Development of a Mechanical Rocker Test Procedure for Ice Melting Capacity Evaluation

Nebraska Department of Roads
Project No. M322

Development of a Mechanical Rocker Test Procedure for Ice Melting Capacity Evaluation

NDOR Project Number: M322
Project Duration: February 1, 2012 - June 30, 2014

Principal Investigator

Christopher Y. Tuan, Ph.D., P.E.
Professor of Civil Engineering
University of Nebraska-Lincoln
1110 South $67^{\text {th }}$ Street
Omaha, Nebraska 68182-0178
Telephone: (402) 554-3867, Fax: (402) 554-3288
E-Mail: ctuan1@unl.edu

Graduate Research Assistant
Tregan Albers II
University of Nebraska-Lincoln
Department of Civil Engineering
1110 South $67^{\text {th }}$ Street
Omaha, Nebraska 68182-0178

June 2014

Technical Report Documentation Page

| 1. Report No
 NDOR Project: M322 | 3. Recipient's Catalog No. |
| :--- | :--- | :--- |
| 4. Title and Subtitle
 Development of a Mechanical Rocker Test Procession No.
 Capacity Evaluation | |
| 7. Author/s | |
| Albers, T., and Tuan, C.Y. | 5. Report Date
 June 30,2014 |
| 6. Performing Organization Code for Ice Melting | |

Form DOT F 1700.7 (8-72) Reproduction of form and completed page is authorized

DISCLAIMER

The contents of this report merely reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Nebraska Department of Roads, nor of the University of Nebraska-Lincoln. This report does not constitute a standard, specification or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the completeness of the report. The United States government and the State of Nebraska do not endorse products or manufacturers.

ACKNOWLEDGEMENTS

This project was sponsored by the Materials \& Research Division of the Nebraska Department of Roads (NDOR), and the Mid-America Transportation Center (MATC) of the University of Nebraska-Lincoln. The authors wish to thank Barbara Gerbino-Bevins, Jasmine Dondlinger, Jodi Gibson, Lieska Halsey, Wally Heyen, Mike Mattison, and Anna Rea of NDOR, and Molly Lamrouex, Melissa Maiefski, Sue Petracek, and Frank Rich of the Nebraska Division of the Federal Highway Administration (FHWA) for their collaborations and valuable feedbacks. The authors also wish to thank Robert Vanderveen and James Reitmeier for their efforts in setting up the ice melting capacity rocker tests and data collection during the early stages of the project.

Table of Contents

I. Introduction 1
II. Mechanical Rocker Ice Melting Test 3
III. Lab Equipment Requirements 5
III. 1 Liquid Chemical Deicer 5
III. 2 Laboratory Freezer 5
III. 3 Mechanical Rocker 6
III. 4 Stop-Watch 7
III. 5 Latex Gloves 7
III. 6 Thermoses 8
III. 7 No. 4 Sieve 8
III. 8 Plastic Spatula and Plastic Tweezers 8
III. 9 Dish or Cup to Weigh Ice 9
III. 10 Two Ice Cube Trays 9
III. 11 Micropipette. 10
III. 12 Funnel 11
III. 13 Volumetric Pipette 11
III.14 A Digital Mass Balance in a Confined Box 11
IV. Test Parameters and Data Analysis 13
IV. 1 Ice Cube Volume/Liquid Deicer Volume 13
IV. 2 Type of Thermos 16
IV. 3 Revolutions Per Minute (RPM) 18
IV. 4 Duration of Rocking 20
IV. 5 Tilt Angle ($\mathbf{1 0}^{\circ}$ vs. $\mathbf{2 0}^{\circ}$) 23
IV. 6 Styrofoam Cup vs Ceramic Dish 26
IV. 7 Rocker Test Data using Other Chemicals 28
V. The Proposed Mechanical Rocker Test Procedure 31
Mechanical Rocker Testing Procedure - for evaluation of
Ice Melting Capacity of Liquid Deicers in ASTM Format 31
V. 1 Scope 31
V. 2 Reference Documents 31
V. 3 Significance and Use 31
V. 4 Apparatus 31
V. 5 Testing Procedures. 33
V. 6 Calculations 35
V. 7 Key Words 36
VI. Conclusion 39
Appendix ... 40

List of Figures

Figure 1: Freezer interior space 6
Figure 2: Mechanical Rocking Platform 7
Figure 3: No. 4 Sieve and Spatula 9
Figure 4: Filling the Ice Cube Trays 10
Figure 5: Micropipette 10
Figure 6: Digital Mass Balance (in confined space) 12
Figure 7: Increasing and Decreasing Materials - Ice Melting Capacity 15
Figure 8: Increasing and Decreasing Materials - Standard Deviation 15
Figure 9: Correlation between Ice Melting Capacity vs. Initial Ice Amount 16
Figure 10: Stanley vs. Thermos - Ice Melting Capacity 17
Figure 11: Stanley vs. Thermos - Standard Deviation. 17
Figure 12: Rocking Frequency - Ice Melting Capacity 19
Figure 13: Rocking Frequency - Standard Deviation 19
Figure 14: Thermos Temperature during a 60 RPM Test 21
Figure 15: Thermos Temperature during a 90 RPM Test 21
Figure 16: Time Duration - Ice Melting Capacity 22
Figure 17: Time Duration - Standard Deviation 23
Figure 18: Tilt Angle at 60 RPM - Ice Melting Capacity 24
Figure 19: Tilt Angle at 60 RPM - Standard Deviation. 25
Figure 20: Tilt Angle at 90 RPM - Ice Melting Capacity 25
Figure 21: Tilt Angle at 90 PRM - Standard Deviation. 26
Figure 22: Ceramic Bowl vs. Styrofoam Cup - Ice Melting Capacity 27
Figure 23: Ceramic Bowl vs. Styrofoam Cup - Standard Deviation 28
Figure 24: Different Deicer Chemicals - Ice Melting Capacity 29
Figure 25: Different Deicer Chemicals - Standard Deviation 30
Figure 26: Freezer Space 36

Figure 27: Digital Mass Balance (in a confined box) ... 36
Figure 28: Filling the Ice Trays .. 37
Figure 29: Rocking the Thermos Perpendicular to Rocking Axis 37
Figure 30: Separating the Ice from the Liquid ... 38

I. INTRODUCTION

The cost of deicing chemicals is a significant part of Nebraska Department of Roads (NDOR)'s winter maintenance budget. The use of deicing chemicals is increasing each year to achieve a needed Level of Service (LOS) and the price of the chemicals is also going up each year. Common deicing chemicals include sodium chloride, magnesium chloride, calcium chloride, calcium magnesium acetate, potassium acetate, potassium formate and corn or beetbased deicer solution. Liquid deicers are commonly used for pre-wetting road salt, sand or other solid deicers, or mixed with salt brine as liquid deicer. There are many products available for use in highway and bridge deicing and new products are introduced each year. Data from the manufacturer provides only theoretical performance under specific conditions. A test procedure for acceptance of deicing chemicals is needed to confirm the manufacturers' claims and to compare competing products under the same controlled conditions and at various application rates.

During Phase 2 of the NDOR deicing chemicals performance evaluation project (No. SPR-P1(10) P328), a simple and economical test using a martini shaker to evaluate ice melting capacity of liquid deicers showed good potential to become a standardized test. There is a need to support an internal effort at NDOR to further develop the shaker test into a deicing chemicals test protocol. A number of parameters of the testing procedure need to be precisely specified to ensure repeatability and accuracy. The main objective of this research is to transform the shaker test into a gold standard for ice melting capacity evaluation of liquid deicing chemicals. This research focused on the use of a mechanical rocker for shaking instead of shaking by hand,
which can introduce significant error due to the variability of shaking by the tester. The modified test will be termed the "Mechanical Rocker Ice Melting Test" herein.

NDOR spends over $\$ 4$ million per year on highway deicing chemicals. A proven testing procedure for ice melting capacity evaluation and quality assurance methodology will ensure that the best value chemicals are procured and that performance is consistent throughout the season. Accurate information regarding the relative deicing performance of different chemicals at specific temperatures and environmental conditions in terms of chemical mix ratio and application rate will improve winter roadways maintenance. It is anticipated that a minimum 5\% reduction in cost (or $\$ 200,000 /$ year) could be easily achieved without compromising LOS for the traveling public.

The Mechanical Rocker Ice Melting Test procedure developed will be submitted to selected Departments of Transportation and Clear Roads for testing and feedback. The Mechanical Rocker Ice Melting Test could also be used for screening of new deicing products submitted by vendors each year. The Mechanical Rocker Ice Melting Test may eventually be proposed to AASHTO for adoption to replace the SHRP II ice melting capacity test currently in use.

II. MECHANICAL ROCKER ICE MELTING TEST

This research aims to develop a simple and repeatable test to determine the ice melting capacity of a liquid deicer. The procedure is simple in that it can be used with relatively inexpensive equipment and in normal working laboratory environments. It does not require the use of a walk-in freezer, although it is important that procedures are followed quickly when working outside of the freezer to limit error. The use of the Mechanical Rocker may loosely simulates the effect of traffic, however, the primary purpose is to provide a consistent test method that is repeatable and relatively quick, with modest equipment requirements. Data shows that the test is repeatable and the test procedure produces consistent results. Apex Meltdown, a product comprised of 27.0-29.0\% magnesium chloride was used as the control chemical for the Mechanical Rocker Ice Melting Tests. After the test procedure had been finalized, several tests were also conducted using salt brine and calcium chloride for comparisons.

The general procedure of the Mechanical Rocker Ice Melting Test is described as follows. A small amount of deicer chemical (30 mL) is chilled to $0^{\circ} \mathrm{F}$ inside a thermos within the confine of a freezer. A small amount of ice cubes (33) with a certain volume ($1.30 \mathrm{~mL} / \mathrm{each}$) are frozen in the same $0^{\circ} \mathrm{F}$ environment. Styrofoam empty cups are weighed and then weighed again with the 33 ice cubes. The mass of the ice cubes is determined using a mass balance. Within the confine of the freezer, the ice cubes are placed inside the thermos with the deicer liquid. The thermos is removed from the freezer, and placed on a mechanical rocking platform set to a particular tilt angle $\left(10^{\circ}\right)$ and rocked for a given period of time (15 minutes). After the time is up, the remaining ice and the melted ice are separated using a sieve (\#4), and the remaining ice is weighed in another Styrofoam cup. The ice melting capacity of a liquid deicer
is determined by subtracting the final mass of ice from the initial mass of ice and dividing this difference by the amount of liquid chemical deicer used in the experiment. For instance, if the amount of chemical deicer used was 28 mL , the initial ice mass was 36 grams, and the finial mass of the ice was 26 grams, the ice melting capacity would be: (36 grams - 26 grams) / 28 mL $=0.357$ grams of ice per mL of deicer.

The sensitivities of a number of test parameters were investigated to minimize the error while attempting to achieve the largest melting capacity that can be obtained. It is anticipated that the proposed test procedure will be applicable to other deicers and other temperatures, even though a single liquid deicer (i.e., magnesium chloride) was tested at $0^{\circ} \mathrm{F}$. Comparisons of chemicals should be done at various temperatures to determine which one is the best value for certain conditions. It should be noted that the ice melting capacities obtained from this test should not be confused with those obtained from other test procedures previously developed by other researchers.

III. LABORATORY EQUIPMENT REQUIREMENTS

Presented in this section is the equipment required for conducting the Mechanical Rocker Ice Melting Test. Most items are readily available in a typical chemical laboratory. The experimental data presented in Section IV shows how specific test parameters were selected based on a series of designed experiments.

III. 1 Liquid Chemical Deicer

Any liquid chemical deicer can be used in this test and results of different liquid deicers can be compared. Apex Meltdown (magnesium chloride) was used in the development of this test. Magnesium chloride concentrations varied no more that $\pm 0.7 \%$ during the development of the test. Concentrations used in the tests ranged from 27.6% to 29.0%. Magnesium chloride was selected for baseline deicer for the test development due to its high melting capacity capabilities. This test may not accurately reflect the ice melting capacities of liquid deicers that absorb heat energy from the sun, such as deicers containing beet juice.

III. 2 Laboratory Freezer

A freezer set to $0^{\circ} \mathrm{F}$ was used to chill liquid deicer and freeze ice for the experiments. The freezer must be large enough to hold at least three thermoses, one \#4 sieve, two ice trays, one funnel, a spatula, and tweezers (See Figure 1). The freezer must be able to maintain a temperature of $0^{\circ} \mathrm{F}$ with an accuracy of no more than $\pm 1^{\circ} \mathrm{F}$.

Figure 1: Freezer interior space

III. 3 Mechanical Rocker

A Cole-Parmer mechanical rocker was used for the experiment (See Figure 2). The mechanical rocker should be capable of rocking with a frequency range of 60 to 120 revolutions per minute (rpm). It should also be capable of a tilt angle of $\pm 10^{\circ}$ at these rocking frequencies. The platform should be able to hold a weight of at least ten pounds. A different rocker was used when conducting the 20° tilt angle experiments due to limitation of the initial rocker. A rocking frequency of 90 rpm was selected for testing. A tilt angle of 10° was selected for testing because many mechanical rockers have limited tilt angle ranges.

Figure 2: Mechanical Rocking Platform

III. 4 Stop-watch

A stop-watch was used to keep track of the duration of time while rocking the thermos.
Some rocking platforms have a built-in timer. If the tester chooses to use a built-in timer, make sure to verify that the timer is accurate. A duration of 15 minutes was selected for testing.

III. 5 Latex Gloves

A pair of latex gloves should be worn during the experiment. Oil from fingertips can affect the mass balance readings, and some deicer chemicals can be highly corrosive and contact with skin should be avoided. It is important to follow the safety protocols specified in the MSDS regarding the chemical used for testing.

III. 6 Thermoses

Vacuum sealed Stanley ${ }^{\mathrm{TM}}$ thermoses and Thermos ${ }^{\mathrm{TM}}$ brand thermoses were used for testing. There were no major differences in the performance of the thermoses. It is only important that the thermos be vacuum insulated. The vacuum seal will achieve the highest thermal insulation possible. The thermos should also be stainless-steel to protect against corrosion from the deicer from multiple uses. The standard capacity of the thermoses used was 16 fluid oz.

III. 7 No. 4 Sieve

A No. 4 sieve was used with a plastic spatula and tweezers to separate the liquid deicer and ice melt from the remaining ice cubes. A No. 4 sieve allows particles no larger than 0.25 -inch pass through its mesh (see Figure 3). A coarser sieve may allow ice cubes to pass through, and a finer sieve may collect liquid on its mesh allowing for melting to continue. Therefore, using sieves of other size is not recommended.

III. 8 Plastic Spatula and Plastic Tweezers

A plastic spatula (see Figure 3) and plastic tweezers were used to collect the residual ice chunks on the sieve. Do not handle the ice directly as it can affect the amount of ice melting.

Figure 3: No. 4 Sieve and Spatula

III. 9 Dish or Cup to Weigh Ice

A Styrofoam cup or dish must easily contain 33 ice cubes ($1.30 \mathrm{ml} /$ each), and also fit in a mass balance for weighing. Styrofoam works well due to its thermal insulation properties. Ceramic dishes were initially used in the early experiments, but moisture condensation apparently formed on the dish during weighing. Styrofoam was chosen thereafter to eliminate the error caused by condensation. When the cup or dish is removed immediately from the freezer for weighing, the reading of the mass should not increase significantly over time. Otherwise, the environment might be too humid such that the condensation on the cup or dish could cause significant error in the measurements.

III. 10 Two Ice Cube Trays

The ice cube tray should be able to produce ice cubes with a cross-section of 7/16 in \times $7 / 16$ in and a depth of $7 / 16$ in. For each experiment, a total of 103 ice cubes will be needed (33
ice cubes for 3 tests and at least 4 extra in case any ice cubes are dropped or do not freeze properly). As shown in Figure 4, thirty-three ice cubes of 1.3 mL volume were selected for use in the experiment.

Figure 4: Filling the Ice Cube Trays

III. 11 Micropipette

A micropipette (shown in Figure 5) is used to deliver 1.3 mL of water in a single delivery to each cell of the ice cube tray, within $\pm 0.10 \mathrm{~mL}$ tolerance.

Figure 5: Micropipette

III. 12 Funnel

A working funnel is used to allow for the ice cubes to pass through its small hole at one end. The diameter of the hole must be no smaller than 1 in.

III. 13 Volumetric Pipette

A volumetric pipette is used to deliver 30 mL of liquid deicing chemical into a thermos, within a tolerance of $\pm 0.03 \mathrm{~mL}$.

III. 14 A Digital Mass Balance in a Confined Box

A digital mass balance in a confined box with ± 0.001 gram accuracy is utilized for the mass measurements of the Styrofoam cups and the ice cubes. A box to confine the mass balance is to eliminate the error caused by air flow within the room (see Figure 6).

Figure 6: Digital Mass Balance (in confined space)

IV. TEST PARAMETERS AND DATA ANALYSIS

The sensitivities of the essential test parameters in the mechanical rocker ice melting experiments have been investigated. The original test data from all the experiments are attached in the Appendix of this report.

IV. 1 Ice Cube Volume/Liquid Deicer Volume

At the very beginning of the test procedure development, the amount of ice and the amount of deicer to be used for the experiment needed to be defined. A benchmark was first developed which consisted of using 10 ice cubes of $1-\mathrm{mL}$ each, $7-\mathrm{mL}$ of chemical deicer (Apex Meltdown ${ }^{\mathrm{TM}}$), a freezer temperature of $0^{\circ} \mathrm{F}$, a rocking tilt angle of 10°, and a rocking frequency of 60 RPM. Each trial test was repeated three times and the benchmark produced an average ice melting capacity of 0.2911 g of ice $/ \mathrm{mL}$ of deicer (Figure 7) and a standard deviation of 6.74% (Figure 8). To assess the impact of the amounts of ice and deicer, 40 ice cubes of $1-\mathrm{mL}$ each and $28-\mathrm{mL}$ of Apex Meltdown ${ }^{\mathrm{TM}}$ were tried. As expected, the ice melting capacity increased to 0.3506 g of ice $/ \mathrm{mL}$ of deicer (Figure 7), while the standard deviation decreased to 3.71% (Figure 8). This indicated that increasing the surface area and the liquid deicer would reduce the standard deviation in the test data. Next, the amount of ice cubes used was increased to 50 ice cubes of $0.8-\mathrm{mL}$ each such that the total amount of ice remained the same but with increased surface area. The amount of the liquid deicer was kept unchanged. The ice melting capacity was 0.3462 g of ice $/ \mathrm{mL}$ of deicer (Figure 7) while the standard deviation decreased to 3.37% (Figure 8). This again showed that increasing the surface area of the ice would reduce the standard deviation in the test data.

In the subsequent experiments, 31 ice cubes of $1.3-\mathrm{mL}$ each were used with the $28-\mathrm{mL}$ of Apex Meltdown ${ }^{\mathrm{TM}}$. The $1.3-\mathrm{mL}$ volume is the maximum amount of liquid that could be dispensed into a single cell of the ice cube tray being used. The ice melting capacity decreased to 0.3243 g of ice $/ \mathrm{mL}$ deicer (Figure 7) with an increase in the standard deviation to 4.48%. (Figure 8). This was consistent with the observation that increasing ice cube surface area increased the rate of melting while the variance between trials decreased. To further reduce the standard deviation, 33 ice cubes of $1.3-\mathrm{mL}$ each with 30 mL of Apex Meltdown ${ }^{\mathrm{TM}}$ were used. The ice melting capacity obtained was 0.3182 g of ice $/ \mathrm{mL}$ deicer (Figure 7), while the standard deviation dropped to 3.55% (Figure 8). It is essential to use Apex Meltdown ${ }^{\mathrm{TM}}$ of the same concentration of magnesium chloride in this series of experiments so that the test data is not skewed.

Comparing Increasing and Decreasing Materials

Figure 7: Increasing and Decreasing Materials - Ice Melting Capacity

As shown in Figure 9, no apparent correlation between the ice melting capacity and initial ice mass used was identified, and it was therefore decided to use 33 ice cubes of $1.3-\mathrm{mL}$ each and 30 mL of liquid deicer for the test procedure.

Figure 9: Correlation between Ice Melting Capacity vs. Initial Ice Amount

IV. 2 Type of Thermos

Many tests were done to determine whether a thermos with specific properties would produce different test results. In the next series of experiments, Stanley ${ }^{\text {TM }}$ and Thermos ${ }^{\text {TM }}$ thermoses were used in exactly the same test setting to assess the impact due to the use of different thermos types.

Figure 10: Stanley vs. Thermos - Ice Melting Capacity

Figure 11: Stanley vs. Thermos - Standard Deviation

The rocking frequency was held constant at 60 RPM and time durations ranged from 2.5 minutes to 30 minutes in these experiments. At this point of the testing, the ceramic bowls (as opposed to Styrofoam cups) were still being used for measuring and the standard deviations in test data were higher. Figure 10 shows that the Thermos ${ }^{\text {TM }}$ consistently produced slightly higher ice melting capacities, but the difference is negligible. The standard deviation appears to be inconsistent for the 2.5 -minute and 5 -minute test durations, as shown in Figure 11. The scatter in the test data was probably due to insufficient time of rocking. However, for the 10 -minute, 15minute, and 30-minute test durations, the Stanley thermos performed more consistently than the Thermos ${ }^{\mathrm{TM}}$. It should be noted that the Thermos ${ }^{\mathrm{TM}}$ thermoses had a thermocouple wire installed inside of it to take temperature readings. The wire was well insulated but tiny air gap around the wire could have contributed error in test data. It is inconclusive based on this data comparison to state one brand is better than the other. It was concluded that as long as a thermos is vacuum sealed for thermal insulation, it can be used for the test.

IV. 3 Revolutions per Minute (RPM)

This series of tests were conducted at three rocking frequencies: 60 RPM, 90 RPM, and 120 RPM. One revolution of the rocking platform is defined as one edge of the platform would start at its highest position, move to its lowest position, and then return to its highest position. This cycle of platform movement corresponds to one revolution of the motor shaft of the mechanical rocker. Data presented in Figures 12 and 13 were obtained using ceramic bowls for weighing and a tilt angle of 10° for rocking. Also, the Thermos ${ }^{\mathrm{TM}}$ thermos was used in these experiments.

Figure 12: Rocking Frequency - Ice Melting Capacity

Figure 13: Rocking Frequency - Standard Deviation
Comparing data obtained at 10 minute and 15 minute time durations, it can be seen that 90 RPM produced a slightly higher ice melting capacity than at 60 RPM and 120 RPM. Rocking the thermos faster does not produce more melting. Further, the standard deviations in Figure 13 showed that 60 RPM did not produce the consistent results that 90 RPM or 120 RPM did. While
the 90 RPM and 120 RPM results are comparable at 10 -minute duration, 90 RPM produced more consistent data than 120 RPM at 15 minutes. The results suggest that 90 RPM rocking frequency at 15 -minute duration would produce most consistent test data.

IV. 4 Duration of Rocking

It seems that the best time duration for the rocker test would be the time required to reach a thermal equilibrium inside the thermos. The maximum melting will have been achieved at this point because the temperature would continue to drop if additional melting is in progress. In this series of tests, a thermocouple wire was inserted inside the thermos to take temperature readings every thirty seconds. While the initial air temperature and the temperature when equilibrium was reached inside the thermos varied considerably, it was determined that thermal equilibrium was probably reached between 15 and 20 minutes. The temperature time-histories from a 60 RPM and a 90 RPM test are shown in Figure 14 and 15, respectively. In these tests, very little temperature changes were noted between the 15 and 20 minute marks, indicating that ice melting had been complete within this time frame.

Figure 14: Thermos Temperature during a 60 RPM Test

Thermos Temperature During 90 RPM Test

Figure 15: Thermos Temperature during a 90 RPM Test

This series of tests were conducted at 60 RPM and 90 RPM, for 10-minute, $15-$ minute, and 20-minute durations each. As shown in Figure 16, the ice melting capacity increases as the time duration is increased. It is not apparent from the data, however, that melting really diminished after 15 to 20 minutes of rocking.

As shown in Figure 17, the standard deviations are smaller at 90 RPM than at 60 RPM rocking frequency. Since the 90 RPM was selected to be the rocking frequency for the test procedure, it follows that a 15 -minute time duration would produce least amount scatter in the test data.

Figure 16: Time Duration - Ice Melting Capacity

Figure 17: Time Duration - Standard Deviation

IV. 5 Tilt Angle ($\mathbf{1 0}^{\circ}$ vs. $\mathbf{2 0}^{\circ}$)

Experiments were conducted to assess the impact of the tilt angle of the rocking platform, at 10° and 20° tilt angles. Problems were encountered when adjusting the tilt angle of the rocking platform. The maximum tilt angle achievable by the rocking platform was $\sim 10^{\circ}$ (about 8°). As a result, a second rocking platform that could achieve a $\sim 20^{\circ}$ tilt angle (about 18°) had to be rented to accomplish the comparative studies. However, the maximum rocking frequency of this second platform was only 80 RPM.

As shown in Figures 18 and 19, the 20° tilt angle produced better results than the 10° tilt angle at 60 RPM rocking frequency. The increased tilt angle provides greater agitation of the ice cubes and deicer, which increases the amount of ice melted. For the 60 RPM tests, this also resulted in a lower standard deviation (Figure 19). This implies that the mixing in the 60 RPM
tests at 10° tilt angle was not sufficient to reach the maximum ice melting capacity of the Apex Meltdown ${ }^{\mathrm{TM}}$. Test data from the 80 RPM with 20° tilt angle are compared to those from the 90 RPM with 10° tilt angle in Figure 20 and 21. Comparing the 90 RPM at 10° tilt angle to the 80 RPM at 20° tilt angle, it is shown that the ice melting capacities also increases with the higher tilt angle (Figure 20). The standard deviation did not drop at higher tilt angle, however, because adequate mixing has already been achieved at 90 RPM (Figure 21). The standard deviation of 1.63% from $80 \mathrm{RPM} / 20^{\circ}$ tilt angle compares very close to the standard deviation of 1.60% from 90RPM $/ 10^{\circ}$ tilt angle. The concentration of the magnesium chloride used in these tests was at 28.7\%.

Figure 18: Tilt Angle at 60 RPM - Ice Melting Capacity

Figure 19: Tilt Angle at 60 RPM - Standard Deviation

Figure 20: Tilt Angle at 90 RPM - Ice Melting Capacity

Figure 21: Tilt Angle at 90RPM - Standard Deviation

Given that many commercial mechanical rockers have limitations on tilt angles of the platform, it was decided that 90 RPM rocking frequency with 10° tilt angle will be used for the test procedures as those are achievable by most mechanical rockers. (Note: A user is not limited to the lesser tilt angle specified in this report. The results by the user should be compared to the data given in Figures 18 through 21 herein to see if similar standard deviation are obtained.)

IV. 6 Styrofoam Cup vs. Ceramic Dish

During the earlier stages of rocker test development, a ceramic bowl was used to weigh the ice. It was observed that the reading on the mass balance increased over time while weighing the ice in the ceramic bowl. While the ice contents were removed from the freezer, moisture in the
room immediately builds upon the ice in the form of condensation. Condensation also formed on the ceramic dish that had acclimated to the temperature of the freezer. This made it difficult to determine the true mass of the dish. The first value observed on the mass balance was recorded. While it was unclear what percentage of error was introduced, it was decided that the use of Styrofoam dish or cup would resolve this issue. Styrofoam has higher thermal insulation properties and does not conduct heat as easily as ceramic. Tests were conducted using both the ceramic dishes and a regular coffee cup. Test results are shown in Figures 22 and 23.

Figure 22: Ceramic Bowl vs. Styrofoam Cup - Ice Melting Capacity

Figure 23: Ceramic Bowl vs. Styrofoam Cup - Standard Deviation
As anticipated, the percentage error decreased by at least 0.45% (as in the case of 90 RPM for 15 minutes) or more. Styrofoam proved to be beneficial to minimizing the moisture condensation. It reduced the error significantly and stabilized the mass balance reading.

IV. 7 Rocker Test Data using Other Chemicals

After the development of the Mechanical Rocker Test, the test was performed using two additional chemicals, Calcium Chloride and Salt Brine, to show that the test produced consistent results. Only a set of three tests were conducted for each chemical. Figure 24 shows the different ice melting capacities of the three deicers. Magnesium Chloride has the highest melting capacity at $0.4650 \mathrm{~g} / \mathrm{mL}$, Calcium Chloride has a melting capacity of $0.3793 \mathrm{~g} / \mathrm{mL}$, and Salt Brine has a considerably lower capacity at $0.1071 \mathrm{~g} / \mathrm{mL}$. As the ice melting capacities of the deicing chemicals decreased, the standard deviation percentages increased as shown in Figure
25. The standard deviation percentage of Magnesium Chloride, Calcium Chloride, and Salt Brine were $1.15 \%, 2.33 \%$, and 6.96%, respectively. Although the percentage standard deviations vary significantly, the actual standard deviations from the tests were comparable among the three deicers. The standard deviations of Magnesium Chloride, Calcium Chloride, and Salt Brine were $0.0054 \mathrm{~g} / \mathrm{mL}, 0.0089 \mathrm{~g} / \mathrm{mL}$, and $0.0075 \mathrm{~g} / \mathrm{mL}$, respectively. These standard deviation values indicate that the rocker test procedure developed produces test results with reasonable accuracy.

Figure 24: Different Deicer Chemicals - Ice Melting Capacity

Figure 25: Different Deicer Chemicals - Standard Deviation

V. THE PROPOSED MECHANICAL ROCKER TESTING PROCEDURE

The following is the proposed Mechanical Rocker Testing Procedure written in conformance with the ASTM standard format for parallel studies by other laboratories.

Mechanical Rocker Testing Procedure - for evaluation of Ice Melting Capacity of Liquid Deicers:

1. Scope

1.1 This practice covers a procedure for testing the ice melting capacity of liquid deicers. The purpose is to affordably compare different liquid deicers for effectiveness.
1.2 This procedure does not pertain to the environmental effects or the corrosive effects of liquid deicers.
1.3 This procedure does not address the effects of sunlight upon a deicer chemical.
1.4 This standard does not address the safety concerns of handling different deicer chemicals. It is the responsibility of the user to address any safety concerns that may arise.
2. Referenced Document
2.1 ASTM Standards:

D345 Standard Test Method for Sampling and Testing Calcium Chloride for Roads and Structural Applications

3. Significance and Use

3.1 This test method describes procedures to be used for testing the ice melting capacities of chemical deicers to determine the effectiveness of different commercial deicing chemical products.

4. Apparatus

4.1 Mechanical Test Equipment:
4.1.1 Laboratory Freezer: The freezer must be large enough to hold at least three thermoses, one sieve, two ice trays, one funnel, a spatula, and tweezers (Figure
26). The freezer must be able to maintain a temperature of $0^{\circ} \mathrm{F}\left(-17.8^{\circ} \mathrm{C}\right)$ with an accuracy of $\pm 1^{\circ} \mathrm{F}\left(\pm 0.56^{\circ} \mathrm{C}\right)$.
4.1.2 Mechanical Rocker: The mechanical rocker must be able to rock with a frequency range of 60 to 120 rpm . It must be capable of a tilt angle of $\pm 10^{\circ}$. It must be able to hold the weight of at least ten lbs.
4.1.3 A digital mass balance in a confined box with ± 0.001 gram accuracy.

A confining glass box is important to eliminate the error caused by air flow within the room (see Figure 27).
4.1.4 Stop-watch: A digital stopwatch is required to record the rocking duration.
4.2 Sampling Equipment:
4.2.1 Latex Gloves: A pair of latex gloves should be worn during the experiment.
4.2.2 Thermos: Three stainless-steel vacuum-insulated thermoses (16 oz . each) labeled A, B, and C. It is important that the thermos be vacuum insulated. This obtains the highest insulation possible. The thermos should also be stainless-steel to protect against corrosion from the deicer due to multiple uses.
4.2.3 No. 4 Sieve, plastic spatula, and plastic tweezers: A No. 4 sieve allows particles no larger than $1 / 4$ inch (6.4 mm) pass through its mesh. A sieve of a courser value may allow ice cubes to pass through, and a sieve of finer value may collect liquid on its mesh, allowing for melting to continue. Using other sized sieves is not recommended. A plastic spatula and plastic tweezers will be used to collect the residual ice chunks on the sieve.
4.2.4 8 oz. coffee cups: A Styrofoam cup or dish must easily contain 33 ice cubes, and also fit in the mass balance. Styrofoam as a material is important because of its insulation properties. Styrofoam was chosen as a material to eliminate the error caused by condensation when weighing the cup. If the reading of the mass balance increases significantly over time, the environment might be too humid such that the condensation on the cup or dish could cause significant error in the measurements.
4.2.5 Two ice cube trays: An ice cube tray must produce ice cubes that have a crosssection of $7 / 16$ in $\times 7 / 16$ in $(1.1 \mathrm{~cm} \times 1.1 \mathrm{~cm})$ and a depth of $7 / 16$ in $(1.1 \mathrm{~cm})$.

The ice cube trays must be able to make 103 ice cubes total (33 ice cubes for 3 tests and at least 4 extra in case any are damaged or do not freeze properly).
4.2.6 Micropipette: The micropipette must be able to deliver 1.3 ml of water in a single delivery within the $\pm 0.10 \mathrm{ml}$ tolerance.
4.2.7 Pipette: A volumetric pipette must be able to deliver 30 ml of deicer chemical with a tolerance of $\pm 0.03 \mathrm{ml}$.
4.2.8 Funnel: A working funnel must allow for the ice cubes to pass through its smallend hole. The funnel's small end diameter must not be less than 1 in (2.5 cm).
4.2.9 Deicer Chemical: Any deicer liquid that can stay in liquid form at or below $0^{\circ} \mathrm{F}$ ($17.8^{\circ} \mathrm{C}$).

5. Testing Procedures

5.1 Put on Latex Gloves before testing.
5.2 Preparation:
5.2.1 Label six Styrofoam cups: A, B, C and AA, BB, CC.
5.2.2 Label three thermoses: A, B, C.
5.2.3 Prepare ice cubes. Use the micropipette to dispense 1.3 mL of distilled/deionized water into the apertures of the ice cube trays to create 103 ice cubes (Figure 28). Thirty-three ice cubes are required for a single test and three tests will be performed. Four extra ice cubes should be prepared in case some are damaged or do not freeze entirely.
5.2.3.1 After filling the ice cube trays, tap the sides of the tray gently to vibrate the liquid inside the tray. This breaks the surface tension of the water and ensures that all the ice cubes will freeze properly. Ice cubes that do not freeze properly will appear as unfrozen liquid or slush.
5.2.4 Prepare deicer sample. Use the pipette to dispense 30 mL of a given liquid chemical deicer into each of the three thermoses labeled A, B, and C. Make sure to shake or stir any container containing the liquid deicer chemical before dispensing to the thermoses.
5.2.5 Measure and record the mass of the six pairs of 8 oz . Styrofoam cups labeled A, B, C and $\mathrm{AA}, \mathrm{BB}, \mathrm{CC}$ using the digital mass balance.
5.2.5.1 A, B, and C will be used for the measurement of the mass of ice before testing. 5.2.5.2 AA, BB, CC, will be used to measure the mass of melted ice after rocking.
5.2.6 Place the thermoses and the ice cube trays into the freezer with the temperature set at $0^{\circ} \mathrm{F}\left(-17.8^{\circ} \mathrm{C}\right)$. Place the lids of the thermoses over the openings of the thermoses, but do not secure the lids. Allow all materials to acclimate and ice to freeze for 24 hours. These materials include a \#4 sieve with bottom pan, a funnel, tweezers, and a spatula. Plastic tweezers and a plastic spatula are used for the separating of the ice from the deicer/melted ice. Place the Styrofoam cups labeled A, B, and C in the freezer.
5.3 Testing:
5.3.1 Working inside the freezer, place 33 ice cubes inside a single 8 oz . Styrofoam cup A. The plastic funnel may be used to guide the ice cubes to fall into the cup.
5.3.2 Remove Styrofoam cup A filled with the ice from the freezer, and place it within the mass balance. Measure and record the mass of Cup A and the ice, and place the cup A and the ice back into the freezer. The reading on the mass balance should be recorded quickly within 30 seconds from the time the cup leaves the freezer.
5.3.3 Set the mechanical rocker's tilt angle to 10 degrees and frequency to 90 rpm .
5.3.4 Working within the confines of the freezer, remove the lid of the thermos and pour the 33 ice cubes into Thermos A, using the funnel to guide the ice cube, and secure the lid. Thermos A should then be removed from the freezer, placed on the mechanical rocker perpendicular to the rocking axis, and the rocker started immediately afterwards (Figure 29). Start the rocker and the stopwatch simultaneously. Verify all of the ice cubes are in the thermos as the ice cubes may stick to the cup or the funnel. Also, make sure to tighten the lid securely to prevent leaking during the rocking motion. This step should not take more than 15 seconds.
5.3.5 Let the thermos rock for 15 minutes.
5.3.6 At the end of 15 minutes, remove the lid from Thermos A and pour its contents onto the \#4 sieve within the confines of the freezer. This step will separate the liquid from the remaining ice (Figure 30). Verify all the ice is dispensed from

Thermos A onto the sieve. Gently tap the sides of the thermos to remove excess ice, and/or use the plastic tweezers and spatula to remove trapped ice, if necessary.
5.3.7 Place Cup AA within the confines of the freezer and use the tweezers and/or spatula to move the ice from the \#4 sieve into the cup. If the spatula is used to slide the ice into the cup, move no more than two ice cubes at a time to reduce the amount of liquid carried to the cup. In order to reduce ice melting, the ice cubes should be moved off of the sieve and into Cup AA as quickly as possible. No more than 90 seconds should pass from the time the thermos is removed from the rocker in Step 5.3.6 to the time the melted contents are moved from the sieve to Cup AA. Cup AA should not have been allowed to acclimate with the rest of the testing materials in the freezer. Once inside Cup AA, any melting that occurs will not affect the final mass of the ice.
5.3.8 Measure and record the mass of Cup AA with the remaining ice in the digital mass balance. Although the effect of condensation is low, the reading on the mass balance will increase as the material remains on the balance. Cup AA should be removed from the freezer with its mass recorded in less than 30 seconds.
5.3.9 Repeat the test using Cup B, BB, and Thermos B, and then again using Cup C, CC, and Thermos C for a minimum of 3 times.
5.3.10 Calculate the mean and standard deviation of the ice melting capacity in grams (g) per milliliter (mL) of deicer, and present the results as an estimate of the ice melting capacity of the liquid deicer.

6. Calculations

6.1 Use the following equations to calculate the ice melting capacity:
6.1.1 Mass of Ice Melted $=$
(Cup A w/Ice - Initial Mass of Cup A) - (Cup AA w/ melted Ice - Initial Mass of Cup AA)
6.1.2 Ice Melting Capacity =

Mass of Ice Melted / 30 mL deicer liquid chemical (units are in grams of ice/mL of deicer)

7. Key Words

7.1 Ice Melting Capacity; deicer chemical; mechanical rocker;

Figures:

Figure 26: Freezer Space

Figure 27: Digital Mass Balance in Confining Glass Box

Figure 28: Filling Ice Trays

Figure 29: Rocking the Thermos Perpendicular to Rocking Axis

Figure 30: Separating the Ice from the Liquid

VI. CONCLUSION

The shaker test previously developed in a NDOR sponsored research, has been significantly improved. The new testing procedure utilizes a mechanical rocker and the new version is termed "The Mechanical Rocker Ice Melting Test." In this test, 33 ice cubes of 1.3mL each and $30-\mathrm{mL}$ of liquid deicing chemical are mixed in a vacuum sealed thermos on a mechanical rocking platform. The rocker is set to a frequency of 90 RPM with a tilt angle of $\pm 10^{\circ}$. The time duration for rocking is set for 15 minutes. A Styrofoam dish or cup should be used for measuring the mass of ice. With these test parameters, it was shown that a standard deviation of 1.15% was achieved when testing with Apex Meltdown ${ }^{\mathrm{TM}}$.

This Mechanical Rocker Ice Melting Test procedure will be submitted to selected Departments of Transportation and Clear Roads for parallel testing and feedback. The Mechanical Rocker Ice Melting Test can be used for screening of new deicing products submitted by vendors each year. Once validated by other independent organizations, the Mechanical Rocker Ice Melting Test may be proposed to AASHTO for adoption for ice melting capacity evaluation of liquid deicing chemicals.

APPENDIX

The original test data that was accumulated over all the development period of the Mechanical Rocker Ice Melting Test are given in this Appendix. The mechanical rocker tests were repeated three times in each testing, which took about one day for preparation and running the tests. Each data set consisted of a total of 12 tests in four days. The test parameters used in the tests are given in the header of each data set. Ice melting capacities, standard deviations, and standard deviation percentages are calculated by Excel spreadsheet. The concentrations of the deicers used in the tests are also given. Any highlighted data was thrown out for reasons such as experimentation contaminations, unusual outlier, or as noted otherwise.

TEN 1 mL CUBES:: 7 mL DEICER::SYRINGE

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
10/9/2012	7	9.429	7.382	0.2924	
	7	9.573	7.448	0.3036	
	7	9.225	7.101	0.3034	
10/10/2012	7	9.583	7.474	0.3013	
	7	9.481	7.289	0.3131	
	7	9.704	7.417	0.3267	
10/11/2012	7	9.559	7.367	0.3131	
	7	9.663	7.631	0.2903	
	7	9.580	7.555	0.2893	
10/12/2012	7	9.676	7.625	0.2931	
	7	9.722	7.932	0.2558	
	7	9.572	7.618	0.2792	
10/23/2012	7	9.281	7.393	0.2696	
	7	9.720	7.897	0.2604	
	7	9.668	7.590	0.2968	
			AVERAGE	0.2911	
			STD DEV	0.0196	6.74\%

FORTY 1 mL CUBES:: 28 mL DEICER::SYRINGE

DATE	VOLUME OF DEICER (mL)	INTIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer
$10 / 24 / 2012$	28	38.539	28.740	0.3500
	28	38.571	28.471	0.3607
	28	38.962	27.872	0.3961
	28	38.749	28.450	0.3678
	28	38.723	28.990	0.3476
	28	38.875	29.127	0.3481
$10 / 26 / 2012$	28	38.568	28.433	0.3620
	28	38.737	28.996	0.3479
	28	39.103	29.430	0.3454
	28	37.803	28.836	0.3202
	28	37.701	27.868	0.3512
	28.408	28.445	0.3558	

FIFTY 0.8 mL CUBES::28 mL DEICER::MICROPIPET

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g) 37.461	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer
11/19/2012	28	37.461	27.864	0.343
	28	37.858	28.260	0.343
	28	37.557	27.356	0.364
11/23/2012	28	37.523	27.800	0.347
	28	37.545	27.680	0.352
	28	37.061	27.822	0.330
11/27/2012	28	39.084	28.990	0.360
	28	39.395	29.949	0.337
	28	39.662	30.362	0.332
11/30/2012	28	39.468	29.952	0.340
	28	39.035	28.849	0.364
	28	39.255	29.682	0.342
			AVERAGE	0.3462
			STD DEV	0.0117

$31 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET:: 28 mL DEICER--BURETTE:: 60 RPM

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
3/19/2013	28	36.789	27.458	0.333	
	28	36.580	27.481	0.325	
	28	37.818	29.213	0.307	
3/21/2013	28	36.615	27.085	0.340	
	28	36.513	26.928	0.342	
	28	37.522	28.960	0.306	
3/23/2012	28	38.020	28.924	0.325	
	28	36.590	27.240	0.334	
	28	37.832	28.937	0.318	
3/26/2013	28	35.752	27.191	0.306	
	28	35.471	25.840	0.344	
	28	37.070	28.347	0.312	
			AVERAGE	0.3243	
			STD DEV	0.0145	4.48\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET:: 30 mL DEICER--PIPPETTE:: 60 RPM :: STANLEY :: 5 MIN

DATE	$\begin{array}{\|l\|} \hline \text { VOLUME OF } \\ \text { DEICER (mL) } \\ \hline \end{array}$	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
4/22/2013	30	41.291	31.106	0.339	
	30	41.743	32.018	0.324	
	30	40.943	31.774	0.306	
4/24/2013	30	41.371	31.864	0.317	
	30	42.703	32.949	0.325	
	30	40.990	31.835	0.305	
4/26/2013	30	41.755	31.867	0.330	
	30	41.699	32.365	0.311	
	30	40.960	31.476	0.316	
4/27/2013	30	41.427	32.105	0.311	
	30	41.749	31.889	0.329	
	30	40.950	31.787	0.305	
			AVERAGE	0.3182	
			STD DEV	0.0112	3.52\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 60 RPM :: STANLEY :: 2.5 MIN

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g) 3.	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
5/3/2013	30	39.260	32.376	0.229	
	30	39.312	33.024	0.210	
	30	40.612	33.891	0.224	
5/6/2013	30	39.202	30.262	0.298	
	30	40.234	31.078	0.305	
	30	40.695	32.888	0.260	
5/7/2013	30	42.025	34.713	0.244	
	30	41.133	33.461	0.256	
	30	41.263	34.900	0.212	
5/8/2013	30	42.130	33.568	0.285	
	30	42.326	35.183	0.238	
	30	42.231	35.038	0.240	
			AVERAGE	0.2375	
			STD DEV	0.0233	9.81\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 60 RPM :: STANLEY :: 10 MIN

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer
$5 / 10 / 2013$	30	39.990	25.542	0.482
	30	42.357	28.712	0.455
	30	41.493	28.044	0.448
$5 / 13 / 2013$	30	40.900	27.535	0.445
	30	41.473	29.500	0.399
	30	39.836	26.358	0.449
	30	40.947	28.011	0.431
$5 / 15 / 2013$	30	41.143	27.753	0.446
	30	41.496	27.984	0.450

Note: Fields in orange and green were discarded because the concentration of the magnesium chloride used in the tests was unknown.
$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 60 RPM :: STANLEY :: 15 MIN

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	28.40\%
5/23/2013	30	38.458	24.211	0.475	
	30	39.027	25.580	0.448	
	30	40.071	25.643	0.481	
5/24/2013	30	41.414	27.212	0.473	
	30	42.083	28.773	0.444	
	30	41.660	27.221	0.481	
5/25/2013	30	39.863	25.555	0.477	
	30	40.974	26.546	0.481	
	30	40.614	25.753	0.495	
5/28/2013	30	40.787	25.538	0.508	
	30	41.655	28.120	0.451	
	30	41.401	27.507	0.463	
			AVERAGE	0.4732	
			STD DEV	0.0191	4.03\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET:: 30 mL DEICER--PIPPETTE:: 60 RPM :: STANLEY :: 30 MIN

DATE	VOLUME OF DEICER (mL)	$\begin{gathered} \text { INITIAL MASS } \\ \text { OF ICE }(\mathrm{g}) \\ \hline \end{gathered}$	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	28.40\%
5/30/2013	30	41.412	24.170	0.575	
	30	41.169	24.196	0.566	
	30	41.491	24.657	0.561	
5/31/2013	30	40.224	24.556	0.522	
	30	41.353	24.923	0.548	
	30	41.407	24.699	0.557	
6/2/2013	30	41.457	23.963	0.583	
	30	41.491	24.915	0.553	
	30	41.804	24.471	0.578	
5/28/2013	30	-	-	\#VALUE!	
	30	-	-	\#VALUE!	
	30	-	-	\#VALUE!	
			AVERAGE	0.5602	
			STD DEV	0.0185	3.31\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 60 RPM :: THERMOS :: 30 MIN

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	28.40\%
6/6/2013	30	35.866	23.563	0.410	
	30	39.949	23.034	0.564	
	30	39.294	22.709	0.553	
6/7/2013	30	39.021	21.451	0.586	
	30	40.741	22.137	0.620	
	30	38.289	21.434	0.562	
6/10/2013	30	39.829	22.742	0.570	
	30	39.624	22.747	0.563	
	30	38.261	21.615	0.555	
6/11/2013	30	40.144	22.734	0.580	
	30	38.660	22.747	0.530	
	30	40.112	21.615	0.617	
			AVERAGE	0.5726	
			STD DEV	0.0268	4.69\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 60 RPM :: THERMOS :: 15 MIN

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	28.40\%
6/12/2013	30	39.846	25.495	0.478	
	30	40.643	26.252	0.480	
	30	39.441	25.027	0.480	
6/13/2013	30	40.836	26.246	0.486	
	30	40.474	26.334	0.471	
	30	39.660	25.287	0.479	
6/14/2013	30	40.711	26.077	0.488	
	30	41.986	26.534	0.515	
	30	40.335	26.461	0.462	
6/17/2013	30	39.287	25.752	0.451	
	30	39.506	25.819	0.456	
	30	40.661	27.510	0.438	
			AVERAGE	0.4739	
			STD DEV	0.0200	4.22\%

33×1.3 mL CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 60 RPM :: THERMOS :: 10 MIN					$\begin{gathered} \text { MgCl2 \%: } \\ \text { 28.40\% } \end{gathered}$
DATE	VOLUME OF DEICER (mL)	$\begin{gathered} \text { INITIAL MASS } \\ \text { OF ICE }(\mathrm{g}) \\ \hline \end{gathered}$	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
6/18/2013	30	39.952	27.376	0.419	
	30	40.847	28.912	0.398	
	30	41.463	29.955	0.384	
6/19/2013	30	40.475	28.328	0.405	
	30	40.699	29.727	0.366	
	30	40.287	28.689	0.387	
6/20/2013	30	40.509	26.930	0.453	
	30	41.370	29.428	0.398	
	30	40.521	28.143	0.413	
6/21/2013	30	39.605	26.632	0.432	
	30	40.642	27.920	0.424	
	30	42.273	29.735	0.418	
			AVERAGE	0.4080	
			STD DEV	0.0236	5.79\%

33 x 1.3 mL CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 60 RPM :: THERMOS :: 5 MIN

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	29.00\%
6/24/2013	30	39.662	29.588	0.336	
	30	41.069	30.928	0.338	
	30	39.913	30.192	0.324	
6/25/2013	30	41.121	\#VALUE!	\#VALUE!	
	30	41.535	31.457	0.336	
	30	41.118	30.924	0.340	
6/26/2013	30	40.480	30.057	0.347	
	30	41.355	31.457	0.330	
	30	41.545	30.825	0.357	
6/27/2013	30	41.132	32.063	0.302	
	30	40.478	30.025	0.348	
	30	41.031	29.613	0.381	
			AVERAGE	0.3400	
			STD DEV	0.0197	5.80\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 60 RPM :: THERMOS :: 2.5 MIN
$\mathrm{MgCl} 2 \%$:

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	29.00\%
7/1/2013	30	40.909	33.041	0.262	
	30	41.486	34.084	0.247	
	30	39.368	32.263	0.237	
7/2/2013	30	40.834	33.493	0.245	
	30	40.799	33.939	0.229	
	30	40.210	32.427	0.259	
7/3/2013	30	41.519	34.134	0.246	
	30	42.056	30.367	0.390	
	30	41.792	33.817	0.266	
7/5/2013	30	40.253	32.259	0.266	
	30	40.529	32.512	0.267	
	30	41.472	32.960	0.284	
			AVERAGE	0.2553	
			STD DEV	0.0160	6.28\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 90 RPM :: THERMOS :: 15 MIN

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	29.00\%
7/9/2013	30	39.011	24.278	0.491	
	30	38.854	24.530	0.477	
	30	38.761	24.213	0.485	
7/10/2013	30	41.084	26.072	0.500	
	30	40.947	25.830	0.504	
	30	40.894	26.097	0.493	
7/11/2013	30	39.927	25.049	0.496	
	30	39.109	24.223	0.496	
	30	39.329	24.640	0.490	
7/12/2013	30	39.871	25.325	0.485	
	30	40.317	25.335	0.499	
	30	40.000	25.910	0.470	
			AVERAGE	0.4925	
			STD DEV	0.0079	1.60\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE:: 90 RPM :: THERMOS :: 10 MIN
$\mathrm{MgCl} 2 \%$:

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	29.00\%
7/13/2013	30	41.570	27.907	0.455	
	30	41.777	28.196	0.453	
	30	41.539	28.309	0.441	
7/15/2013	30	38.362	25.009	0.445	
	30	39.482	25.689	0.460	
	30	40.272	26.454	0.461	
7/16/2013	30	41.911	28.504	0.447	
	30	40.709	27.905	0.427	
	30	41.369	28.230	0.438	
7/17/2013	30	40.045	26.230	0.460	
	30	39.357	26.144	0.440	
	30	39.749	25.973	0.459	
			AVERAGE	0.4489	
			STD DEV	0.0109	2.43\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::120 RPM :: THERMOS :: 10 MIN

DATE	VOLUME OF DEICER (mL)	$\begin{gathered} \text { INITIAL MASS } \\ \text { OF ICE }(\mathrm{g}) \\ \hline \end{gathered}$	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	29.00\%
7/19/2013	30	41.073	28.575	0.417	
	30	40.378	27.462	0.431	
	30	41.156	27.932	0.441	
7/21/2013	30	40.665	27.146	0.451	
	30	40.842	27.523	0.444	
	30	41.278	27.916	0.445	
7/24/2013	30	39.792	27.681	0.404	
	30	40.404	27.340	0.435	
	30	41.277	27.871	0.447	
7/25/2013	30	41.324	28.216	0.437	
	30	41.678	28.483	0.440	
	30	40.830	27.282	0.452	
			AVERAGE	0.4399	
			STD DEV	0.0100	2.28\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::120 RPM :: THERMOS :: 15 MIN
$\mathrm{MgCl} 2 \%:$

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	27.60\%
7/26/2013	30	41.614	27.162	0.482	
	30	41.652	27.344	0.477	
	30	41.886	28.002	0.463	
7/28/2013	30	41.101	27.259	0.461	
	30	40.790	26.560	0.474	
	30	41.578	27.529	0.468	
7/29/2013	30	41.492	26.856	0.488	
	30	41.452	27.246	0.474	
	30	42.155	27.808	0.478	
7/30/2013	30	42.017	27.379	0.488	
	30	42.159	27.947	0.474	
	30	41.971	27.145	0.494	
			AVERAGE	0.4767	
			STD DEV	0.0100	2.10\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::120 RPM :: THERMOS :: 20 MIN:STYROFOAM

DATE	VOLUME OF DEICER (mL)	$\begin{gathered} \text { INITIAL MASS } \\ \text { OF ICE }(\mathrm{g}) \\ \hline \end{gathered}$	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	27.60\%
7/31/2013	30	41.852	26.767	0.503	
	30	41.307	25.880	0.514	
	30	41.980	26.992	0.500	
8/1/2013	30	41.776	26.613	0.505	
	30	42.086	26.673	0.514	
	30	41.791	26.733	0.502	
8/2/2013	30	41.540	27.125	0.480	
	30	42.055	27.484	0.486	
	30	\#VALUE!	\#VALUE!	\#VALUE!	
8/5/2013	30	41.360	27.338	0.467	
	30	41.171	25.999	0.506	
	30	41.808	27.345	0.482	
			AVERAGE	0.4963	
			STD DEV	0.0151	3.04\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::90 RPM :: THERMOS :: 20 MIN:STYROFOAM
$\mathrm{MgCl} 2 \%:$

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	27.60\%
8/6/2013	30	41.780	27.389	0.480	
	30	41.791	27.165	0.488	
	30	40.870	25.694	0.506	
8/7/2013	30	40.683	25.681	0.500	
	30	40.748	25.841	0.497	
	30	40.864	25.384	0.516	
8/8/2013	30	41.939	26.690	0.508	
	30	40.729	25.561	0.506	
	30	40.688	25.658	0.501	
8/9/2013	30	40.374	25.840	0.484	
	30	41.260	26.433	0.494	
	30	41.158	26.022	0.505	
			AVERAGE	0.4987	
			STD DEV	0.0106	2.13\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::60 RPM :: THERMOS :: 20 MIN:STYROFOAM

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	27.60\%
8/13/2013	30	40.786	26.183	0.487	
	30	39.989	24.393	0.520	
	30	40.541	24.953	0.520	
8/14/2013	30	41.281	25.917	0.512	
	30	41.471	25.652	0.527	
	30	41.495	26.012	0.516	
8/15/2013	30	41.216	25.480	0.525	
	30	41.598	25.556	0.535	
	30	41.509	26.509	0.500	
8/16/2013	30	41.022	26.158	0.495	
	30	41.325	26.493	0.494	
	30	41.339	26.366	0.499	
			AVERAGE	0.5108	
			STD DEV	0.0153	2.99\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::60 RPM :: THERMOS :: 15

MIN:STYROFOAM:18^${ }^{\text {TILT }}$					$\mathrm{MgCl} 2 \%:$28.70\%
DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
11/12/2013	30	41.626	26.011	0.520	
	30	42.042	26.184	0.529	
	30	41.883	26.251	0.521	
11/13/2013	30	41.968	26.304	0.522	
	30	42.042	26.222	0.527	
	30	42.278	26.628	0.522	
11/14/2013	30	41.646	25.364	0.543	
	30	41.965	27.175	0.493	
	30	41.909	26.097	0.527	
11/15/2013	30	42.533	27.230	0.510	
	30	42.668	26.864	0.527	
	30	42.380	26.442	0.531	
			AVERAGE	0.5227	
			STD DEV	0.0121	2.32\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::60 RPM :: THERMOS :: 20 MIN:STYROFOAM:18^TILT

MgCl2 \%:

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	28.70\%
11/20/2013	30	41.228	24.756	0.549	
	30	41.689	24.504	0.573	
	30	41.180	23.746	0.581	
11/21/2013	30	42.050	25.297	0.558	
	30	42.487	24.855	0.588	
	30	42.159	25.518	0.555	
11/25/2013	30	41.696	25.278	0.547	
	30	42.034	25.129	0.564	
	30	41.725	24.549	0.573	
11/26/2013	30	42.058	25.088	0.566	
	30	42.162	25.220	0.565	
	30	42.031	24.953	0.569	
			AVERAGE	0.5656	
			STD DEV	0.0128	2.26\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::60 RPM :: THERMOS :: 10

MIN:STYROFOAM:18^${ }^{\text {TILT }}$					MgCl2 \%: 28.70\%
DATE	VOLUME OF DEICER (mL)	$\begin{gathered} \text { INITIAL MASS } \\ \text { OF ICE }(\mathrm{g}) \\ \hline \end{gathered}$	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
12/17/2013	30	42.136	27.629	0.484	
	30	42.171	27.612	0.485	
	30	42.469	27.302	0.506	
12/20/2013	30	41.444	27.060	0.479	
	30	42.143	27.230	0.497	
	30	41.519	27.098	0.481	
1/7/2014	30	41.420	27.435	0.466	
	30	41.832	27.304	0.484	
	30	41.386	26.741	0.488	
1/8/2014	30	40.698	26.202	0.483	
	30	40.977	26.573	0.480	
	30	41.388	27.054	0.478	
			AVERAGE	0.4843	
			STD DEV	0.0098	2.02\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::80 RPM :: THERMOS :: 15
MIN:STYROFOAM:18^TILT

MIN:STYROFOAM:18^${ }^{\text {¢ }}$ TILT					MgCl2 \%: 28.70\%
DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
1/14/2014	30	40.673	24.860	0.527	
	30	41.124	24.612	0.550	
	30	39.736	23.210	0.551	
1/15/2014	30	41.862	25.486	0.546	
	30	41.893	25.838	0.535	
	30	42.364	25.666	0.557	
1/16/2014	30	41.050	24.946	0.537	
	30	42.194	25.740	0.548	
	30	41.846	25.484	0.545	
1/17/2014	30	41.332	24.691	0.555	
	30	41.766	24.780	0.566	
	30	41.942	24.827	0.570	
			AVERAGE	0.5510	
			STD DEV	0.0108	1.97\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::80 RPM :: THERMOS :: 10 MIN:STYROFOAM:18^TILT					MgCl2 \%: 28.70\%
DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g) g.	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
1/22/2014	30	39.963	25.459	0.483	
	30	39.893	25.051	0.495	
	30	40.632	25.636	0.500	
1/23/2014	30	42.044	27.562	0.483	
	30	42.241	26.993	0.508	
	30	41.707	26.456	0.508	
1/24/2014	30	42.133	26.717	0.514	
	30	42.371	27.263	0.504	
	30	41.857	26.871	0.500	
1/26/2014	30	42.001	27.341	0.489	
	30	41.699	26.599	0.503	
	30	41.951	26.541	0.514	
			AVERAGE	0.5000	
			STD DEV	0.0107	2.15\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::80 RPM :: THERMOS :: 20 MIN:STYROFOAM:18^TILT
$\mathrm{MgCl} 2 \%$:

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	28.70\%
1/28/2014	30	41.577	24.414	0.572	
	30	41.324	24.438	0.563	
	30	42.199	25.376	0.561	
2/3/2014	30	42.584	25.209	0.579	
	30	42.680	25.560	0.571	
	30	42.261	24.990	0.576	
2/5/2014	30	41.448	24.296	0.572	
	30	42.203	24.533	0.589	
	30	41.889	24.384	0.583	
2/6/2014	30	41.913	24.509	0.580	
	30	42.042	24.364	0.589	
	30	42.028	24.473	0.585	
			AVERAGE	0.5767	
			STD DEV	0.0094	1.63\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::90 RPM :: THERMOS :: 15

MIN:STYROFOAM: 8^{\wedge} TILT					MgCl2 \%: 28.00\%
DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
3/4/2014	30	41.908	28.798	0.437	
	30	41.750	27.808	0.465	
	30	42.065	28.040	0.468	
3/5/2014	30	41.639	27.927	0.457	
	30	41.954	27.904	0.468	
	30	41.878	27.938	0.465	
	30	41.999	28.031	0.466	
3/6/2014	30	42.074	28.289	0.460	
	30	42.274	28.514	0.459	
	30	41.946	27.838	0.470	
3/11/2014	30	42.013	27.756	0.475	
	30	42.165	28.277	0.463	
			AVERAGE	0.4650	
			STD DEV	0.0054	1.15\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::90 RPM :: THERMOS :: 10 MIN:STYROFOAM:8^TILT

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	28.00\%
4/8/2014	30	41.876	29.133	0.425	
	30	41.779	29.146	0.421	
	30	41.963	29.467	0.417	
4/9/2014	30	41.971	28.970	0.433	
	30	42.264	28.994	0.442	
	30	42.319	29.637	0.423	
	30	41.664	29.070	0.420	
4/11/2014	30	42.160	29.542	0.421	
	30	41.532	28.719	0.427	
	30	41.693	29.010	0.423	
4/13/2014	30	42.043	29.331	0.424	
	30	41.892	29.562	0.411	
			AVERAGE	0.4238	
			STD DEV	0.0080	1.88\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::60 RPM :: THERMOS :: 10

MIN:STYROFOAM: $8^{\circ} \mathrm{TILT}$					MgCl2 \%: 28.00\%
DATE	VOLUME OF DEICER (mL)	$\begin{gathered} \text { INITIAL MASS } \\ \text { OF ICE }(\mathrm{g}) \\ \hline \end{gathered}$	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
4/14/2014	30	42.200	30.143	0.402	
	30	41.665	28.723	0.431	
	30	42.101	29.845	0.409	
4/16/2014	30	\#VALUE!	\#VALUE!	\#VALUE!	
	30	41.962	28.802	0.439	
	30	42.313	29.450	0.429	
4/18/2014	30	41.446	28.915	0.418	
	30	41.696	29.672	0.401	
	30	41.412	28.987	0.414	
4/21/2014	30	41.722	29.495	0.408	
	30	41.230	29.099	0.404	
	30	41.848	29.815	0.401	
			AVERAGE	0.4141	
			STD DEV	0.0134	3.23\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::60 RPM :: THERMOS :: $\mathbf{1 5}$ MIN:STYROFOAM: 8° TILT

MgCl2 \%:

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice $/ \mathrm{mL}$ of deicer	$\mathbf{2 8 . 0 0 \%}$
$4 / 24 / 2014$	30	40.842	26.824	0.467	
	30	40.838	26.866	0.466	
	30	41.328	26.704	0.487	
$5 / 2 / 2014$	30	40.368	26.058	0.477	
	30	41.857	28.090	0.459	
	30	40.781	26.649	0.471	0.443
$5 / 6 / 2014$	30	40.420	27.133	0.469	0.463

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::90 RPM :: THERMOS :: 15

MIN:STYROFOAM: 8° TILT:Calcium Chloride					
DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
5/24/2014	30	41.683	30.200	0.383	
	30	41.733	30.657	0.369	
	30	41.834	30.258	0.386	
-	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
-	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
-	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
			AVERAGE	0.3793	
			STD DEV	0.0089	2.33\%

$33 \times 1.3 \mathrm{~mL}$ CUBES--MICROPIPET::30 mL DEICER--PIPPETTE::90 RPM :: THERMOS :: 15 MIN:STYROFOAM: 8° TILT:Salt Brine

DATE	VOLUME OF DEICER (mL)	INITIAL MASS OF ICE (g)	FINAL MASS OF ICE (g)	ICE MELTING CAPACITY (grams of ice / mL of deicer	
5/26/2014	30	41.483	38.385	0.103	
	30	41.748	38.676	0.102	
	30	41.239	37.767	0.116	
-	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
-	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
-	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
	30	0.000	0.000	0.000	
			AVERAGE	0.1071	
			STD DEV	0.0075	6.96\%

