table 6.5, shown below, includes the values of individual costs (travel time, 

operating, and accident costs) as well as total user cost per vehicle. 
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Table 6.5 Breakdown of user costs for road diets at case study locations 

 

 

Table 6.6, shown below, sums the total user cost per vehicle to show total peak 

hour user cost and then expands the peak hour cost to daily, weekly, monthly, and yearly 

total user costs. Positive values reflect costs imposed on the user while negative values 

reflect benefits realized by the user. 

 



82 

 

Table 6.6 Expansion of total user costs from peak-hour to yearly 

 

 

Plotting the AADT values against the total annual user costs results in Figure 6.7. 

At the $0.00 value, there is a thick black horizontal line. This line represents the break-

even point for total user costs. At the break-even point, the road diet improvement, user 

benefits realized by accident rate reduction are equal to the road diet improvement, user 

costs incurred by the change (increase) in delay. Thus, any road diet improvement with a 

positive net user cost (i.e. plots above the thick black horizontal line in Figure 6.7) is 

economically infeasible. 
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Figure 6.7 Total annual net user cost of road diets across levels of AADT 

 

Looking at Table 6.6 and Figure 6.7, there are five cases with positive annual 

user cost, four of which fall in the 12,000 to 20,000 vehicles per day range. This means 

that for the eight cases with AADT falling in the range 12,000 to 20,000 vehicles per day, 

half have conditions making a road diet improvement infeasible.  

To determine the criteria for changing from infeasible to feasible, the 

relationships between average delay and total annual user cost as well as change in 

average delay and total annual user cost are examined. The relationship between average 

delay and annual user cost, shown in Figure 6.8, shows that while all of the cases in 

which annual user cost is positive have an average delay in excess of 30 seconds. 

However, there does not appear to be a direct correlation between average delay and total 

annual user cost. 
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Figure 6.8 Effect of average delay on annual net user costs for road diets 

 

The relationship between change in average delay and total annual user cost, 

shown in Figure 6.9, appears to have a more direct correlation between the two variables; 

as change in average delay increases, so does the total annual user cost. 

 
Figure 6.9 Effect of change in average delay on annual net user costs for road diets 
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From Figure 6.9, all road diet improvement cases with less than a 10 seconds per 

vehicle increase in delay have a negative annual user cost, which is to say that these cases 

incur a benefit for the users. Conversely, only one road diet improvement cases with an 

increase in delay in excess of 10 seconds per vehicle have a positive annual user cost. 

Based on the results of the economic analysis, another criterion for implementing road 

diet improvements can be determined: if the expected change in average delay from 

implementing the road diet improvement is less than 10 seconds per vehicle, the road diet 

improvement is economically feasible. Else, the road diet improvement is most-likely 

economically infeasible. 
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CHAPTER 7 ROAD DIET DECISION MATRIX 

Assessing the results from CHAPTER 6, recommendations can be made regarding when 

road diets are appropriate in the context of traffic conditions observed in Nebraska. 

 

7.1 Analysis of Road Diet Limitations 

The feasibility of road diet conversions is assessed by examining factors influencing 

operations, logistics, and implementation. Operationally, the results from CHAPTER 6 

show implementing a road diet improvement increases delay in most cases thus, other 

factors must be considered in determining the feasibility of road diet improvements. 

These factors affect the extent to which delay is increased. In considering other factors, 

the relationship between AADT and delay was examined. Information from existing 

literature shows road diet improvements to be infeasible at AADT levels greater than 

25,000 vehicles per day, determining one of the bounds for feasibility. [4]–[6], [8], [9] 

Sufficiently low and generally uniform delay results at AADT levels less than 14,000 

vehicles per day establishes a second bound for feasibility. At this point, observations 

from the results in CHAPTER 6 show that road diet implementation is feasible at AADT 

levels less than 12,000 vehicles per day and infeasible at AADT levels greater than 

20,000 vehicles per day. However, if AADT is between 12,000 and 20,000 vehicles per 

day, the results from examining the relationship between AADT and delay are too 

disperse to suffice for determining whether or not a road diet conversion is a feasible 

improvement.  

Continuing to look at the relationship between AADT and delay, points which 

correspond to delay values less than 20 seconds per vehicle are relatively uniform and 
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appear to fit a trend-line established by points at lower volumes. Examining the right-turn 

percentages for points corresponding to delay values greater than 20 seconds per vehicle, 

it is determined that road diets are feasible roadway improvement projects between 

12,000 and 20,000 vehicles per day if the average delay per vehicle for the existing 

roadway geometry is less than 20 seconds per vehicle. 

To understand further the feasibility limits within the AADT range 12,000 to 

20,000 vehicles per day, the results of the economic analysis are examined. Plotting the 

AADT values against the total annual user costs reveals five cases with positive annual 

user cost, rendering them economically infeasible, four of which fall in the 12,000 to 

20,000 vehicles per day range. According to the feasibility limits just established, four 

cases in the 12,000 to 20,000 vehicles per day range have conditions making a road diet 

improvement infeasible. The case that switched from infeasible to feasible with the result 

of the economic analysis is Aurora, Nebraska, with an AADT of 14,625 vehicles per day, 

and a right turn percentage of 6.9 percent. Examining the relationship between AADT 

and delay, this case corresponds to the point falling just outside the bounds established in 

CHAPTER 6. It is determined that the cause of this case changing from infeasible to 

feasible, is that the increase in average delay is low enough that the accident reduction 

impacts of road diets offset the decreased operational performance. This is because the 

results reveal that all road diet improvement cases with less than an 10 seconds per 

vehicle increase in delay have a negative annual user cost, which is to say that these cases 

incur a benefit for the users. Conversely, most road diet improvement cases with an 

increase in delay in excess of 10 seconds per vehicle have a positive annual user cost. 

Thus, another criterion for implementing road diet improvements can be determined: if 
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the expected change in average delay from implementing the road diet improvement is 

less than 10 seconds per vehicle, the road diet improvement is economically feasible. 

Else, the road diet improvement is likely economically infeasible. 

Logistically, factors which influence the feasibility of road diet implementation 

include characteristics of the vehicle and non-vehicle users of the roadway. Existing 

literature shows road diets to be estimated to reduce vehicle-accident rates of all types by 

33 percent. [4], [6], [7], [9]–[14] This accident reduction rate means that a road diet 

improvement can serve and an effective accident mitigation technique. In cases such as 

Aurora and Ord that have destinations which may generate significant pedestrian 

volumes, the impact of road diets on traffic calming is also a factor influencing 

feasibility. While road diets conversions will not impact the posted speed limit on a road, 

existing literature does show road diets to be effective at reducing the speed variability of 

traffic. [4]–[6], [10], [11], [16] The reduction in speed variability is due to road diets 

decreasing the percentage of vehicles travelling 5 or more miles per hour in excess of the 

posted speed limit. Reducing speed variability of vehicle traffic makes the roadway safer 

for pedestrians looking to cross the road. 

The primary implementation factor governing the feasibility of road diet 

conversions is cost. Examining the cost of conversions, there is a critical component in 

Nebraska for which to account: in Nebraska, townships have to pay half the cost for 

repaving and surface maintenance of the roadway when it is four lanes, but they do not 

have to pay for one lane. Therefore, to limit the cost impact of road diet conversions, road 

diets should be implemented as restriping as part of necessary resurfacing work. This 
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effectively eliminates any cost associated with the actual road diet implementation, as the 

restriping costs are already accounted for in resurfacing projects. 

 

7.2 Decision Matrix for Consideration of Road Diet Implementation 

A primary objective of this research is to develop the framework criteria to guide 

decision making on the feasibility of implementing road diet improvements. Towards this 

end, existing condition and road diet corridor traffic analysis was performed utilizing 

Synchro (HCM methodology) and VISSIM (micro-simulation). The results of the traffic 

analysis were then used as inputs for an economic analysis on the impacts of road diet 

conversions in Nebraska. Both the traffic and economic analyses yielded results that 

helped form criteria to guide decision making on the feasibility of implementing road diet 

improvements. These criteria, coupled with general criteria from existing literature, 

create a decision tree for implementing road diet conversions in Nebraska. This decision 

tree is shown in Figure 7.1. 

 
Figure 7.1 Road diet conversion decision tree 
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The general layout of the decision tree begins with broad criteria involving less 

intense analysis or collection processes. Thus, the starting criterion for the decision tree is 

the AADT for the roadway corridor in question. The feasibility ranges previously 

established are used as the initial pathways on the decision tree. If AADT is less than 

12,000 vehicles per day, a road diet conversion is a feasible roadway improvement; if 

AADT is greater than 20,000 vehicles per day, a road diet conversion is not a feasible 

roadway improvement; and if AADT is between 12,000 and 20,000 vehicles per day, a 

road diet conversion may be a feasible improvement. After establishing feasibility from 

AADT, the next criterion on the decision tree narrows the scope of focus, and thus 

involves slightly more intense analysis than AADT determination. This second bound is 

provided by traffic analysis: road diets are feasible roadway improvement projects 

between 12,000 and 20,000 vehicles per day if the existing facility average delay is less 

than 20 seconds per vehicle. This criteria point helps bring the decision tree to either 

result path established by AADT under 12,000 or over 20,000. 

Economic analysis provided a criterion to further define the feasibility of road diet 

improvements within the AADT range 12,000 and 20,000 vehicles per day: if the 

expected change (increase) in average delay is less than 10 seconds per vehicle, the road 

diet improvement is feasible. Else, the road diet improvement is infeasible. This is the 

final step on bringing the decision tree to the binary result paths of a road diet 

improvement being either feasible or infeasible. 

From here, the feasibility of a road diet improvement is more dependent on 

unique characteristics of the roadway such as crash rates: existing literature shows road 

diet conversions to be successful in reducing rates of rear-end, sideswipe, and angled 



91 

 

collisions. [4], [6], [7], [9]–[14] So if the collision rates on a roadway are a concern, a 

road diet implementation can be effective in mitigating this. If vehicle-accident rates are 

not a major concern on the roadway, the presence of pedestrians or bicyclists crossing the 

street due to social or education destination such as a swimming pool or high school can 

be a contributing factor to feasibility of a road diet. The significant presence of 

pedestrians or bicyclists causes the speed variability of vehicle traffic to become a 

concern. If there is a high speed variability, or a significant percentage of vehicles 

travelling 5 or more miles per hour over the speed limit, road diets can help calm this 

variability, without sacrificing operational performance, and make the roadway safer for 

non-vehicle users such as pedestrians and bicyclists. 

The final step in determining the feasibility of road diet implementation is 

whether the roadway in question is in need of a resurfacing project. Because the costs of 

a road diet implementation will be absorbed into the cost of a resurfacing project, it is 

desirable to implement road diets as part of resurfacing rather than as a stand-alone 

project. 
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CHAPTER 8 LIMITATIONS 

There were a few limitations to the research, which should be mentioned to represent 

accurately the work that was conducted. 

The number of available MioVision Scout cameras for use was a limitation. The 

cameras performed well in the field, but the low number of units for use meant that 

certain locations along the study corridor were left unrecorded. While this was partially 

combatted through multiple data collection days and inferring, being able to use more 

cameras would allow for a better, or at least more accurate, set of input data for 

simulation. 

         When utilizing the software applications to model the road diet configuration of 

the highway, issues arose when modeling the two-way left-turn lane.  VISSIM lacks a 

function that explicitly adds this into the model. To overcome this, left-turn bays were 

created for each intersection or driveway.  This practice is not exactly accurate since 

vehicles are able to enter the two-way left-turn lane at any point, rather than one specific 

entrance point with a left-turn bay.  However, the impact of this change is minor for this 

study since the volumes of vehicles turning left is relatively low. 

 The case study sites used for this analysis were too small to have reported traffic 

characteristics (crashes and vehicle miles travelled) with the Nebraska Department of 

Transportation. In lieu of site-specific information, safety data for the counties in which 

is case study sites reside were used. While the county data provides a moderately 

accurate representation of the traffic characteristics of the case study sites, access to site-

specific information would allow for results that are more accurate. 
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CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS 

This research sought to address two main questions. The first question: because it is 

readily available to decision makers, how well does AADT serve as a predictor of the 

feasibility of a road diet conversion? The second question: outside of AADT, what are 

some other readily available factors which predict the feasibility of road diet 

conversions? The results of this research indicate that road diet conversions are feasible 

roadway improvement projects while AADT is less than 12,000, while AADT ranging 

from 20,000 and greater renders road diets infeasible as roadway improvement projects. 

For the AADT between 12,000 and 20,000 this research indicates that the existing facility 

average delay per vehicle is a primary contributing factor to feasibility. The economic 

analysis performed found that increasing average delay by more than 10 seconds per 

vehicle renders road diets economically infeasible. An important non-operational factor 

to consider is also cost. In Nebraska, townships have to pay half the cost for repaving and 

surface maintenance of the roadway when it is four lanes, but they do not have to pay for 

one lane. Therefore, to limit the cost impact of road diet conversions, road diets should be 

implemented as restriping as part of necessary resurfacing work. This effectively 

eliminates any cost associated with the actual road diet implementation, as the restriping 

costs are already accounted for in resurfacing projects. 

The results of this study are limited by the data collection process, modeling 

software, and the nature of the study sites. As discussed previously, the data collection 

process is effective, but limited by the number of devices available. In future studies, 

combining the use of more cameras with additional study days will allow for more 

complete or comprehensive data collection. When utilizing the software application to 
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model the road diet configuration of the highway, issues arise modeling the two-way left-

turn lane. This function is not specifically supported in the software. To overcome this, 

left-turn bays can be created for each intersection or driveway. While this is not 

completely accurate with the behavior of a true two-way left-turn lane, the impact of this 

change is minor for this study since the volumes of vehicles turning left is relatively low. 

Additionally, the population centers and AADT volumes for the case study sites were too 

low for the Nebraska Department of Transportation to provide detailed traffic 

characteristics (crashes and vehicle miles travelled) data. 

In future studies, sites with higher traffic volumes and population should be 

chosen to allow access to more complete traffic data. This will allow for a more accurate 

economic analysis and would result in more finely tuned criteria for the decision tree. 

Additionally, examining the impacts of midblock friction on road diet feasibility provides 

an avenue to further refine the research laid out in this document. 
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