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DISTRIBUTION AND HABITAT ASSOCIATION OF THE NORTHERN LONG-

EARED BAT 

Zachary A. Warren, M.S.  

University of Nebraska, 2018 

Advisor: Craig R. Allen 

Because of white-nose syndrome, the northern long-eared bat (Myotis 

septentrionalis) is experiencing rapid population declines across the majority of its range. 

This decline has prompted increased regulatory protection and thus an increased need for 

effective habitat management strategies.  Insight into the species habitat associations, 

however, is a prior necessity to ensure management practices are biologically relevant. 

Understanding these relationships requires a holistic approach that addresses the multiple 

ways in which the species is interacting with its environment. The objective of my thesis 

was to address these relationships following a multi-scale approach that assessed the 

factors associated with roost tree selection, distribution, and habitat use. I conducted a 

quantitative meta-analysis of all northern long-eared bat roost-selection studies, thus 

enabling inference across the range of the species. Secondly, I sought to understand the 

factors associated with the northern long-eared distribution in Nebraska by conducting a 

multiscale occupancy study with four acoustic survey stations nested within 101 10 km x 

10 km grids distributed across Nebraska. Lastly, to assess factors associated with multi-

scale occupancy at finer spatial scales, I combined presence/absence results from 5 

intensively sampled study sites in Nebraska with on-the-ground habitat measurements. 

Results from the meta-analysis indicate selected roost trees had a greater amount of bark 

remaining on the bole, a larger diameter at breast height, a lower decay class, and were 



 

 

taller. Results from the statewide occupancy study provide evidence for relationships 

between large-scale occupancy (ψ) and forest clumpiness, proximity to potential 

hibernacula, and summer temperature. Within occupied grids, evidence supported a 

positive relationship between small-scale occupancy (θ) and forest area within 125 m. 

Results failed to provide evidence of habitat factors associated with ψ at the 5 study sites 

likely due to high presence of the species. Evidence, however, did support a positive 

relationship between canopy closure and θ. Reported occupancy estimates between the 

two studies results serve as a pre-white-nose syndrome baseline, as I collected all data 

prior to the detection of white-nose syndrome in Nebraska.  
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CHAPTER 1: AN INTRODUCTION TO THE DISTRIBUTION AND HABITAT 

ASSOCIATION OF THE NORTHERN LONG-EARED BAT 

Introduction 

Bats have existed for approximately 52 million years, and their taxonomic order, 

Chiroptera, contains >1200 species, second only in number to Rodentia (Simmons et al. 

2008, Altringham 2011). They exhibit diverse dietary habits ranging from species that 

feed on insects and other arthropods to those that feed on fruit, nectar, fish, and blood 

(Kunz et al. 2011). This variety of life strategies results in billions of dollars in ecosystem 

services to humans in form of pest control, pollination, and seed dispersion (Boyles et al. 

2011, Kunz et al. 2011). The reliability of these services is increasingly jeopardized as 

bat populations decline globally as a result of habitat fragmentation (Estrada-Villegas et 

al. 2010), deaths caused by wind energy (Frick 2017), global climate change (Sherwin et 

al. 2013), culling initiatives (Florens 2015), and of particular importance to North 

American hibernating bats, human-transported emerging diseases (Burton 2008, Frick et 

al. 2010).  Despite the combination of economic value and precipitous decline, bats 

remain a relatively understudied taxonomic group with many unanswered questions and 

gaps in knowledge that impede evidence-based conservation (Fenton 2003, Hayes 2003, 

Miller et al. 2003).  

A regional-scale driver of population decline in North American hibernating bats 

is the fungal-caused disease white-nose syndrome (Fenton 2012). Once infected by the 

fungal pathogen, Pseudogymnoascus destructans, some species exhibit a ~95% mortality 

rate (Frick et al. 2010, Minnis and Lindner 2013). This resulted in an estimated 5.5 

million bats dying as result of the disease between its first discovery in 2007 and 2012 
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(U.S. Fish and Wildlife Service 2012). Of the 10 North American species identified with 

symptoms of the disease (Kansas Department of Wildlife, Parks, and Tourism 2018), 5 

are present in Nebraska: the big brown bat (Eptesicus fuscus), the little brown bat (Myotis 

lucifugus), the tricolored bat (Perimyotis subflavus), the long-legged bat (M. volans), and 

the northern long-eared bat (M. septentrionalis) (Czaplewski et al. 1979).  

Of the species in Nebraska, the northern long-eared bat is particularly susceptible 

to the effects of the disease. A study by Frick and colleagues (2015) concluded that of the 

6 most affected species, the northern long-eared bat had the highest probability of 

extinction. By comparing data on known hibernacula pre- and post-infection, the northern 

long-eared bat experienced a 69% local extinction rate (Frick et al. 2015). Although the 

species is far ranging, as of the summer of 2018, >98% of United State counties within 

the range of the northern long-eared bat are within 150 miles of an infected county (U.S. 

Fish and Wildlife Service 2018). Due to the population declines caused by white-nose 

syndrome and the disease unabated spread, the northern long-eared bat was listed as 

threatened under the U.S. Endangered Species act in the spring of 2015 (Fish and 

Wildlife Service 2016).  

The northern long-eared bat belongs in the order Chiroptera, suborder 

Microchiroptera, family Vespertilionidae, and genus Myotis (Findley 1972, Caceres and 

Barclay 2000). Its distribution includes the eastern United States from the Atlantic coast 

to eastern Montana, northwest into British Columbia, and south into central Louisiana 

and the Carolinas (Barbour and Davis 1969, van Zyll de Jong 1979, Caceres and Barclay 

2000, U.S. Fish and Wildlife Service 2018). Indicative of its namesake, the northern 

long-eared bat has relatively long ears when compared to its eastern congeners (Caceres 
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and Barclay 2000). Typical of other long-eared bats, the northern long-eared bat exhibits 

a gleaning foraging strategy (i.e. capturing non-airborne prey from a substrate such as 

foliage) (Faure et al. 1993), but will also capture prey mid-flight through aerial hawking 

(Fenton and Bogdanowicz 2002). Generally considered an interior-forest species, 

observers describe the northern long-eared bat foraging between the understory and the 

canopy (Nagorsen et al. 1993) within the forest’s interior rather than in clearings or over 

water (LaVal et al. 1977, Brack, Jr. and Whitaker Jr. 2001, Carroll et al. 2002, Patriquin 

and Barclay 2003).  

As a “forest specialist”, the northern long-eared bat may be more vulnerable to 

habitat conversion and more likely to experience population declines (Jung et al. 1999, 

Clavel et al. 2011). Research of post-white-nose syndrome population trends support this 

possibility and suggest threats other than white-nose syndrome are also contributing to 

declines in northern long-eared bat abundance (Ingersoll et al. 2016). If this true, then 

effective habitat management strategies are required in conjunction with white-nose 

syndrome mitigation efforts. However, in order to manage and a conserve a species, an 

understanding of its habitat requirements is a critical requirement (Morrison et al. 2006).  

Understanding habitat associations of bats requires a holistic approach, as 

selection occurs across multiple spatial and ecological scales (Miller et al. 2003). For 

example, individual roost trees are important to survival and reproduction as they provide 

shelter and satisfy temperature requirements for females during the summer maternity 

season (Cryan et al. 2001, Boyles 2007). Ensuring availability and recruitment of these 

suitable roost trees and predicting the potential effects of disturbance, however, requires 

an understanding of the characteristics bats select for when choosing a roost (Kunz and 
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Lumsden 2005). Roost trees must also be within commuting distance of suitable foraging 

habitat that may differ from their roosting habitat (Hutchinson and Lacki 1999, Rainho 

and Palmeirim 2011). Additionally, as bats disperse from their winter hibernacula to 

these summer maternity roosting grounds they may travel >300 km occupying areas 

potentially restricted geographically by climatic conditions and habitat connectivity 

(Griffin 1940, Barnhart and Gillam 2014).  

The purpose of this study was to assess factors associated with habitat use or 

selection of the northern long-eared bat. Rather than conducting a labor-intensive roost 

selection study that would only allow inference within the study area (Miller et al. 2003), 

I instead chose to synthesize existing studies on northern long-eared bat roost selection 

thru a quantitative meta-analysis. This enabled insight into associated roost tree 

characteristics across the species range. To describe factors associated with the species 

distribution in Nebraska, I acoustically surveyed 101 10 km x 10 km grids and conducted 

multi-scale occupancy modeling to model the likelihood of occupancy across the state. 

Then, at 5 locations within the Nebraska distribution of the species, I conducted further 

acoustic surveys and combined presence/non-detection results with on-the-ground habitat 

measurements to assess finer-scale forest structure variables associated with occupancy 

and detection probability. Conclusions gleaned from these studies can contribute to a 

cross-scale understanding of the factors associated with northern long-eared bat habitat 

use. Additionally, I conducted all field studies prior to the detection of white-nose 

syndrome in Nebraska. Estimates of occupancy derived from these studies provide a 

potential baseline of pre-white-nose syndrome occupancy in Nebraska.  
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CHAPTER 2: A QUANTITATIVE META-ANALYSIS OF NORTHERN LONG-

EARED BAT ROOSTING BEHAVIOR 

Introduction 

Rapid declines in North American bat populations have prompted protection and 

management of winter hibernacula and known summer roost trees (Fish and Wildlife 

Service 2016). These roost trees are important to survival and reproduction because they 

provide shelter and satisfy temperature requirements for females during the maternity 

season (Cryan et al. 2001, Boyles 2007). Managing for these roost trees requires an 

understanding of the characteristics bats select for when choosing a roost. However, roost 

studies conducted at single locations only enable inference within a single study area and 

managers should use caution when extrapolating beyond the bounds of a study’s 

inferential space (Miller et al. 2003).  

Across all tree-roosting species in temperate North America and relative to 

surrounding trees within a stand, bats generally select for trees that are taller, greater in 

diameter, decayed, and with greater solar exposure (Miller et al. 2003). However, there is 

a great deal of variation in conclusions between studies even where a single species is 

concerned. For example, Johnson (2009) concluded northern long-eared bats (Myotis 

septentrionalis) selected trees in larger canopy gaps while Badin (2014) concluded the 

opposite. This lack of consistency is likely due to a combination of small sample size, 

restricted length and scope, local effects, and unstandardized study designs (Miller et al. 

2003). In an attempt to overcome some of these issues, others have conducted several 

meta-analyses to examine roost selection of bats (Lacki and Baker 2003, Kalcounis-

Rueppell et al. 2005, Lacki et al. 2009, Fabianek et al. 2015).  
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Quantitative meta-analyses that combined multiple species have concluded that 

bats generally select roost trees that are taller, larger, with high solar exposure, and in 

stands with greater availability of snags (Kalcounis-Rueppell et al. 2005). Additionally, 

Fabianek et al. (2015) describes an inverse correlation between mean summer 

temperature and the relative difference in diameter at breast height in cavity roosting bats. 

All of these previous quantitative meta-analyses, however, have resorted to combining 

studies of multiple species together into a single analysis due to a lack of previously 

published literature. Fabianek et al. (2015) attempted to account for species-specific 

differences when modeling effects on diameter selection but ultimately lumped together 

all Myotis species into a single group for analysis due to a lack of studies for many 

species within the genera.  

Studies that have compared roost selection between Myotis species, however, 

have found significant differences in roosting behavior and selection. For example, 

Indiana Myotis (Myotis sodalis) roosted almost solely under exfoliating bark slabs with 

high amounts of solar exposure while northern long-eared bats, in the same study, 

selected for a variety of trees, both live and dead, and roosted within cavities of trees 

under a closed canopy (Carter and Feldhamer 2005). Lacki et al. (2009) echoed these 

differences between the two species in a comparative analysis of previously published 

literature. They hypothesized that differences in roost selection may serve as a 

mechanism for reducing competition among congenerics (Lacki et al. 2009). If two 

species are selecting different roost characteristics, then a meta-analysis that combines 

the two species into a single analysis could hypothetically conclude that no selection was 

occurring due to the two effects canceling each other. Miller et al. (2003) initially raised 
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this concern when they critically reviewed habitat and roosting studies and recommended 

against lumping species.  

Almost twenty years of comparative roost studies have now yielded sufficient 

published reports to conduct single species meta-analyses to overcome the shortcomings 

of multi-species analyses. Additionally, a range-wide metanalysis allows for the 

assessment of relationships between regional variables, such as climatic conditions, and 

roost selection, something not possible with single-location studies. The objectives of this 

meta-analysis were as follows: 1) assess evidence of roost tree selection by the northern 

long-eared bat for variables reported in at least 5 studies, 2) perform a multi-model meta-

regression analysis of covariates potentially related to roost tree diameter selection, 3) 

perform a meta-analysis of roosting behavior measurements such as distance traveled to 

first roost tree from the capture site, and 4) place findings in context with current federal 

regulations.   

Methods 

SELECTION OF STUDIES 

To summarize roost selection and roosting related behavior, I obtained all 

previously reported theses, dissertations, published articles, and agency reports that 

assessed northern long-eared bat roosting behavior through telemetry or direct 

observation. I applied the same Boolean search term to both Web of Science and Google 

Scholar. I extracted abstracts using Data Miner (Data Miner 2017) and then manually 

assessed for applicability. I also checked previous meta-analyses and reviews (Lacki and 

Baker 2003, Miller et al. 2003, Kalcounis-Rueppell et al. 2005, Lacki et al. 2009, 

Fabianek et al. 2015) against my results to assess effectiveness of my search terms. 
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Reviewing obtained articles, revealed three additional sources that did not appear in my 

search results.  

LOCATION EXTRACTION AND ANALYSIS 

I estimated a single point location for each study from descriptions or from 

reported coordinates. For studies which contained more than one study site but reported 

combined results (n = 3), I calculated the geographic center of the study sites through 

averaging coordinates and obtaining the approximate center. The furthest distance 

between two averaged study sites was 283 km and all were within the same USFS 

ecoregion. For studies that reported only a physical description (i.e. Shawnee National 

Forest), the approximate center of that description was selected as the study point. To 

visualize the concentration of studies, I applied a kernel density estimator to the study 

points using the R package “ks” (Duong 2017) and a plug-in bandwidth selector (Wand 

and Jones 1994). I visualized the 75%, 50%, and 25% isopleths in ArcMap (ESRI 2011). 

I also summarized study points by the USFS ecoregion (Bailey 1997) in which they 

occurred to understand historic survey effort.  

DATA EXTRACTION AND STANDARDIZATION 

Many studies reported results from multiple separate study populations such as 

the roosting characteristics of males as well as females. I treated each study population as 

a separate study unit following the procedure of previous studies (Kalcounis-Rueppell et 

al. 2005, Fabianek et al. 2015). I extracted all reported means of roost characteristics and 

their corresponding standard error, standard deviation, and sample size. I also extracted 

the values of behavioral characteristics including the distance from the capture site to the 

first roost, the distance between subsequent roosts, and the number of days per roost. I 
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converted all characteristics pertaining to density, size, or distance to the same scale to 

enable comparison (i.e. stems/ha). I converted standard error of the mean to standard 

deviation by multiplying the standard error by the square root of sample size.  

BEHAVIORAL CHARACTERISTICS 

I generated intercept only random-effects models for each of the following 

behavioral characteristics: the distance from the first roost to the capture site, the distance 

between subsequent roosts, and the number of days spent in a roost before switching. I 

chose these metrics because researchers regularly reported the estimates and because they 

are the most applicable to management of the species. I conducted the analysis using the 

Metafor package (Viechtbauer 2010) in R (2017) using raw means as the effect sizes. I 

used the restricted maximum-likelihood approach to estimate heterogeneity between 

studies (Viechtbauer 2005).  

RANDOM EFFECTS MODELING 

For roost tree characteristics with ≥5 separate studies that utilized a roost vs. 

available (experimental/control) study design, I calculated Hedges’ g Standardized Mean 

Difference (SMD) to compare effect sizes (Hedges 1981). Hedges’ g is calculated by 

subtracting the mean of the roost tree and the mean of the random tree or stand and taking 

into account sample size. For example, a positive g estimate for diameter at breast height 

(DBH) indicates that the mean DBH of the roost trees was larger than available trees 

within that study.  

I then applied an intercept-only random-effects model to data from characteristics 

that at least five unique studies examined. I examined the following roost characteristics: 

percent bark cover (%), basal area of the surrounding stand (m2/ha), canopy cover (%), 
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diameter at breast height (cm), decay class, distance to the nearest tree (m), roost tree 

height (m), mean diameter of the surrounding trees (cm), slope (%), snag density 

(snags/ha), and stand density (stems/ha).  

META-REGRESSION 

I applied a multi-model meta-regression approach to determine which moderators 

explained the most variation in the standardized mean difference of roost tree diameter. 

Tree diameter was selected because this was the most reported variable (k = 29) and was 

most applicable to management and regulation. Additionally, Fabianek (2015) modeled 

this variable for all North American tree-roosting species and allowed me to make 

qualitative comparison.  

I collected moderators from a variety of sources. I extracted latitude from the 

reported study site locations. I calculated the ratio of roost trees that were softwood from 

the reported roost tree species in each study. Ideally, I would have calculated this ratio 

from the available trees in the stand but the vast majority of studies only reported the 

species of roost trees and not available trees. I calculated the mean day of the year for a 

study by averaging the reported start day and the end day of a study within a season. If 

studies encompassed multiple seasons, I took the mean of the seasons. Most studies did 

not provide precise start or end dates and simply provided months so I chose to estimate 

days. For example, if a study stated it ran from May through August, I used the days May 

1 to August 31. If a study stated it ran from mid-May to August, I used the days May 15 

to August 31. I extracted sex of the study population (Male, Female, or Mixed) and the 

mean DBH of the available trees. I created a binary covariate to access the scale at which 

the primary researchers selected available trees. I divided studies based upon whether or 
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not the available tree could be greater than or equal to 250 meters from the roost tree. 

This separated the “random walk” studies from studies that randomly selected 

coordinates within a study area to select available trees.  

I calculated the average maximum temperature of the summer maternity season 

(June – August) by downloading Worldclim 1.4 (Hijmans et al. 2005) monthly average 

maximum temperatures for the study sites using package raster (Hijmans 2017) in R at 5 

minute spatial resolution. I calculated the averages for this dataset using observations 

from ~1960 – 1990. I then averaged June thru August’s values. Because I was interested 

in testing whether roosting habits responded to long-term climatic influences or short-

term weather events, I also calculated average maximum temperatures for a study during 

the actual study period. I calculated study period temperatures by gathering historic 

observations from NOAA GHCND stations near my study sites using package rnoaa 

(Chamberlain 2016) in R. I combined the five closest stations to each study site using an 

inverse distance weighting approach where the nearest sites received the greatest weight 

when I averaged the temperatures. The mean distance of weather stations to the study 

sites were 29.81km ± 4.11 SE. The mean distance of the closest and furthest weather 

stations to their respective study sites were 12.84km ± 2.86 SE and 42.3 km ± 6.24 SE 

respectively.  

I compared fifteen meta-regression models to explain the heterogeneity in the 

standardized mean difference of tree diameter using the metafor package in R 

(Viechtbauer 2010). The models chosen for multi-model inference corresponded to 

discrete testable hypotheses. I removed five datasets from two studies that did not report 

roost-tree species, as I required this information to calculate the softwood ratio variable. 
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This provided a balanced number of data points for all models (k = 24). I ranked 

candidate models using Akaike’s Incormation Criterion for small samples (AICc). I then 

calculated ΔAICc values and Akaike’s weights to assess candidate models explanatory 

ability relative to the top model. I considered models receiving a ΔAICc ≤ 2 equivalent. I 

calculated Psuedo-R2 to assess the amount of heterogeneity explained by the model.  

Results 

Twenty-eight studies reported either roosting characteristics in a roost vs. 

available study design and/or behavioral findings on northern long-eared bat roosting 

ecology (Figure 2.1). Of those 28 studies, 15 yielded both suitable roost characteristic and 

behavioral findings, 8 yielded only behavioral data, and 5 provided only data on roost 

characteristics. These studies provided 43 separate datasets. For the purpose of this paper, 

I defined a dataset as findings from independent study populations. For example, if a 

study summarized findings for males and females separately then that paper would 

contribute two datasets to the analysis. Of the 43 datasets, I found 22 in published 

articles, 18 in unpublished dissertations and theses, two in governmental reports, and one 

in research symposium.  The majority of my datasets described the roosting behavior of 

females (60%, n = 26). This was followed by males (28%, n = 12), combined findings of 

both sexes (9%, n = 4), and one study did not specify the sex of the individuals (Timpone 

et al. 2010). 

STUDY SITE LOCATIONS 

Included studies ranged from the northern edge of the species distribution in the 

Northwest Territories southeast to western North Carolina (Figure 2.2). Kernel density 
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analysis revealed that 50 % of the studies were located within the Ohio River valley and 

it’s convergence with the Mississippi River (Figure 2.2). The dominate ecoregion within 

the range of the northern long-eared bat is the Subartic Division with 32% of its range 

being encompassed within this division.  However, only 7% of the studies (n = 2) were 

located within this ecoregion (Table 2.2). The Hot Continental ecoregion was the 

ecoregion with the greatest number of studies (n = 9; 32%) yet only represented 16% of 

the species range. The subtropical division, the Subartic Mountains, and the subtropical 

mountains contained no studies that satisfied my criteria for inclusion.  

BEHAVIORAL CHARACTERISTICS 

I located twenty studies that reported means and standard error/standard deviation 

for at least one of the three behavioral characteristics.  These twenty studies yielded 

twenty-two unique data sets. I found on average an individual northern long-eared bat’s 

first roost was 521 ± 173 meters (SE = 88.3, k = 13) from its capture location (Figure 

2.3). The average number of days spent at a roost before switching to another roost was 

2.17 ± 0.48 days (SE = 0.24, k = 10) (Figure 2.4). Northern long-eared bats moved an 

average of 327 ± 123 meters (SE = 62.6, k = 11) between consecutive roosts (Figure 2.5).  

ROOST-TREE CHARACTERISTICS 

I found significant standardized mean differences (SMDs) across 20 studies and 

43 unique datasets for four of the eleven roost-tree characteristics (Table 2.3; Figure 2.6). 

When compared to available trees, selected roost trees had a greater amount of bark 

remaining on the bole (k = 14, SMD = 0.48 ± 0.23, SE = 0.12, P < 0.01; Figure 2.7), a 

larger diameter at breast height (DBH; k = 29, SMD = 0.36 ± 0.21, SE = 0.11, P < 0.01; 

Figure 2.8), a lower decay class (k = 11, SMD = -0.69 ± 0.45, SE = 0.23, P < 0.01; Figure 
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2.9), and were taller (k = 25, SMD = 0.34 ± 0.22, SE = 0.12, P < 0.01; Fig 1-10). I found 

no significant evidence of selection regarding the density of snags within the stand (k = 

14, SMD = 0.21 ± 0.22, SE = 0.11, P = 0.06; Figure 2.11), the distance to the nearest tree 

(k = 8, SMD = -0.12 ± 0.22, SE = 0.11, P = 0.27; Figure 2.12), the number of stems per 

hectare (k = 9, SMD = 0.37 ± 0.68, SE = 0.34, P = 0.29; Figure 2.13), the mean DBH of 

the stand (k = 10, SMD = -0.09 ± 0.22, SE = 0.11, P = 0.45; Figure 2.14), the stand basal 

area (k = 8, SMD = 0.11 ± 0.32, SE = 0.16, P = 0.51; Figure 2.15), the canopy cover at 

the roost tree (k = 22, SMD = 0.04 ± 0.31, SE = 0.16, P = 0.78; Figure 2.16), or slope (k 

= 15, SMD = 0 ± 0.14, SE = 0.07, P = 0.9; Figure 2.17). A Cochran’s Q-test revealed 

significant heterogeneity not explained by sampling variation for all roost-tree 

characteristics except for slope and distance to nearest tree (p > 0.05).  

META-REGRESSION 

Latitude, the ratio of softwood roosts to overall roosts, and mean day of the year 

were the three moderators that best explained heterogeneity in tree-diameter effect size (< 

2 ΔAICc  of the top model; Table 2.4). Additionally, a three-term model that incorporated 

both latitude and softwood ratio was present in the final model set, but I rejected it due to 

lack of parsimony and 95% confidence intervals of the β-estimate overlapping zero. I 

determined the remaining models as equally likely and followed a “describe all models” 

approach rather than selecting one model or averaging (Arnold 2010). Tree diameter 

effect size was either positively associated with softwood ratio (β = 0.76, SE = 0.39) or 

positively associated with latitude (β = 0.05, SE = 0.30), while the mean day of the year 

of which a study occurred, produced a β-estimate with 95% confidence intervals 

overlapping zero. Surprisingly, both temperaturemean (averaged from ~1960-1990) and the 
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temperaturestudy performed worse than the null intercept model.  This is despite having a 

Pearson’s correlation coefficient of -0.67 and -0.48 respectively with latitude.  QE tests of 

both models indicate that significant inter-study heterogeneity is still unaccounted for by 

the moderators (Softwood Ratio: QE = 84.8, p < 0.001, df = 22; Latitude: QE = 84.2, p < 

0.001, df = 22).   

Discussion 

This is the first meta-analysis to summarize behavioral findings associated with 

roosting behavior of northern long-eared bats. My findings are comparable to most 

individual studies in that northern long-eared bats are generally roosting within 0.75 km 

of their capture site, switching roosts after ~2 days, and locating their subsequent roost 

nearby. However, I believe it is important to place these findings within context of 

current regulation and best management practices. Within the United States, the current 

4(d) rule for the protection and recovery of the northern long-eared bat provides 

protection for any tree within a 45-meter buffer around a known maternity roost (Fish and 

Wildlife Service 2016). My findings indicate that the distance between subsequent roost 

trees is 327 ± 123 meters, which is well outside of this protected buffer distance. While 

stand-level or seasonal effects likely contribute to variation to this distance, a buffer of 

only 45-meters fails to protect many undetected or future roosts.  

I found evidence that across the range of the species, northern long-eared bats 

selected for roost trees that are greater in height and diameter with low amounts of decay 

of and high bark retention when compared to assumed non-roost trees. Previous meta-

analyses that combined multiple bat species, however, concluded roost trees are also in 

stands with greater snag density, have canopies that are more open, are closer to water, 
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and are at lower elevation (Kalcounis-Rueppell et al. 2005, Fabianek et al. 2015). I lacked 

adequate sample size to examine proximity to water or elevation, however, canopy 

closure clearly showed no evidence of selection (SMD = 0.04, K = 22, p = 0.78). This 

suggests that relative to the stand, northern long-eared bats are not selecting for roost 

trees within canopy gaps that receive greater solar exposure.  

When I applied a meta-regression approach to the effect size of diameter at breast 

height (DBH) selection, the results did not repeat the findings reported by Fabianek et al. 

(2015), which concluded mean summer temperature was the top predictor of DBH effect 

size when they combined species. Surprisingly, both historical average temperature and 

study-period temperature failed to account for any variation in effect size (pseudo-R2 < 

0.01), despite having a Pearson’s coefficient of -0.67 (p < 0.001) and -0.47 (p = 0.02) 

respectively with my top predictor, latitude only accounted for 19% of variation between 

my studies. It is beyond this study’s scope to explain the causal factor for this direct 

relationship between latitude and effect size, however, one possible explanation is day 

length. Eptesicus nilssonii, for example, reduces both its home range size and foraging 

time as the days grow longer at far northern latitude (Frafjord 2013) with nightly activity 

periods being as short as 4 hours during periods of 24-hour sunlight in July (Speakman et 

al. 2000). If northern long-eared bats exhibit similar behavior and are also shortening 

their foraging times at northern latitudes, they would be spending increased time in the 

roost and may be selecting for larger roosts that provide added thermal stability. An 

additional likely explanation could be an autocorrelation with latitude and forest 

composition. Northern forests are dominated with conifers and aspen (Populus sp.) and I 
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observed a slight correlation between the ratio of softwood roosts and latitude (r = 0.34, p 

= 0.096).   

The second predictor within my confidence set (<2 ΔAICc ) was the ratio of 

softwood roosts relative to total roosts. Evidence supports a positive relationship between 

the effect size for DBH and the ratio of softwood roosts. This was counter to my 

expectations. If tree diameter were solely linked to the thermal properties of roosts, then 

one would expect an inverse relationship as softwoods have a lower thermal conductivity 

and thus a higher R-value compared to hardwoods (Forest Products Laboratory 2010). In 

other words, bats would need a relatively thicker cavity wall in a hardwood tree to 

provide the same thermal stability as in a softwood roost. One possible explanation of the 

positive correlation I observed is bark thickness. For a given a diameter, a generic 

hardwood will have a bark thickness approximately twice that of a generic softwood 

(Miles and Smith 2009). Following the equation and values provided by Miles and Smith 

(2009), a generic hardwood species would reach an arbitrary bark thickness of 1.5 cm at 

43 cm in diameter. A generic softwood, however, would not reach this bark thickness 

until it grew to 111 cm in diameter. Particular tree species obviously play a considerable 

role in bark thickness, but because I did not distinguish between softwood/hardwood 

species in my analysis, I used estimates of generic softwoods and generic hardwoods 

(Miles and Smith 2009).  

When compared to both previous multi-species meta-analyses (Kalcounis-

Rueppell et al. 2005, Fabianek et al. 2015), the effect sizes for DBH, height, canopy 

closure, and snag density are all consistently closer to zero, with zero indicating no 

selection (Figure 2.18). Although there was overlap in the 95% confidence intervals of all 
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comparisons of effect size, the consistency of the effect-size being nearer to zero suggests 

northern long-eared bats are less selective in regards to the variables researchers in my 

sample are measuring. Additionally, following the interpretation of Cohen (1988), all 

effect sizes were below 0.5; a level deemed a “medium effect” where differences are 

visually recognizable under careful scrutiny. Previous researchers have posited two 

possible explanations for similar findings, either northern long-eared bats are roost 

generalists or structural measurements taken by researchers fail to serve as proxies for 

microclimatic conditions within the roost. 

A common explanation is that northern long-eared bats are roost generalists or 

have greater roost plasticity in various roost measures when compared to congeners 

(Kunz 1982). A generalist roosting behavior has been suggested for the following 

characteristics: roost type (Foster and Kurta 1999), diameter at breast height (Lacki et al. 

2009), tree height (Lacki et al. 2009), forest treatment (Timpone et al. 2010), and decay 

class/condition (Foster and Kurta 1999). When directly compared to the Indiana myotis 

(Myotis sodalis), another U.S. federally protected species that co-occurs, both field 

studies (Foster and Kurta 1999, Timpone et al. 2010) and a meta-analysis (Lacki et al. 

2009) concluded greater plasticity when easily measured structural characteristics are 

concerned. This species-level flexibility of northern long-eared bats could result from a 

variety of sources. Perry and Thill (2007) noted a sex-related plasticity with males having 

greater flexibility in snag size compared to females, while Foster and Kurta (1999) noted 

high amounts of variation within an individual’s roosting habits rather than simply 

between individuals. Additionally after comparing roosting results between two 
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consecutive years, Silvis et al. (2015a) suggests variation is potentially related to 

annually variable environmental conditions.  

A second, less explored, explanation for increased plasticity is the unknown 

ability for structural characteristics (proximal measures) to serve as proxies to 

microclimatic characteristics (causal measures) within roosts (Boyles 2007). This 

assumption serves as the basis for comparative studies that measure roost characteristics 

(Kunz 1982, Vonhof and Barclay 1996, Cryan et al. 2001), but it has been poorly tested 

to understand the accuracy of these assumptions (Boyles 2007). The ability of these 

measurements to serve as a proxies are also likely not constant between species. For 

example, M. sodalis primarily roosts under exfoliating bark slabs and in comparably large 

aggregations (Carter and Feldhamer 2005, Timpone et al. 2010). In this situation, 

diameter at breast height may be highly correlated with roosting selection, as a tree must 

grow large enough to have exfoliating bark plates of sufficient size to contain large 

aggregations. Northern long-eared bats, however, are known to utilize tree cavities, 

crevices, exfoliating bark (Foster and Kurta 1999, Carter and Feldhamer 2005), man-

made structures (Timpone et al. 2010), and even cracks within cliff faces (Keinath and 

Abernethy 2016).  Compounding the issue, crevice and cavity roosts are often not located 

on the main trunk of the tree and are instead located where limbs meet the main bole or in 

crevices along limbs. It is unlikely in these cases that structural measurements taken at 

the base of the tree are directly associated with either microclimate or other proxies for 

selection and may even be misleading (Boyles 2007) or simply associated with local 

conditions within a site or study year (Silvis et al. 2015a). 
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The relative importance of an individual roost tree is questionable given that 

northern long-eared bats switch roosts approximately every 2 days and utilize structurally 

variable roosts. Initially researchers considered roost availability a limiting factor and 

thought their protection critical to maintaining viable populations (Kunz 1982, Fenton 

1997). This idea is present in current regulation, which protects individual current or 

historical roost trees (Fish and Wildlife Service 2016). Research into roosting networks 

reveals that northern long-eared bats aggregate into social groups that utilize a network of 

roosts within a forest patch (Johnson et al. 2012). These roost networks contain a central 

node tree and non-central node roosts, which display reduced connectivity within the 

network (Johnson et al. 2012, Silvis et al. 2014). The targeted removal of single maternity 

roost trees within these networks revealed the ability to modify their roosting and adapt to 

these changes (Silvis et al. 2014). However, the removal of multiple roost trees began to 

fragment the social network (Silvis et al. 2014). Evidence from these network studies 

suggested that northern long-eared bats are resistant to impacts from the loss of a limited 

number of maternity roosts (Johnson et al. 2009, Silvis et al. 2014, 2015b, Ford et al. 

2016), and roosts may not be a limiting factor within the local stands due to the species’ 

flexibility (Menzel et al. 2002). The rapid decline in populations due to white-nose 

syndrome may also further reduce the limiting effects of roost availability due to 

decreases in population densities (Ford et al. 2016). 

Whether northern long-eared bats display a generalized selection because they 

simply lack strict requirements or because researchers have not been adequately 

measuring the causal (versus proximal) factors that the species is selecting, single-tree 

management may be impractical and potentially ineffective. Silvis (2012) recommends 
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moving “beyond individual tree concepts and incorporate larger forest establishment 

conditions that create and maintain suitable long-term roosting opportunities and 

networks”. This is also a practical approach, as individual roost trees are often short-

lived, with as many as 25-30% naturally falling within 1 year of use (Carter and 

Feldhamer 2005). Additionally, northern long-eared bats appear to respond favorably or 

at least tolerate some forest management practices (Silvis et al. 2014). For example, a 

study in the central Appalachians found no discernable negative effects of burning 

historically unburned stands (Ford et al. 2016) and others reported similar results from 

mechanical harvest studies (Pauli et al. 2015). Additionally, multiple studies found 

maternity colonies associated with recently (<10 years) harvested stands (Cryan et al. 

2001, Menzel et al. 2002) even when unharvested stands were readily available (Perry 

and Thill 2007). Due to the lack of evidence supporting strong roost selectivity across the 

species range, forest management practices which allow for diverse age classes will be 

more likely to provide for the roosting needs of Northern long-eared bats. Additionally, 

recommendations solely built upon snag retention or creation (Perry and Thill 2007, 

Fabianek et al. 2015), fail to take into account selection of trees in early stages of decay 

with large percentages of bark retention, or the frequent use of live trees.    

CONCLUSION 

By combining previous studies that examined northern long-eared bat roost 

selection, evidence supports the use of roost trees that are larger in diameter, taller, and in 

early stages of decay. However, none of the effects sizes for these characteristics are of 

large enough magnitude to indicate strong selection when compared to available trees 

within stands. The lack of strong selection may be because researchers are not measuring 
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adequate proxies for thermal requirements or because northern long-eared bats have 

increased plasticity in requirements when compared to congenerics. In softwood stands, 

relatively larger diameter trees may have an increased importance as potential roost trees, 

but we need further studies to understand the mechanisms for this phenomenon. I did not 

find evidence of a relationship between mean summer temperature and effect size of 

selection in regards to diameter at breast height in this species although it has been 

described in multi-species studies. Forest management practices that maintain diverse 

size and decay classes will provide increased roosting structure for the species. 

Additionally, management actions should take into consideration regular roost switching, 

complex social roost networks, and moderate distances between subsequent roosts.  
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Tables and Figures 

Table 2.1. Moderator variables and corresponding justification included in a meta-

regression analysis to account for the heterogeneity in the standardized mean differences 

of diameter at breast height between roost trees and available trees reported by northern 

long-eared bat roost studies. 
Moderator Justification 

Max Tempmean 

Lactation requires high temperatures to reduce torpor and 

promote milk production. Females cluster to maintain high 

temperatures within a roost. This model assess if historical 

temperatures are associated with roost diameter as bats may 

require thicker trees in cooler climes in increase heat 

retention.   

Max Tempstudy 

The temperature of the study period was included to assess if 

bats were responding to historical temperature averages 

(Max Tempmean) or modify behavior based upon experienced 

temperatures.  

Latitude 

I included latitude to address potential unaccounted for 

factors that vary with latitude yet are correlated. Potential 

effects include day length, forest type, and number of days 

without a frost.  

Softwood ratio 

Softwood contains a higher r-value (i.e. insulation) than 

hardwood (Forest Products Laboratory 2010). We 

hypothesize that due to higher insulative properties of 

softwoods, bats can satisfy their thermal demands without 

selecting for relatively larger trees that may be rarer. 

Day of Year 
Bats have different thermal requirements as reproductive 

condition of females change throughout the year.  

Distance of avail. tree from roost (Dist. 

of avail.) 

I divided studies based upon whether or not the available tree 

could be greater than or equal to 250 meters from the roost 

tree. This separated the “random walk” studies from studies 

that randomly selected coordinates within a study area to 

select available trees, as the spatial scale at which selection 

is occurring is different. 

DBHAvailable 

To assess if bats are maximizing or satisficing in regards to 

diameter selection, I included the mean DBH of available 

trees in the stand. For example, if a stand is predominately 

all large diameter trees capable of meeting thermal demands, 

a result supporting satisficing would be little to no difference 

in DBH.  

Sex 

Northern long-eared bats separate during the maternity 

season with males roosting often solitarily while females 

cluster. Females have increased thermal demands and 

potentially require larger space to accommodate a colony.  

Latitude + Softwood Ratio 

This model tests if unaccounted for variation in latitude-

encompassed factors is accounted for by occurrence in 

softwood roost use.  

Softwood Ratio + DBHAvailable
 

This model tests if variation in the above-mentioned 

satisficing/maximizing potential may be accounted for by the 

prevalence of softwood roosts.  

Max Tempmean + Softwood Ratio 

While softwood roosts may provide additional insulative 

properties relative to hardwoods, they may be unnecessary in 

warmer climates.  



32 

 

 

Table 2.1. Continued. 

DBHAvailable + Dist. of avail. 

I included this model to account for the possibility of studies 

describing diameter of roosts trees in immediate proximity of 

the roost tree or if these measurements or indicative of the 

study site as a whole.  

Max Tempmean + Sex 
Mean summer temperatures may affect roosting habits of 

sexes differently as thermal demands vary based upon sex.  

Max Tempstudy + Sex 

Mean summer temperatures may affect roosting habits of 

sexes differently as thermal demands vary based upon sex 

and this may vary based upon a summer’s actual 

temperatures.  
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Table 2.2. Percentage of northern long-eared bat roost studies occurring in each U.S. 

Forest Service ecological division relative to division area within the species range. If a 

division contains greater percentage of studies than is represented by area, the difference 

column contains a negative difference.  

USFS Division Percentage by area Percentage by study Difference 

Subarctic Division 32.8 7.1 - 

Hot Continental Division 16.4 32.1 + 

Warm Continental Division 13.5 17.9 + 

Prairie Division 10.2 7.1 - 

Temperate Steppe Division 9.9 10.7 + 

Subtropical Division 8.2 0.0 - 

Hot Continental Mountains 3.2 17.9 + 

Warm Continental Mountains 2.8 3.6 + 

Temperate Steppe Mountains 1.6 3.6 + 

Subarctic Mountains 0.9 0.0 - 

Subtropical Mountains 0.4 0.0 - 
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Table 2.3. Combined effect size and their corresponding confidence intervals of eleven 

roost characteristics reported by studies of northern long-eared bats. K = number of 

contributing datasets, SMD = standardized mean difference, LCI/UCI = 95% lower and 

upper confidence interval, Z = test statistic for intersect, P = p-value of the test statistic, τ2 

= estimated amount of residual between-study heterogeneity, I2 = estimate of the 

percentage of total variability in the SMD that can be attributed to the heterogeneity 

among the true effects. Q = test statistic for a Q-test of residual heterogeneity and their 

corresponding degrees of freedom and P-value.  

   

SMD 

(95% CI)      Q 

Characteristica K SMD LCI UCI Z P τ2 I2 Q df P 

Bark Cover 14 0.48 0.25 0.70 4.13 <0.01 0.12 68.6 39.1 13 <0.01 

DBH 29 0.36 0.15 0.58 3.27 <0.01 0.27 81.7 113.1 28 <0.01 

Decay Class 11 -0.69 -1.14 -0.24 -3.03 <0.01 0.50 90.8 150.8 10 <0.01 

Roost Tree Height 25 0.34 0.12 0.57 2.97 <0.01 0.25 80.1 99.3 24 <0.01 

Snag Density 14 0.21 -0.01 0.43 1.87 0.06 0.11 64.9 35.3 13 <0.01 

Dist. to Nearest Tree 8 -0.12 -0.34 0.09 -1.10 0.27 0.04 41.7 12.8 7 0.08 

Stand Density 9 0.37 -0.31 1.04 1.07 0.29 0.95 93.8 46.0 8 <0.01 

Mean Stand DBH 10 -0.09 -0.31 0.14 -0.76 0.45 0.06 49.2 17.5 9 0.04 

Stand Basal Area 8 0.11 -0.21 0.42 0.65 0.51 0.15 72.0 24.1 7 <0.01 

Canopy Cover 22 0.04 -0.27 0.35 0.27 0.78 0.49 90.7 136.8 21 <0.01 

Slope 15 0.00 -0.14 0.14 -0.04 0.97 0.02 23.1 19.5 14 0.15 
aBark Cover = percentage of bark remaining on the bole; DBH = diameter at breast height; Decay 

class = state of decay between 1-5; Roost tree height = height of the roost/random tree; Snag density = 

number of snags per hectare; Distance to nearest tree = distance (m) from roost/random tree to the nearest 

neighboring tree; Stand Density = trees per hectare; Mean stand DBH = mean diameter at breast height of 

trees surrounding the roost/random tree; Stand basal area = basal area (cm2) of trees surrounding the 

roost/random tree; Canopy cover = % of area above the roost/random tree occupied by woody structure; 

Slope = steepness (%) of slope where the roost/random tree is present.  
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Table 2.4. Candidate model set for the meta-regression analysis of variables accounting 

for the between study heterogeneity in the standardized mean difference in roost tree 

diameter of northern long-eared bats. I considered all models within a ΔAICc ≤ 2 

equivalent and considered these models as the confidence set indicated in bold. Number 

of estimated parameters (K), pseudo-R2 (R2), Akaike’s Incormation Criterion for small 

samples (AICc), difference between the corresponding models (ΔAICc)  and the top 

performing models AICc  (ΔAICc ), Akaike weight (weight), and cumulative sum of the 

weights (Σweight).  

Rank Model K R2 AICc ΔAICc Weight Σweight 

1 Latitude 3 18.66 48.11 0.00 0.22 0.22 

2 Softwood Ratio 3 16.49 48.74 0.63 0.16 0.38 

3 Latitude + Softwood Ratio 4 23.11 48.93 0.82 0.15 0.53 

4 Day of Year 3 6.66 50.09 1.98 0.08 0.61 

5 Null Model 2 - 50.23 2.12 0.08 0.69 

6 Scale of Available Tree 3 0.77 50.91 2.79 0.05 0.74 

7 Softwood Ratio + DBHAvailable 4 10.32 51.00 2.89 0.05 0.80 

8 Max Tempmean + Softwood Ratio 4 9.66 51.16 3.05 0.05 0.84 

9 Max Tempmean 3 0.00 51.26 3.15 0.05 0.89 

10 DBHAvailable 3 0.00 51.92 3.80 0.03 0.92 

11 Max Tempstudy 3 0.00 52.05 3.94 0.03 0.95 

12 DBHAvailable + Scale of Avail. Tree 4 0.00 52.94 4.82 0.02 0.97 

13 Sex 4 0.00 53.21 5.10 0.02 0.99 

14 Max Tempmean + Sex 5 0.00 55.83 7.72 0.00 1.00 

15 Max Tempstudy + Sex 5 0.00 56.02 7.91 0.00 1.00 
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Figure 2.1. Data flow diagram for the identification and selection of northern long-eared 

bat roost studies included in a species-specific meta-analysis.  
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Figure 2.2. Study site locations of northern long-eared bat roost studies included in a 

species-specific meta-analysis. Kernel density analysis indicates 50% of studies are 

concentrated within the Ohio River Valley.  
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Figure 2.3. Forest plot of the meta-analysis of all studies that reported the mean distance 

(meters) of the first roost tree from the capture site for northern long-eared bats. Overall 

effect, indicated by the rhombus, is the result of an intercept-only random effects model 

of n studies. The circle is centered over the study’s mean and its size is relative to the 

weight that the study contributes to the overall estimate. The horizontal bar spans the 

95% C.I. of the mean. Following release, the first located roost of northern long-eared 

bats are approximately 521 ± 173 meters from their capture site based upon a meta-

analysis of previously published literature and unpublished theses/dissertations.  
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Figure 2.4. Forest plot of the meta-analysis of all studies that reported the mean number 

of day northern long-eared bats utilized a roost tree before switching to another roost. 

Overall effect, indicated by the rhombus, is the result of an intercept-only random effects 

model of n studies. The circle is centered over the study’s mean and its size is relative to 

the weight that the study contributes to the overall estimate. The horizontal bar spans the 

95% C.I. of the mean. Individuals relocated to another roost every 2.17 ± 0.48 days based 

upon a meta-analysis of previously published literature and unpublished 

theses/dissertations.  

 

 

 

  

 

 

 



40 

 

 

 

Figure 2.5. Forest plot of the meta-analysis of all studies that reported the mean distance 

between consecutive roosts utilized by northern long-eared bats. Overall effect, indicated 

by the rhombus, is the result of an intercept-only random effects model of n studies. The 

circle is centered over the study’s mean and its size is relative to the weight that the study 

contributes to the overall estimate. The horizontal bar spans the 95% C.I. of the mean. 

Consecutive roosts were located approximately 327 ± 123 meters apart based upon a 

meta-analysis of previously published literature and unpublished theses/dissertations.  
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Figure 2.6. Effect sizes of all roost characteristics examined in a meta-analysis of 

northern long-eared bat roost selection studies. All estimates are the result of a random 

effects analysis of k populations with standardized mean differences indicated by the 

white circle. Brackets indicate 95% confidence intervals of the estimate. Evidence 

supported a significant selection for bark cover, diameter, decay class, and roost tree 

height when compared to available trees.  
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Figure 2.7. Forest plot of a northern long-eared bat meta-analysis of bark remaining on 

the bole of roost trees (%) when compared to randomly selected available trees. Reported 

is the sex of the study populations, reproductive condition (R), number of roost trees 

(nroosts), number of available trees (navail.), standardized mean difference (SMD), 95% 

confidence interval around the SMD (95% C.I), and weight that the study contributes to 

the combined effect. The circle indicates the standardized mean difference of the study 

that I calculated from the reported means of the roost trees and available trees. The 

diameter of the circle is relative to the weight that the study contributes to the overall 

estimate with larger circles indicating greater weight. The length of the horizontal bar 

spans the 95% confidence intervals of the mean. An SMD greater than zero supports a 

claim that roost trees are greater than what is available.  
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Figure 2.8. Forest plot of a northern long-eared bat meta-analysis of diameter at breast 

height (cm) of roost trees when compared to randomly selected available trees. Reported 

is the sex of the study populations, reproductive condition (R), number of roost trees 

(nroosts), number of available trees (navail.), standardized mean difference (SMD), 95% 

confidence interval around the SMD (95% C.I), and weight that the study contributes to 

the combined effect. The circle indicates the standardized mean difference of the study 

that I calculated from the reported means of the roost trees and available trees. The 

diameter of the circle is relative to the weight that the study contributes to the overall 

estimate with larger circles indicating greater weight. The length of the horizontal bar 

spans the 95% confidence intervals of the mean. An SMD greater than zero supports a 

claim that roost trees are greater than what is available.  



44 

 

 

 

 

 

Figure 2.9. Forest plot of a northern long-eared bat meta-analysis of decay class 

compared to randomly selected available trees. Reported is the sex of the study 

populations, reproductive condition (R), number of roost trees (nroosts), number of 

available trees (navail.), standardized mean difference (SMD), 95% confidence interval 

around the SMD (95% C.I), and weight that the study contributes to the combined effect. 

The circle indicates the standardized mean difference of the study that I calculated from 

the reported means of the roost trees and available trees. The diameter of the circle is 

relative to the weight that the study contributes to the overall estimate with larger circles 

indicating greater weight. The length of the horizontal bar spans the 95% confidence 

intervals of the mean. An SMD greater than zero supports a claim that roost trees are 

greater than what is available.  
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Figure 2.10. Forest plot of a northern long-eared bat meta-analysis of roost tree height 

(m) compared to randomly selected available trees. Reported is the sex of the study 

populations, reproductive condition (R), number of roost trees (nroosts), number of 

available trees (navail.), standardized mean difference (SMD), 95% confidence interval 

around the SMD (95% C.I), and weight that the study contributes to the combined effect. 

The circle indicates the standardized mean difference of the study that I calculated from 

the reported means of the roost trees and available trees. The diameter of the circle is 

relative to the weight that the study contributes to the overall estimate with larger circles 

indicating greater weight. The length of the horizontal bar spans the 95% confidence 

intervals of the mean. An SMD greater than zero supports a claim that roost trees are 

greater than what is available. 
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Figure 2.11. Forest plot of a northern long-eared bat meta-analysis of snag density 

(snags/ha) compared to randomly selected available trees. Reported is the sex of the study 

populations, reproductive condition (R), number of roost trees (nroosts), number of 

available trees (navail.), standardized mean difference (SMD), 95% confidence interval 

around the SMD (95% C.I), and weight that the study contributes to the combined effect. 

The circle indicates the standardized mean difference of the study that I calculated from 

the reported means of the roost trees and available trees. The diameter of the circle is 

relative to the weight that the study contributes to the overall estimate with larger circles 

indicating greater weight. The length of the horizontal bar spans the 95% confidence 

intervals of the mean. An SMD greater than zero supports a claim that roost trees are 

greater than what is available. 
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Figure 2.12. Forest plot of a northern long-eared bat meta-analysis of average distance to 

nearest tree (m) compared to randomly selected available trees. Reported is the sex of the 

study populations, reproductive condition (R), number of roost trees (nroosts), number of 

available trees (navail.), standardized mean difference (SMD), 95% confidence interval 

around the SMD (95% C.I), and weight that the study contributes to the combined effect. 

The circle indicates the standardized mean difference of the study that I calculated from 

the reported means of the roost trees and available trees. The diameter of the circle is 

relative to the weight that the study contributes to the overall estimate with larger circles 

indicating greater weight. The length of the horizontal bar spans the 95% confidence 

intervals of the mean. An SMD greater than zero supports a claim that roost trees are 

greater than what is available. 
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Figure 2.13. Forest plot of a northern long-eared bat meta-analysis of stand density 

(stems/ha) compared to randomly selected available trees. Reported is the sex of the 

study populations, reproductive condition (R), number of roost trees (nroosts), number of 

available trees (navail.), standardized mean difference (SMD), 95% confidence interval 

around the SMD (95% C.I), and weight that the study contributes to the combined effect. 

The circle indicates the standardized mean difference of the study that I calculated from 

the reported means of the roost trees and available trees. The diameter of the circle is 

relative to the weight that the study contributes to the overall estimate with larger circles 

indicating greater weight. The length of the horizontal bar spans the 95% confidence 

intervals of the mean. An SMD greater than zero supports a claim that roost trees are 

greater than what is available. 

 

 

 

 

 

 

 

 

 

 

 



49 

 

 

Figure 2.14. Forest plot of a northern long-eared bat meta-analysis of the mean DBH of 

the surrounding trees (cm) compared to randomly selected available trees. Reported is the 

sex of the study populations, reproductive condition (R), number of roost trees (nroosts), 

number of available trees (navail.), standardized mean difference (SMD), 95% confidence 

interval around the SMD (95% C.I), and weight that the study contributes to the 

combined effect. The circle indicates the standardized mean difference of the study that I 

calculated from the reported means of the roost trees and available trees. The diameter of 

the circle is relative to the weight that the study contributes to the overall estimate with 

larger circles indicating greater weight. The length of the horizontal bar spans the 95% 

confidence intervals of the mean. An SMD greater than zero supports a claim that roost 

trees are greater than what is available. 
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Figure 2.15. Forest plot of a northern long-eared bat meta-analysis of stand basal area 

(m2/ha) compared to randomly selected available trees. Reported is the sex of the study 

populations, reproductive condition (R), number of roost trees (nroosts), number of 

available trees (navail.), standardized mean difference (SMD), 95% confidence interval 

around the SMD (95% C.I), and weight that the study contributes to the combined effect. 

The circle indicates the standardized mean difference of the study that I calculated from 

the reported means of the roost trees and available trees. The diameter of the circle is 

relative to the weight that the study contributes to the overall estimate with larger circles 

indicating greater weight. The length of the horizontal bar spans the 95% confidence 

intervals of the mean. An SMD greater than zero supports a claim that roost trees are 

greater than what is available. 
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Figure 2.16. Forest plot of a northern long-eared bat meta-analysis of canopy cover (%) 

compared to randomly selected available trees. Reported is the sex of the study 

populations, reproductive condition (R), number of roost trees (nroosts), number of 

available trees (navail.), standardized mean difference (SMD), 95% confidence interval 

around the SMD (95% C.I), and weight that the study contributes to the combined effect. 

The circle indicates the standardized mean difference of the study that I calculated from 

the reported means of the roost trees and available trees. The diameter of the circle is 

relative to the weight that the study contributes to the overall estimate with larger circles 

indicating greater weight. The length of the horizontal bar spans the 95% confidence 

intervals of the mean. An SMD greater than zero supports a claim that roost trees are 

greater than what is available. 
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Figure 2.17. Forest plot of a northern long-eared bat meta-analysis of slope (%) compared 

to randomly selected available trees. Reported is the sex of the study populations, 

reproductive condition (R), number of roost trees (nroosts), number of available trees 

(navail.), standardized mean difference (SMD), 95% confidence interval around the SMD 

(95% C.I), and weight that the study contributes to the combined effect. The circle 

indicates the standardized mean difference of the study that I calculated from the reported 

means of the roost trees and available trees. The diameter of the circle is relative to the 

weight that the study contributes to the overall estimate with larger circles indicating 

greater weight. The length of the horizontal bar spans the 95% confidence intervals of the 

mean. An SMD greater than zero supports a claim that roost trees are greater than what is 

available. 
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Figure 2.18. Comparison of the northern long-eared bat specific meta-analysis (Study) 

with previously published quantitative multi-species meta-analyses results. For all 

variables, evidence supported an effect size for northern long-eared bats nearer zero 

although overlap in 95% confidence intervals did occur. Kalcounis-Rueppell et al. (2005) 

did not report standard error or confidence intervals so they are not present in plot.  
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CHAPTER 3: THE SPATIAL DISTRIBUTION OF NORTHERN LONG-EARED 

BATS DURING MATERNITY SEASON IN NEBRASKA 

Introduction 

Due to anthroprogenic impacts, habitat conversion is occurring globally across 

ecological scales and despite regulatory initiatives, future projections of conversion 

trends appear bleak (Tittensor et al. 2014). Globally, processes such as climate change 

can exert pressures on species’ distributions across latitudinal or elevation gradients (La 

Sorte and Jetz 2010, Tingley et al. 2012) or constrict local distributions when temperature 

constraints combine with biotic interactions (Merrill et al. 2008). At a finer scale, local 

initiatives such as channelizing streams and rivers, wildland fire suppression, agricultural 

expansion, or the planting of forested windbreaks can all effect the local distribution and 

abundance of species (Brooker 1985, Pierce II et al. 2001, Backer et al. 2004, Jetz et al. 

2007). Additionally, landscape changes seemingly occurring at one scale can often times 

have unpredicted cross-scale impacts due to complex multi-scale interactions (Peterson et 

al. 1998). This multi-scale landscape change makes predicting the impacts to species 

difficult, as habitat use at one scale often does not transfer to inference at other scales 

(Schneider 2001, Mayor et al. 2009, Gallo et al. 2018), therefore studies incorporating 

multiple scales often times provided a better picture of the potential impacts of landscape 

change (Poizat and Pont 1996). 

Understanding how species experiencing population declines respond to 

landscape changes require rigorous survey designs over large geographic extents. 

However, designing studies to accurately survey rare species is difficult due to the 

sampling intensity required to detect the presence of rare or cryptic species (Thompson 
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2004, MacKenzie and Royle 2005). Occupancy modeling provides a statistical 

methodology to incorporate imperfect detection with presence/absence data in order to 

estimate the proportion of sites occupied through repeated sampling (Tyre et al. 2003, 

MacKenzie and Royle 2005).  By conducting repeated visits, it is possible to estimate the 

probability of false absences and reduce detection biases for rare species (MacKenzie and 

Royle 2005). Additionally, researchers can include covariates that account for variation 

in detection to improve occupancy estimates and gain an understanding of factors that 

affect species detection (MacKenzie and Royle 2005, Kaiser and O’Keefe 2015). 

Estimating site occupancy also provides a method for understanding habitat relationships, 

responses to management practices, or species responses to projected gloabal changes 

(Tyre et al. 2003, Gu and Swihart 2004, Zuckerberg et al. 2011).  

Traditional single-season occupancy analysis, however, often only allows 

inference at a single spatial scale determined by the selection of the individual sampling 

locations. Multi-scale occupancy analysis, however, is an approach that incorporates a 

hierarchical sampling design where spatially replicated survey stations are nested within 

larger sampling units (Nichols et al. 2008, Pavlacky et al. 2012, Hagen et al. 2016). These 

survey stations then receive multiple visits to estimate detection probability. This 

modeling approach estimates occupancy at two distinct scales by simultaneously utilizing 

presence/absence observations and accounts for the non-independence of detections 

between the scales while also addressing the closure assumption for spatially replicated 

survey stations (Pavlacky et al. 2012). This approach estimates three parameters; large-

scale occupancy (ψ; hereto referred to as grid occupancy), small-scale occupancy (θ; site 

occupancy for the purpose of this manuscript), and detection probability of the survey 
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station (p). Multi-scale occupancy thus allows for the prediction of covariate relationships 

at two spatial extents to which a species may be responding differently (Mutter et al. 

2015, Hagen et al. 2016).  

Hibernating bats are an example of a relatively small mammal that interacts with 

its environment across distinctively different spatial scales (Gallo et al. 2018). Upon 

exiting a hibernation site (e.g., caves or buildings) a 7g bat may travel more than 300 km 

to its summer maternity site where it will remain until late summer after rearing its young 

(Griffin 1940). During the maternity season, a forest-associated species, such as the 

northern long-eared bat (Myotis septentrionalis), is relatively stationary within a forest 

stand (Owen et al. 2003). As an interior forest species (LaVal et al. 1977, Brack, Jr. and 

Whitaker Jr. 2001, Carroll et al. 2002), home ranges and habitat use of the species is 

affected by forest management practices that modify the density of trees at least at the 

stand level (Owen et al. 2003, Patriquin and Barclay 2003).  

Globally, declines in bat populations are primarily the result of land conversion 

due to a growing human population and increased demands for space, food, and resource 

(Mickleburgh et al. 2002). Increased temperatures due to climate change also negatively 

influence future population projections (Adams and Hayes 2008). North America bats 

species are facing the aforementioned impacts along with an additional driver of 

population decline, white-nose syndrome (WNS); a fungal caused disease responsible for 

mortality rates often exceeding 95% in certain hibernating bat species (Frick et al. 2010). 

The northern long-eared bat is a species heavily affected by WNS and, as of 2018, is the 

only species federally listed under the United States Endangered Species Act as 
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threatened as a direct result of the disease (Frick et al. 2015, Fish and Wildlife Service 

2016). 

The objective of this study was to predict northern long-eared bat occupancy 

within the state of Nebraska, determine environmental variables associated with this 

occupancy, and gain an understanding of factors that contribute to detection probability. 

To achieve these objectives, I applied multi-scale occupancy modeling to data collected 

from a hierarchical probabilistic sampling framework. I deployed multiple acoustic bat 

detectors nested within 10 km x 10 km grids within the state of Nebraska. This modeling 

approach allows for the testing of covariates that are associated with variation in 

detection probability, occupancy of grid, and occupancy of the survey station contingent 

upon detection within the larger grid unit. Additionally, I utilized landscape variables 

across the study area to predict grid occupancy spatially across the state. 

Methods 

STUDY AREA AND SITE SELECTION 

I defined the study area as the geographical boundaries of Nebraska. I divided the 

state into a 10 x 10 km grid and then randomly selected cells using a generalized random 

tessellation stratified (GRTS) selection algorithm (Stevens and Olsen 2004). I biased the 

GRTS algorithm upon forest cover within a potential cell. In other words, the algorithm 

was more likely to select a cell with greater forest cover. Previous research has indicated 

that northern long-eared bats are highly associated with forest cover (Broders et al. 2006), 

therefore I biased the selection to maximize the likelihood of detecting the species as 

much of the state is not forested. I also balanced the selection to sample all level IV 
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ecoregions (Omernik and Griffith 2014) relative to their area. This ensured I sampled 

every level IV ecoregion in Nebraska with at least one 10km x 10km grid.  

Once a 10 x 10 km cell was selected using GRTS, I initially preselected potential 

habitat blocks from aerial images following a predefined selection framework (Figure 

3.1). I established this framework to satisfy the following objectives: 1) reproducible 

(between survey units and surveyors), 2) easy application in the field without computer 

access, 3) based upon easily defined features, 4) incorporate species-specific information 

to maximize detection potential, 5) incorporate uncertainty of a species’ habitat 

preferences, 6) modifiable to fit future needs of other species. Following my framework, I 

rejected and replaced a cell if it lacked roads, or at least one patch of trees ≥120m x 120m 

in at least two quadrants of the cell.  

Once I selected a habitat block via the framework, personnel on the ground made 

the stand-level site selection decisions. By observing the habitat block from the road and 

through the utilization of plat maps, field personnel contacted the applicable landowner 

for access. If a preselected habitat block was not accessible due to lack of landowner 

permission, access, or any other extenuating circumstances, I utilized the decision 

framework to select a replacement habitat block within the cell. If field crew members 

were unable to deploy the targeted number of detectors within a cell (n=4) due to 

unforeseen circumstances, the cell was not rejected from analysis or replaced due to time 

constraints in the field season.  

After I obtained landowner permission, I selected the actual deployment location 

within the habitat block. To select a site, I made my best attempts to adhere to the 

following dichotomous decision criteria:  
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1.     Site contains a forested ridgeline …………………………………...…....……… 2  

Site does not contain a forested ridgeline…………………………...…………… 3  

2.  Ridgeline contains an area with reduced clutter………...…. Select site and deploy  

Ridgeline does not contain an area with reduced clutter………………………… 3  

3.  Within the forest block, an open corridor is present……..… Select site and deploy  

No corridor is present…………………………………………….....…………… 4  

4.  Pond or stream present within block………………………...Select site and deploy  

 No pond or stream is present………………………………... Select site with the  

  least amount of clutter while staying within forest block.  

 

I based deployment location criteria upon previous findings pertaining to habitat 

usage and the constraints of recording bats in a cluttered setting. Previous research has 

concluded that northern long-eared bats forage on forested ridgelines and hillsides rather 

than along stream corridors (LaVal et al. 1977, Brack, Jr. and Whitaker Jr. 2001). By 

observing light-tagged individuals, LaVal (1977) observed northern long-eared bats only 

in the space between the forest canopy and the understory. This foraging behavior makes 

recording the species particularly difficult because recording in a cluttered environment 

has substantial limitations such as reduced recording quality and increased ambiguity of 

echolocations (Broders et al. 2004). If I was unable to locate a suitable recording 
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environment within a habitat block, I rejected that block and replaced it following the 

selection framework.  

DETECTOR DEPLOYMENT 

At each sampling point, I recorded bat echolocations using AnaBat Express bat 

detectors (www.titley-scientific.com) mounted on a telescopic pole between 2.4 m and 7 

m above the ground. I adjusted the height of the detector to place the detector between 

the understory and the canopy operating under the assumption that foraging occurs 

primarily in this open zone (Nagorsen et al. 1993) and to maximize the number of quality 

recordings (Weller and Zabel 2002). I oriented the microphone in the direction with the 

least amount of clutter (Weller and Zabel 2002). In cases where there was no understory, 

I positioned the detector at the minimum of 2.4 meters above the ground. Sampling began 

30 minutes before sundown and continued until 30 minutes after sunrise. Detectors 

remained deployed for a minimum of 6 nights. Due to access constraints (i.e. inclement 

weather, road conditions, or vehicle damage), detectors often remained deployed for 

additional days. Additionally, issues with battery longevity sometimes resulted in 

recording periods less than 6 days. I accounted for this variation in survey time later in 

the statistical analysis. 

ACOUSTIC ANALYSIS AND DETECTION HISTORY 

I analyzed all recordings using Kaleidoscope v4.1.0 with the Bats of North 

America 4.1.0 classifier set to “-1 More Sensitive” (Wildlife Acoustics, Concord, MA, 

USA; www.wildlifeacoustics.com). I set the signal of interest parameters as follows: 16-

120 kHz, 2-20ms, maximum inter-syllable gap = 500 ms, minimum number of pulses = 

5, and advanced signal processing = ON. Prior to analysis, I divided the state into 17 
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regions of unique potential species assemblages using historical capture records and 

expert knowledge allowing buffers for potential distribution error due to a lack of survey 

effort. These species assemblages determined which auto-classifiers I activated in 

Kaleidoscope with northern long-eared bat activated in all regions. I performed this 

division to increase accuracy of identification and to simplify the confusion matrix within 

Kaleidoscope.  

Once I auto-classified calls using Kaleidoscope, I applied additional conservative 

criteria to reduce false positives when determining detection or non-detection for a given 

night. For clarity, in my study I defined a pulse as an individual emission of echolocation 

and a call-sequence as a series of pulses within a single digital recording. I categorized 

each auto-classified call sequence as either high, medium, or low quality based upon the 

Kaleidoscope reported metrics. Specifically I used the number of pulses within the call 

sequence, the match ratio (a ratio of pulses matching the auto-assigned species vs the 

total number of pulses), and the software-generated maximum likelihood estimator 

(MLE; a test of the null hypothesis of a species not being detected within a given night). 

If a call-sequence contained at least 10 pulses and a match ratio of 0.9 or greater, I 

categorized it as a high quality call-sequence and awarded it a score of 0.5. A call-

sequence with at least 5 pulses and a match ratio greater than 0.75 received a score of 

0.33, a call-sequence with at least 5 pulses and a match ratio greater than 0.5 received a 

score of 0.25, and lastly a call-sequence with a match ratio below 0.5 received a score of 

0 regardless of the number of pulses. I totaled the scores assigned to the northern long-

eared bat for each night at a given deployment location. If a single night’s total score was 

at least 1.0 and the night’s MLE was less than or equal to 0.05, I scored that night as 
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detected. If it did not meet the above criteria, it was determined to be non-detected for a 

given night. Additionally, I hand-vetted any detections occurring outside of the U.S. Fish 

and Wildlife estimated distribution (Fish and Wildlife Service 2016) of the species due to 

the implications of a range expansion.  

DETECTION (P) PROBABILITY COVARIATES 

To understand factors that contribute to detection probability, I recorded site 

characteristics at each microphone deployment (Table 3.1). To quantify the amount space 

in the recording environment (an inverse of the amount of clutter), I visually estimated 

distances to dense clutter as either <2.5m, 2.6-5m, 5.1-10m, or >10m from the front, 

back, left, right, above, and below relative to the microphone. I also calculated nightly 

mean temperature (°C), relative humidity (%), and wind speed (m/s), and total rain fall 

(mm) from Rapid Refresh (RAP) data during each nightly recording period. RAP data is 

an hourly updated weather model for North American at the 13-km resolution (Benjamin 

et al. 2016). I obtained recording length (decimal hours) for a given night from the auto-

generated log files created by the recording units. This covariate accounts for battery 

failures that occurred partway through a recording night or for variations in night length 

throughout the summer. Lastly, I also incorporated day of the study season to account for 

the influence of volancy (pups gaining the ability to fly) mid-way through the study.  

LOCAL OCCUPANCY (THETA) COVARIATES 

I included habitat covariates at the detector (site) level that account for variation 

in site occupancy (Table 3.2). These are specific for each detector deployment nested 

within the 10km grids. To understand how anthropogenic landscape features affect local 

occupancy, I included the minimum distances of the nearest major road to each detector 
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deployment. The minimum distance to major water sources as defined by the Landfire 

2014 dataset was also included in my model set (LANDFIRE 2014). To understand the 

effects of landscape context, I calculated the area of forests within 125, 250, 500, and 

1000 m buffers radiating outward from the deployment location. I chose 125 m as the 

starting value because the pixel resolution of the landcover raster (30 m) reduced the 

variation between buffer distances and the accuracy of the estimate. I increased the buffer 

distances multiplicatively rather than additively to reduce the number of models. I chose 

the distance of 1000 meters as the largest distance as this was roughly twice the average 

distance the species roosted from capture sites (see Chapter 2).  

GRID OCCUPANCY (PSI) COVARIATES 

I derived 11 continuous covariates that pertained to grid occupancy (psi) using 

digitally available landscape variables (Table 3.3). I used FRAGSTATS (McGarigal et al. 

n.d.) and the Landfire 2014 existing vegetation layer (LANDFIRE 2014) to calculate 

landscape metrics within the boundaries of the 10 km grid. Subsetting the LANDFIRE 

(2014) data to include patches with lifeform only equal to “tree”, I calculated the total 

core area of forest (HA), connectedness index of forest patches, clumpiness index of 

forest patches, and number of disjunct core areas of forest. Core area metrics require 

user-provided values of the depth of edge influence into forest from a neighboring patch. 

I set this value at 40m for all adjacent landcover classes per Jantzen and Fenton (2013). 

Additionally, connectedness metrics require a defined search distance around a forested 

patch to estimate connectedness of a grid cell. For this analysis, I set the search distance 

at 450 m as it was the upper 95% confidence interval for the distance between 

consecutive roosts following a quantitative meta-analysis on northern long-eared bat 
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roosting behavior (see Chapter 2). Subsetting the LANDFIRE (2014) data to include 

patches with lifeform only equal to “water”, I estimated the total area of water (HA). I 

obtained the mean summer temperature (°C) and mean summer precipitation (mm) for 

the combined months of May, June, July, and August using WorldClim 1.4 data which 

averages weather observations from 1960 – 1990 at a 1km resolution. I also incorporated 

the geographic coordinates of the grid centroids into the model set to account for the 

spatial auto-correlation of the species distribution in Nebraska. It has been demonstrated 

that this approach improves predictive performance as a broad-scale environmental 

gradient may exist that is not adequately captured by other covariates (Václavík et al. 

2012).  

The aforementioned covariates all pertain to summer maternity distribution. To 

examine the proximity to potential winter hibernacula habitat, I created a covariate to 

serve as a proxy for potential non-traditional hibernacula availability. I calculated terrain 

position indices (TPI) using a 1 arc-second digital elevation model and the package 

Raster (Hijmans 2017). A raster pixel’s TPI is the difference between the pixel’s 

elevation and the mean elevation of all neighboring cells in a moving window approach 

(Wilson and Gallant 2000). I considered all terrain with a TPI of 4 or greater as potential 

ridge habitat for smaller hibernacula either in rocky cliff roosts or eroded bluff faces. I 

then extracted all terrain with a TPI of 4 or greater and a soil depth less than 5m derived 

from a global thickness of soil, regolith, and sedimentary deposit layer (Pelletier et al. 

2016). While northern long-eared bats are traditionally considered cave hibernating bats, 

the rarity of Nebraska caves/mines and the documented occurrence of hibernation in 

Nebraska bluff faces led me to explore this approach (Lemen et al. 2016). I buffered the 
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centroid of each sampled grid 89km as this was the longest reported distance the authors 

could locate of a northern long-eared bat traveling from its hibernacula (Griffin 1940) in 

late spring or early summer.  

MODELING APPROACH 

I applied a multi-scale occupancy modeling approach as first described by 

Nichols (2008) for use with multiple sampling devices. Rather than multiple devices, my 

replication within a sampling unit was individual survey stations similar to Pavlacky’s 

(2012) analysis using point count transects. Survey stations were primary occasions for 

estimating site occupancy (θ), and nightly temporal replicates were secondary occasions 

for estimating detection probability (p) (Pavlacky et al. 2012, Hagen et al. 2016). This 

modeling approach decomposes the probabilities of θ and p to improve the inference of 

grid occupancy (ψ) (Nichols et al. 2008, Hagen et al. 2016). This approach contains the 

following assumptions: 1) there was no un-modeled heterogeniety in the probabilities of 

detections or occupancy, 2) each quadrant was closed to changes in occupancy during the 

course of sampling, 3) the nightly detections of northen-long eared bats were independent 

between survey stations, and 4) there were no false detections of the species (Nichols et 

al. 2008, Pavlacky et al. 2012). For all model sets, I ranked models according to Akaike’s 

Information Criterion (Akaike 1973) adjusted for small sample sizes (AICc) (Hurvich 

and Tsai 1989), assessed the strength of evidence for a given model i using AICc  model 

weights (wi), and estimated the plausibility of a particular model i using evidence ratios 

(wi /wj).  
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MODEL FITTING 

I fit all models in R using the package RMARK 2.2.4 (Laake 2013), an interface 

between MARK v8.0 (White and Burnham 2009) and R (R Development Core Team 

2018). To access the need to include latitude and longitude to account for spatial 

autocorrelation, I fit three competing models, a global model without latitude and 

longitude, a global model with latitude and longitude as additive terms, and a global 

model with latitude and longitude as an interaction. I considered the top supported model 

based upon AICc as the global model for grid occupancy.  

After incorporating the top spatial autocorrelation model, I fit four competing site 

occupancy (θ) models to assess the scale at which forest area most strongly correlated 

with site occupancy. The four models contained global p, global ψ, distance to road and 

water, and one of the four buffer distances at which the area of forest was calculated. To 

capture the spatial scale at which forest most strongly influenced site occupancy, I 

selected the top model based upon the largest β coefficient rather than the lowest AICc 

and included this term into the global θ model. I z-scored all covariates prior to fitting to 

allow direct comparison of β-estimates.  

 Once I had a global model for all three parameters, I grouped covariates for p and 

ψ into 1 – 2 additive term groupings corresponding to discrete themes and hypotheses. 

There were 5 term groupings for both p and ψ. For p these groupings corresponded to 

atmospheric conditions (temperature and RH), atmospheric interference (rain and wind), 

recording space, recording length, and day of season. For ψ, these groupings 

corresponded to forest area (forest core area and number of disjoint core areas), forest 

aggregation (forest clumpiness and connectivity), landscape features (developed area and 
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water), climate (summer temperature and precipitation), and cliff area. I did not group 

any terms for θ. I then fit all possible models for p, θ, and ψ simultaneously in an all-

combinations approach (Doherty et al. 2012). This resulted in 8,192 potentials models. I 

defined the final model set as all models within 2 ΔAICc. Rather than model averaging 

the β-coefficients of model variables and their respective standard errors, I 

unconditionally averaged the predicted real values from the models within 2 ΔAICc and 

included confidence intervals of 95%. I used the delta method to approximate the 

sampling variance and standard error when I estimated overall site occupancy and 

detection probability (Oehlert 1992, Powell 2007). To spatially predict grid occupancy 

across the state, I held all p and θ covariates constant at their means and applied covariate 

values for all possible 10 km x 10 km grids within the Nebraska range of the northern 

long-eared bat. I then unconditionally averaged the predicted real values from all models 

in the final confidence set. This resulted in an estimate of occupancy for all grids bound 

between 0 and 1. I arbitrarily defined 4 cut points for visualization purposes at 0-0.25, 

0.25-0.5, 0.5-0.75, 0.75-0.90, 0.90-1.0 in ArcGIS (ESRI 2011). 

Results 

SURVEY RESULTS 

I surveyed 101 grids and detected the northern long-eared bat at 22 grids (Figure 

3.2). Prior to model fitting and z-scoring covariates, I removed 19 grids from 

consideration to limit modeling and prediction to within the range of the northern long-

eared bat, as my observations did not warrant expanding the range and to limit the effects 

of zero-inflation of data. Although the target number of survey stations per grid was 4, I 

averaged 3.72 ± 0.06 SE survey stations per grid due to lack of suitable sites or 
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landowner permission. I defined the number of primary samples as K=4 to correspond to 

the maximum number of survey stations within a grid, and L=8 as the number of 

secondary samples to correspond to the maximum number of nights sampled. This 

resulted in an encounter history of K*L = 32.   

EFFECT OF SPATIAL AUTOCORRELATION TERMS ON GIRD OCCUPANCY 

The best approximating model within the spatial autocorrelation model set for ψ 

included the additive effects of latitude and longitude (Table 3.4). The evidence ratio 

(wi/wj) indicated that this model was ~5.7 times more plausible than the next ranked 

model that included an interaction between latitude and longitude, and was ~7 times more 

plausible than the global ψ-model that lacked latitude and longitude.  Due the strong 

support for including the additive terms of latitude and longitude, I included these terms 

in all subsequent models to account for the effects of spatial auto correlation or 

unforeseen landscape effects that varied with a latitude and longitude gradient but were 

not present in the model set.  

EFFECT OF FOREST SCALE ON SITE OCCUPANCY 

The best approximating model within the forest scale model set for θ included the 

effect of forest area within a buffer of 125 meters from the survey station; however, all 

models were within 2 AICc of each other (Table 3.5). The evidence ratio (wi/wj) indicated 

that this model was ~1.5 times more plausible than the next ranked model and ~2.4 times 

more plausible than the last ranked model in the set. The value of the model’s β-

coefficients provided support of a declining relationship in the effect of forest area on site 

occupancy as distances radiate outward from the survey station; however, all 95% 

confidence intervals indicated overlap of all estimates. Due to this relationship, I included 
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the covariate representing the area of forest within a 125-meter buffer from the survey 

station in further model fitting.   

FINAL FITTING OF ALL MODELS 

The final confidence set, as defined by all models within 2 AICc of the top ranked 

model, contained 14 of the 8,192 potential models (Table 3.6). Other than latitude and 

longitude, which was included in all fitted models to account for spatial autocorrelation, 

the ψ-covariates included in the confidence set with β-estimates that did not overlap zero 

with 95% confidence included forest clumpiness, mean summer temperature (°C), and 

area of potential cliff terrain (HA) within 89 km (Table 3.7). Evidence supported a 

positive relationship with grid occupancy for all of these covariates.  

The only θ-covariate that did not show overlap with zero with 95% confidence 

was a positive relationship with forest area (HA) within 125 meters of the survey station 

(Table 3.8).  The p-covariates present in the confidence set with β-estimates that did not 

overlap zero with 95% confidence included an index of open recording space relative to 

the microphone, mean nightly temperature (°C), and day of the season (Table 3.9, Table 

3.10). It is noteworthy that these covariates were present in all top models and contained 

β-estimates that did not overlap zero with 95% confidence in all models. Also of note, β-

estimates indicate a negative relationship between nightly temperature and detection 

probability which was opposite of my expectations (Table 3.9). Evidence supported a 

positive correlation between day of season and detection, which met my expectations as 

volancy occurred in the latter half of the study season. Results also supported a negative 

relationship with recording space, which is consistent with some previous findings 

(Kaiser and O’Keefe 2015) (Table 3.9).  
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The estimated nightly detection probability for acoustically surveying the 

northern long-eared bat using my study design was 𝑝̂ = 0.52 which is well above the 

moderate range of 0.3 estimated by MacKenzie (2002) to provided unbiased estimates of 

occupancy (Table 3.11). Using the equation 1 - (1-p)k  to estimated overall detection 

probability (d) for night (k), overall detection exceeded 95% after four nights. With 

covariates set at their means, northern long-eared bats occupied 70% of the survey 

stations (θ̂), conditional on grid occupancy, but only 6% of the grid units (Ψ̂) (Table 

3.11). This indicates that the species is locally common but occupies a relatively small 

percentage of the USFWS defined distribution within Nebraska. The naïve estimate of 

grid occupancy was 27%, which is considerably greater than the adjusted occupancy 

estimate when adjusted for detection and site occupancy. This is potentially due to a 

relatively high likelihood of detecting the species during my survey, combined with grid 

occupancy being associated with covariate values well outside of their respective means 

for the study area.  

SPATIAL PREDICTION  

Holding covariates for theta and p constant at their mean values, I predicted grid 

occupancy across estimated Nebraska range of the species using covariate values for all 

sampling units (Figure 3.4). The models averaged to predict grid occupancy across 

Nebraska included the following ψ covariates: latitude, longitude, cliff area with 89 km, 

forest clumpiness, forest connectivity, mean summer precipitation, and mean summer 

temperature. I held all values for θ and ψ constant at their means. To visualize the 

distribution of error across the study area, I also visualized standard error. Although I 

sampled all ecoregions relative to their area, the pine ridge area in the northwest 
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panhandle received little sampling (Figure 3.2). Extremes in latitude and longitude 

combined with relatively little sampling, likely contributed to high standard error in this 

region.  

Discussion 

Applying a multi-scale occupancy approach was useful for determining the 

factors associated with occupancy at two distinct spatial scales while also providing 

insight into factors associated with detection probability of the northern long-eared bat 

across its Nebraska distribution. Our results suggest that by establishing multiple survey 

stations within larger sampling units, one can account for heterogeneous sampling 

availability of a species within the larger sample unit. The recording space around a bat 

detector’s microphone, day of the season, and mean nightly temperature significantly 

influenced detection probabilities. The area of forest within 125 m of a survey station had 

a significant relationship with site occupancy. Latitude, longitude, cliff area with 89 km, 

forest clumpiness, and mean summer temperature significantly influenced larger-scale 

grid occupancy of the 10 km grids.  

Opposite of my expectations, temperature showed a significant inverse 

relationship with detection probability. While the rate of sound temperature attenuation 

and air temperature are positively correlated (Griffin 1971), the relatively small range of 

nightly temperatures experienced during the course of the study season likely had little 

effect on sound attenuation (Lawrence and Simmons 1982). Previous studies have mostly 

reported a positive relationship with temperature and activity or detection probability 

(Hayes 1997, Yates and Muzika 2006, Kaiser and O’Keefe 2015), however, a weak 

negative relationship was observed between temperature and detection probability in 
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evening bats (Nycticeius humeralis) (Hein et al. 2009). A possible explanation for this 

inverse relationship could be the effects of insect noise on the recording environment. 

Both insect abundance and insect call volume exhibit a positive relationship with ambient 

temperature (Anthony et al. 1981, Sueur and Sanborn 2003). Because the zero-cross 

recording technology used in this study only records the frequency of the most intense 

sound within the recording environment, insect noise could be essentially outcompeting 

northern long-eared bat echolocations and limiting the detectors ability to record the 

species. This effect may be less noticeable in lower frequency bats as lower frequency 

echolocations travel further distances (Lawrence and Simmons 1982, Adams et al. 2012). 

To account for the influence of insect noise, future studies could potentially use the 

number of non-bat recordings for a given night as a covariate for detection probability to 

reduce bias in the parameter estimate.   

The other dominant detection probability covariate, recording space, is essentially 

an inverse of clutter; as clutter increases, recording space thus decreases. Clutter in a 

recording environment is generally thought to reduce detection rates (Broders et al. 2004) 

but studies assessing the relationship between detection probability offer mixed 

conclusions. O’Keefe and colleagues (2014) concluded that detection probability of high 

frequency bats, such as the northern long-eared bat, decreased as midstory live-stem 

count increased. However, they found the opposite relationship occurred between canopy 

crown volume and detection. Additionally, an occupancy study on Indiana bats (M. 

sodalis), concluded that detection probability was positively correlated with forest 

closure, a “principal component derived from mean canopy closure, mean mid-story 

closure, and number of trees ≥ 10 cm DBH” (Kaiser and O’Keefe 2015). The authors in 
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that study speculated two possible explanations for this relationship. The first possible 

explanation was that closed forests contained reduced understory structure and thus 

provided greater foraging habitat and a possible increased availability of roost structures. 

Therefore, this closed forest habitat resulted in an increased abundance of bats and thus a 

greater detection probability. The second proposed explanation is that closed forest sites 

may simply limit the amount of available area around a microphone for a bat to fly 

resulting in a higher concentration of bats within the recording space (Kaiser and 

O’Keefe 2015). My study’s estimate of recording space did not include forest cover but 

instead estimated the amount of 3-dimensional uncluttered space around the microphone. 

It is likely that at least two possible explanations exist for my observations of an inverse 

relationship between recording space and detection probability. The simplest explanation 

is comparable to Kaiser and O’Keefe (2015) in that reduced recording space simply 

forces bats to fly closer to the microphone. Because northern long-eared bats are a high 

frequency bat, their echolocation does not travel as far as lower frequency bats, due to 

high frequency sounds attenuating at a faster rate (Lawrence and Simmons 1982). In a 

large open recording environment, their echolocations may simply attenuate before being 

reaching the microphone. The second possibility, also proposed by Kaiser and O’Keefe 

(2015) is that the abundance of northern long-eared bats in denser forest sites is greater 

and thus the species has a greater probability of detection on a given night (Royle and 

Nichols 2003). While previous studies define the species as an interior forest bat (LaVal 

et al. 1977, Brack, Jr. and Whitaker Jr. 2001, Carroll et al. 2002), effort was always made 

to deploy detectors within suitable recording environments in the interior of forest 

patches. Therefore, even low clutter sites were often within the forest patches and should 
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have received the added increase to abundance that preferred habitat deployments would 

allot. A third possible explanation for this relationship, and not proposed by others to the 

authors knowledge, is the possibility of false detections due to co-occuring species being 

falsely classified as the target species. High clutter (i.e. low recording space) sites cause 

shifts in the echolocations characteristics (Broders et al. 2004). Even with expert hand 

vetting of recordings, echolocations from co-occurring species, such as little brown bats 

(Myotis lucifugus), in a cluttered environment could be indiscernible from northern long-

eared bats (Broders et al. 2004). To account for this possibility, I only selected suitable 

low-clutter survey locations in this study making this possibility unlikely. In future 

studies, especially with probabilistic site selection, the selected sampling area should be 

large enough to facilitate selecting a suitable site, or researchers should conduct 

oversampling of potential survey sites to allow substitution of replacement sites.  

The final covariate associated with detection probability was day of the survey 

season. In the latter half of the survey season, juveniles become volant (Geluso et al. 

2004) and there becomes a resulting increase in abundance (Agosta et al. 2005). My 

results are consistent with previous studies and indicate a positive relationship between 

day of season and detection probability (Kaiser and O’Keefe 2015, Pauli et al. 2017). 

This is likely due to the aforementioned increase in abundance (Royle and Nichols 2003, 

Kaiser and O’Keefe 2015). Future studies should take into account time of year when 

designing bat surveys, especially clearance surveys where inferring absence rather than 

presence is the goal.  

The strongest relationship of forest area to site occupancy was the area of forest 

within a 125 m radius around the survey station. This corresponds to an area of 
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approximately 4.9 hectares. Beyond this distance, data supported a consistent decline in β 

– estimates. This area of 4.9 ha corresponds with findings of previous roost selection 

studies which, when averaged, report a mean minimum roosting area of 5.2 ha ± 1.44 SE 

(Henderson 2008, Broders 2006, Johnson 2012, Badin 2014, Lereculeur 2013, O’Keefe 

2009). Because 125 m was the smallest buffer I investigated, it is possible that forest area 

within a smaller radius could potentially result in a greater effect. These results suggest 

that the northern long-eared bat can occupy forest patches of relatively small size at least 

in the short term.  

The site occupancy covariate, distance to major road was present in the 

confidence set but contained β–estimates with 95% confidence intervals overlapping 

zero. Bats regularly use roads for commuting and foraging and occupancy has been 

positively influence by proximity of roads (Hein et al. 2009). However, in some species, 

proximity to major roads negatively influences activity (Berthinussen and Altringham 

2012). Although I restricted distances to only major roads, most nearby roads were rural 

paved roads that often received little nocturnal vehicle traffic. Bats may be utilizing roads 

through forested sites for foraging corridors but evidence does not support that the 

proximity of these roads was associated with occupancy of the site. The site occupancy 

covariate, distance to nearest water source, was not present in the confidence set. As a 

small, clutter-adapted species, these species likely only need small water sources (e.g., 

flooded road ditches, ephemeral pools, puddles) which are common in my study sites but 

were not documented in my data set as I was limited to large remotely sensed perennial 

water sources such as streams, rivers, and ponds. Additionally, unlike other Myotis 
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species, the northern long-eared is not generally associated with riparian stream sites and 

is more encountered in the interior of the forest (Carroll et al. 2002).  

The only grid occupancy covariate associated with forest was the clumpiness of 

forest patches. Studies conducted at finer spatial scales (e.g, within a single forest stand) 

report similar findings to my site occupancy results, with forest availability or stand 

density being correlated with northern long-eared bat presence or activity (Owen et al. 

2003, Ford et al. 2005, Schirmacher et al. 2007, Johnson et al. 2008). At scales, however, 

availability becomes less predictive. A study in Ontario concluded that forest availability 

was not associated with northern long-eared bat abundance and instead reported a 

positive correlation between forest fragmentation and abundance of the species when 

forest area was held constant (Ethier and Fahrig 2011). Research in Paraguay also 

demonstrated that landscape fragmentation was positively associated with bat species 

richness (Gorresen et al. 2008). Ethier and Fahrig (2011) suggested their observations 

were due to an increase in “landscape complementation” which is the extent to which a 

landscape facilitates movement between habitat patches that fulfil various roles (e.g., 

foraging habitat and roosting habitat) (Dunning et al. 1992, Ethier and Fahrig 2011). In 

other words, if a bat species’ prefers to roost among dense forest stands but forages 

among clearings and road cuts, a more fragmented environment would be preferred as 

this places forest sites within closer proximity to open areas and reduces the energy 

expenditure of commuting. My results suggest that not all fragmentation is equal as the 

number of disjunct forest patches with the grids failed to predict occupancy. Instead, the 

aggregation of forest patches on the landscape, clumpiness, was positively associated 

with grid occupancy.   
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Another potential explanation for these results could be a reduction of the risk 

associated with site-fidelity.  Female northern long-eared bats exhibit inter-annular site 

fidelity to their summer maternity grounds (Patriquin et al. 2010). If an individual bat 

exits a hibernacula in spring and travels potentially over 80 km to its historic summer 

grounds (Griffin 1940), it is placing a large bet in the form of energy expenditure that 

these roosting ground will be still be suitable and not impacted by disturbance. A 

landscape with an aggregation of disjunct habitat patches would thus offer an individual 

bat with neighboring options and reduce the costs of locating a new forest patch. While 

clumpiness was predictive of grid occupancy, my measurement of connectivity produced 

β-estimates with 95% confidence limits overlapping zero.  It is possible that either my 

estimated search distance of 450 m when estimating connectivity was too restrictive or, if 

this risk-reduction hypothesis is correct, the distance they are capable of relocating to a 

new maternity site is further than they regularly travel when roost switching under 

favorable conditions.   

Utilizing a multi-scale occupancy approach enabled inference at two distinct 

spatial scales. Evidence supported a conclusion that the northern long-eared bat is rare 

within it is regulatory range within the Nebraska but is highly available for sampling 

within forest patches in parts of the state where it occurs. This high availability combined 

with a favorable detection probability indicates that future acoustic surveys are well 

suited for determining species presence at a given site. This assumes, however, that 

researchers select survey sites within forest interiors and only at suitable recording 

locations. Additionally, researchers can transfer the site selection framework and 
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hierarchy defined in this study to future northern long-eared bat surveys or modified to 

target other bat species.  

My observation that forest area is predictive of site occupancy but not larger-scale 

grid occupancy provides an example of habitat associations occurring at one scale not 

scaling up to larger spatial scales. Multi-scale occupancy provides methodology for 

examining a species habitat relationship at these distinct scales while also reducing bias 

inherent in surveying for rare species. As white-nose syndrome continues to reduce bat 

populations (Frick et al. 2010), these hard to detect species may become even more 

difficult to document due to a reduced abundance (Royle and Nichols 2003). I conducted 

this study prior to the detection of white-nose syndrome in Nebraska, and thus provide a 

baseline of occupancy estimates that researchers can compare to future occupancy studies 

to track species impacts. Additionally, a multi-scale occupancy approach would reveal 

population declines in local availability even if large-scale grid occupancy across the 

state remains constant. 
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Tables and Figures 

Table 3.1. Detection probability (p) covariates used to assess the factors associated with 

detection probability of Northern long-eared bats in Nebraska.  
Abbreviation Covariate Description Source 

RecLnHr Recording Length 

(Hrs) 

Length in decimal hours from when 

a night’s recording started to when it 

stopped; either because of battery 

failure or a scheduled stop-recording 

time.  

Anabat Express log 

files 

RHPer Relative Humidity 

(%) 

Mean relative humidity during a 

night’s recording window. 

NOAA Rapid Refresh 

Data (Benjamin et al. 

2016) 

TempC Temperature (°C) Mean temperature during a night’s 

recording window. 

NOAA Rapid Refresh 

Data (Benjamin et al. 

2016) 

YDay Day of study 

season 

Day of the study season  Author generated 

WindMS Wind Speed (m/s) Mean wind speed during a night’s 

recording window.  

NOAA Rapid Refresh 

Data (Benjamin et al. 

2016) 

RainMm Total rain (mm) Total amount of recorded rainfall 

during a night’s recording window. 

NOAA Rapid Refresh 

Data (Benjamin et al. 

2016) 

RecSpce Recording Space An index of available recording 

space. I binned distance estimates 

and then calculated cubic area using 

assigned scores. This can be thought 

of as the inverse of clutter.  

Author generated 
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Table 3.2. Covariates used to assess the factors associated with site occupancy (θ) of 

Northern long-eared bats in Nebraska. I included these covariates in a multi-scale 

occupancy analysis to describe effects in site occupancy of four detectors nested within 

larger spatially replicated 10km x 10km grids.  
Abbreviation Covariate Description Source 

DstRoadM Distance to nearest 

major road (m) 

Geodesic distance from detector to a 

major road with an MTFCC code of 

S1100, S1200, S1400, or S1630 and 

an RTTYP code of C, I, O, S, or U  

U.S. Census Bureau. 

TIGER/Line Shapefile, 

Nebraska, 2010 Census 

Block State-Based. 

DstWatrM Distance to nearest 

water source (m) 

Geodesic distance from detector to 

nearest water at a 30m resolution as 

defined by the national Land Fire 

dataset.  

Landfire 2014 – 

vegetation layer subset 

with life form equal to 

“water” 

Frst125Ha Forest within a 

125m radius (HA) 

Area of forest within a 125 m radius 

of the detector.  

Landfire 2014 – 

vegetation layer subset 

with life form equal to 

“tree” 

Frst250Ha Forest within a 

250m radius (HA) 

Area of forest within a 250 m radius 

of the detector. 

Landfire 2014 – 

vegetation layer subset 

with life form equal to 

“tree” 

Frst500Ha Forest within a 

500m radius (HA) 

Area of forest within a 500 m radius 

of the detector. 

Landfire 2014 – 

vegetation layer subset 

with life form equal to 

“tree” 

Frst1KHa Forest within a 1km 

radius (HA) 

Area of forest within a 1 km radius of 

the detector. 

Landfire 2014 – 

vegetation layer subset 

with life form equal to 

“tree” 
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Table 3.3. Covariates used to assess the factors associated with grid occupancy (ψ) of 

northern long-eared bats in Nebraska. I included these covariates in a multi-scale 

occupancy analysis to describe effects in grid occupancy of spatially replicated 10km x 

10km grids across Nebraska.  
Abbreviation Covariate Description Source 

FrstCorHa Total Core 

Area of Forest 

(HA) 

Total core area of forest with a depth 

of edge influence set at 40m for all 

other neighboring habitat.  

Landfire 2014 – vegetation 

layer subset with life form 

equal to “tree” 

FrstConct Connectedness 

index of forest 

patches 

The number of functional 

connections between forest patches 

divided by the number of possible 

connections. I chose a threshold 

distance of 450m as this was the 

upper 95%C.I. of reported distances 

between consecutive MYSE roosts. 

Landfire 2014 – vegetation 

layer subset with life form 

equal to “tree” 

FrstClump Clumpiness 

Index of forest 

patches 

An index of the randomness of forest 

patches. The clumpiness index is 

equal to -1 when patches are 

maximally disaggregated, 0 when 

patches are arranged at random, and 1 

when maximally clumped.  

Landfire 2014 – vegetation 

layer subset with life form 

equal to “tree” 

FrstNDCA Number of 

disjunct core 

areas of forest 

The sum of all disjunct core forest 

patches with a depth of edge 

influence set to 40m.   

Landfire 2014 – vegetation 

layer subset with life form 

equal to “tree” 

WtrAreaHa Total area of 

water (HA) 

The total area of water within the grid Landfire 2014 – vegetation 

layer subset with life form 

equal to “water” 

DevAreaHa Total area of 

developed land 

(HA) 

The total area of developed land 

within the grid 

Landfire 2014 – vegetation 

layer subset with life form 

equal to “Developed” 

CliffHA Total area of 

cliffs (HA) 

The total area of land within an 89 

km buffer with both a terrain position 

index of 4 or greater and soil depth 

less than 5m. This provides an index 

of potential cliff habitat.  

1. National Elevation 

Dataset digital elevation 

models (1 arc-second; 

USGS); and Global 1km 

gridded thickness of soil, 

regolith, and sedimentary 

deposit layer (ORNL 

DAAC, Oak Ridge, 

Tennessee, USA.)  

Long Longitude (°) Longitude (°) Author recorded 

Lat Latitude (°) Latitude (°) Author recorded 

 

 

 

 

 

 

 

 

 

 



89 

 

Table 3.4. Model selection for effects of latitude (Lat.) and longitude (long.) on grid 

occupancy (ψ). The model-selection metrics include the number of parameters (K), 

Akaike’s Information Criterion adjusted for sample size (AICc ), the difference between 

a model’s AICc  and the top ranked model’s AICc  (ΔAICc ), AICc  weight (wi), and -2 

log likelihood (-2log(L)).  

Model K AICc  ΔAICc  wi 

-

2log(L) 

ψ(global + Lat. + Long.) θ(global) p(global) 23 640.17 0.00 0.76 575.13 

ψ(global + Lat. * Long.) θ(global) p(global) 24 643.66 3.49 0.13 574.61 

ψ(global) θ(global) p(global) 21 644.06 3.90 0.11 586.66 
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Table 3.5. Model set for assessing the relationship of forest area at various distances on 

site occupancy (θ) of the northern long-eared bat. The model-selection metrics include 

the number of parameters (K), the beta coefficient for the buffer distance (β), and its 

respective standard error (SE). The objective of this model comparison was to assess the 

scale at which forest area most strongly correlated with site occupancy. Therefore, I 

selected the covariate corresponding to area of forest within 125 m (Frst_125) for 

inclusion in further multi-scale occupancy modeling as this covariate contained the 

largest β-estimate.  

Model K β SE 

ψ(global) θ(global + Frst_125) p(global) 24 0.52 0.36 

ψ(global) θ(global + Frst_250) p(global) 24 0.46 0.38 

ψ(global) θ(global + Frst_500) p(global) 24 0.35 0.36 

ψ(global) θ(global + Frst_1000) p(global) 24 0.30 0.37 
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Table 3.7. Covariate estimates pertaining to grid occupancy (ψ) included in the 

confidence set for a multi-scale occupancy analysis of northern long-eared bat occurrence 

in Nebraska. Table includes covariate terms occurring in the confidence set and their 

corresponding β-estimate and standard error in parenthesis. “N.S.” represents estimates 

with 95% confidence intervals overlapping zero. 

Rank Cliff (Ha) Frst. Clump Frst. Connect 

Summer 

Precip. 

(mm) 

Summer 

Temp 

(°C) Latitude Longitude 

1  2.47 (0.83) N.S.   N.S. 1.88 (0.62) 

2 2.82 (1.06)   N.S. 5.86 (2.21) 2.67 (1.05) N.S. 

3 N.S. N.S. N.S. N.S. 4.89 (2.27) 2.70 (1.10) N.S. 

4  2.65 (1.01) N.S. N.S. N.S. 2.26 (1.05) N.S. 

5 2.87 (1.04)   N.S. 5.89 (2.19) 2.68 (1.04) N.S. 

6  2.52 (0.84) N.S.   N.S. 1.90 (0.62) 

7 N.S. N.S. N.S. N.S. 4.89 (2.26) 2.72 (1.10) N.S. 

8  2.52 (0.84) N.S.   N.S. 1.90 (0.62) 

9  2.49 (0.83) N.S.   N.S. 1.88 (0.62) 

10 2.83 (1.02)   N.S. 5.84 (2.17) 2.66 (1.03) N.S. 

11 N.S. N.S. N.S. N.S. 4.85 (2.24) 2.68 (1.09) N.S. 

12 2.86 (1.06)   N.S. 5.91 (2.22) 2.68 (1.05) N.S. 

13 N.S. N.S. N.S. N.S. 4.91 (2.29) 2.73 (1.11) N.S. 

14  2.73 (1.03) N.S. N.S. N.S. 2.32 (1.07) N.S. 
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Table 3.8. Covariate estimates pertaining to site occupancy (θ) included in the confidence 

set for a multi-scale occupancy analysis of northern long-eared bat occurrence in 

Nebraska. Table includes covariate terms occurring in the confidence set and their 

corresponding β-estimate and standard error in parenthesis. “N.S.” represents estimates 

with 90% confidence intervals overlapping zero. 

 

Rank Dist. Road (m) Dist. Water (m) Forest 125 m (Ha) 

1   N.S. 

2   N.S. 

3   N.S. 

4   0.69 (0.35) 

5 N.S.   

6 N.S.   

7 N.S.   

8 N.S.  N.S. 

9    

10    

11    

12 N.S.  N.S. 

13 N.S.  N.S. 

14 N.S.   
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Table 3.9. Covariate estimates pertaining to detection probability (p) included in the 

confidence set for a multi-scale occupancy analysis of northern long-eared bat occurrence 

in Nebraska. Table includes covariate terms occurring in the confidence set and their 

corresponding β-estimate and standard error in parenthesis. “N.S.” represents estimates 

with 90% confidence intervals overlapping zero. 

Rank Rec. Space RH (%) Temp. (°C) Day of Season 

1 -1.16 (0.24) N.S. -0.35 (0.12) 0.47 (0.21) 

2 -1.16 (0.24) N.S. -0.35 (0.12) 0.47 (0.20) 

3 -1.16 (0.24) N.S. -0.35 (0.12) 0.47 (0.21) 

4 -1.15 (0.24) N.S. -0.35 (0.12) 0.48 (0.21) 

5 -1.09 (0.25) N.S. -0.35 (0.12) 0.45 (0.20) 

6 -1.09 (0.25) N.S. -0.35 (0.12) 0.46 (0.20) 

7 -1.09 (0.25) N.S. -0.35 (0.12) 0.45 (0.20) 

8 -1.12 (0.24) N.S. -0.35 (0.12) 0.46 (0.21) 

9 -1.15 (0.24) N.S. -0.35 (0.12) 0.47 (0.20) 

10 -1.16 (0.24) N.S. -0.35 (0.12) 0.47 (0.20) 

11 -1.15 (0.24) N.S. -0.35 (0.12) 0.47 (0.20) 

12 -1.12 (0.25) N.S. -0.35 (0.12) 0.46 (0.20) 

13 -1.12 (0.25) N.S. -0.35 (0.12) 0.46 (0.21) 

14 -1.08 (0.25) N.S. -0.35 (0.12) 0.46 (0.21) 
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Table 3.10. Occurrence of covariates in the confidence set where 95% confidence 

intervals of the β-estimates did not overlap zero when assessing multi-scale occupancy of 

the northern long-eared bat in Nebraska. Confidence set was defined as all models within 

2 AICc of the top ranked model. Model selection explored covariate effects on grid 

occupancy (ψ), site occupancy (θ), and detection probability (p). Summary metrics 

include the parameter associated with covariate, the covariate, the number of models 

within the confidence set that the covariate occurred (n Models), the percentage of 

models within the set containing the covariate (% of Models), and the percentage of 

models containing the covariate in which the 95% confidence interval of the β-estimates 

did not overlap with zero (% Significant).  

Parameter Covariate n Models % of Models % Significant 

ψ Latitudea 14 1.00 0.71 

ψ Longitudea 14 1.00 0.29 

ψ Frst. Clumpiness 10 0.71 0.60 

ψ Summer Temp (°C) 10 0.71 0.80 

ψ Cliff (Ha) 8 0.57 0.50 

θ Frst. 125 m (Ha) 7 0.50 0.14 

p Recording Space 14 1.00 1.00 

p Nightly Temp (°C) 14 0.94 1.00 

p Day of Season 14 0.67 0.76 
aLatitude and longitude was present in all fitted models to account for spatial 

autocorrelation. 
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Table 3.11. Parameter estimates and standard error for northern long-eared bat multi-

scale occupancy within the Nebraska distribution of the species.  Psi (Ψ̂) is the estimate 

of large-scale grid occupancy. Theta (θ̂) is the estimate of small-scale site occupancy 

contingent upon occupancy at the grid level. Detection (𝑝̂) is the estimate of detection 

probability for a given recording night starting at 30 minutes before sundown and 

continuing until 30 minutes after sunup. I estimated parameters by model averaging the 

real predictions of all models within 10% of the top model weight as defined by AICc. I 

averaged standard error following a delta method approach. 

Parameter Estimate SE 

Grid Occupancy (Ψ̂) 0.06 0.05 

Site Occupancy (θ̂) 0.70 0.09 

Detection (𝑝̂) 0.52 0.04 
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Figure 3.1. Predefined selection framework for selecting habitat blocks within 10 km 

grids to deploy acoustic detectors used to survey for northern long-eared bats in 

Nebraska. Grids were initially selected following a generalized random tessellation 

stratified (GRTS) survey design for a finite resources approach (Stevens and Olsen 

2004). Once I selected a habitat blocks following the framework, I deployed four bat 

detectors within each grid. 
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Figure 3.2. Sampling grids (n = 101) surveyed in 2015 for the northern long-eared bat to 

predict distribution within Nebraska. Prior to modeling, I removed 19 grids outside of the 

USFWS defined range to restrict inference to within the range and to reduce the effects of 

zero-inflation. Of the remaining 82 surveyed grids, I detected northern long-eared bats at 

22 grids.  
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Figure 3.3. Predicted relationships of covariates associated with northern long-eared bat 

site occupancy and detection probability in Nebraska. Predictions are the results of 

unconditionally averaging the real estimates of all models within 2 AICc of the top 

ranked model. Dashed lines denote 95% confidence intervals around the parameter 

prediction.  
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Figure 3.4. Predicted grid occupancy (ψ) of the northern long-eared bat within Nebraska 

(A). Predictions are the results of unconditionally averaging the real estimates for ψ of all 

models within 2 ΔAICc of the top ranked model with all covariates for θ, and p held 

constant at their z-scored means. Psi covariates used in the prediction were latitude, 

longitude, cliff area with 89 km, forest clumpiness, forest connectivity, mean summer 

precipitation, and mean summer temperature. To visualize the range of the parameter 

estimates, the lower 95% confidence interval (B), upper 95% confidence interval (C), and 

standard error (D) are also included. Counties excluded from prediction and outside of 

the recognized distribution of the species are represented in grey.
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CHAPTER 4. UTILIZING A MULTI-SCALE OCCUPANCY APPROACH TO 

UNDERSTAND THE FACTORS THAT AFFECT OCCUPANCY AND DETECTION 

OF THE NORTHERN LONG-EARED BAT 

Introduction 

Forests serve a variety of roles in the life history of bats (Miller et al. 2003).  They 

provide roosting sites to rear offspring (Carter and Feldhamer 2005), foraging areas 

(Bender et al. 2015), travel corridors (Hein et al. 2009), and wintering habitat (Boyles and 

Robbins 2006). While forests are important for most bat species, ideal habitat conditions 

for one species is often less than ideal for another (Patriquin and Barclay 2003). For 

example, two federally protected conspecifics may select for competing habitat types 

within the same forest stand, or afforestation may benefit bats while causing declines in 

grassland birds (Brennan and Kuvlesky 2005, Carter and Feldhamer 2005, Pauli et al. 

2017). In order for managers to balance the requirements of multiple species, an 

understanding of habitat associations must first be developed (Miller et al. 2003).  

To better understand the driving factors of bat occurrence, radiotelemetry studies 

have been the primary method for understanding bat habitat since the 1980s (Lacki and 

Schwierjohann 2001, Carter and Feldhamer 2005, Broders et al. 2006, Silvis et al. 2012). 

Major limitations of radiotelemetry studies however include low sample size, 

pseudoreplication, and limited inferential ability (Morris et al. 2011). Due to the intensive 

effort and resources required to conduct large-scale telemetry studies, we still know 

relatively little about difficult to study forest dwelling species, and much of what is 
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known is based upon studies with very small sample sizes often occurring at single 

locations (Miller et al. 2003). 

With the advent of acoustic bat detectors, researcher can conduct large-scale 

surveys with relatively little labor (Rodhouse et al. 2011, Frick 2013, Russo and Voigt 

2016). Although acoustic surveys provide added sampling data, they are not the “silver-

bullet” for bat researchers, and significant limitations stand in the way of determining 

habitat usage from acoustic surveys (Miller et al. 2003). For example, results from 

acoustic surveys reveal that bat activity varies substantially both temporally and spatially 

(Hayes 1997) and many factors contribute to the detection probability of a target species 

(Weller and Zabel 2002, Duchamp et al. 2006, Kaiser and O’Keefe 2015). For example, 

the amount of structural clutter in an environment can interfere with recording 

echolocations or cause bats to shift their pulse frequencies into unclassifiable patterns 

(Weller and Zabel 2002, Broders et al. 2004). The echolocation characteristics of a 

species can also affect the distance at which an individual detectable due to high 

frequency sounds attenuating faster than lower frequency sounds (Lawrence and 

Simmons 1982). Atmospheric conditions at a recording site can also effect detection due 

to changes in air density or bat activity levels (Griffin 1971).  

One way to reduce the bias inherent in acoustic sampling is with occupancy 

modeling (MacKenzie 2006, Kaiser and O’Keefe 2015). By conducting repeated site 

visits (i.e. recording one site for multiple nights), the effect of false-absences can be 

reduced along with detection biases for rare species (Tyre et al. 2003, MacKenzie 2006). 

Additionally, in some cases, occupancy may provide more reliable estimates of 

populations compared with abundance estimates for rare or cryptic species and often 
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requires reduced sampling especially at large scales (MacKenzie 2006). Occupancy 

analysis also provides insight into site usage, habitat associations, and population trends 

over time (Yates and Muzika 2006, Gorresen et al. 2008, Kaiser and O’Keefe 2015).  

Traditional single-season occupancy analysis, however, often only allows 

inference at a single spatial scale determined by the selection of the individual sampling 

locations. Multi-scale occupancy analysis, however, is an approach that incorporates a 

hierarchical sampling design where spatially replicated survey stations are nested within 

larger sampling units (Nichols et al. 2008, Pavlacky et al. 2012, Hagen et al. 2016). These 

survey stations then receive multiple visits to estimate detection probability. This 

modeling approach estimates occupancy at two distinct scales by simultaneously utilizing 

presence/absence observations and accounts for the non-independence of detections 

between the scales while also addressing the closure assumption for spatially replicated 

survey stations (Pavlacky et al. 2012). This approach estimates three parameters; large-

scale occupancy (ψ; hereto referred to as grid occupancy), small-scale occupancy (θ; site 

occupancy for the purpose of this manuscript), and detection probability of the survey 

station (p). Multi-scale occupancy thus allows for the prediction of multi-scale covariate 

relationships at two spatial extents for which a species may be responding differently 

(Mutter et al. 2015, Hagen et al. 2016). For bat species, this modeling multi-scale 

modeling approach is likely well suited. For example, a species such as the northern long-

eared bat, a forest associated species, may be associated with closed forest stands but 

within those stands it is more available for sampling at openings in the forest that provide 

suitable foraging habitat (Carter and Feldhamer 2005, Ethier and Fahrig 2011).  
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The goal of my study was to conduct a multi-scale occupancy study on the 

northern long-eared bat to evaluate the habitat factors that could contribute to occupancy 

at two spatial scales. Additionally, due to the inherent biases of acoustic sampling, I also 

assessed factors that potentially affect detection probability. Accounting for these factors 

reduces biases in occupancy estimates and provides researchers and managers insight into 

future study designs.  

Methods 

SITE SELECTION 

I selected five random spatially balanced points along with 10 oversampled points 

for each selection following a generalized random tessellation stratified (GRTS) survey 

design for a finite resources approach (Stevens and Olsen 2004). This resulted in 4 initial 

sites and 40 reserve sites. The oversampling allowed for replacement of sites if obtaining 

landowner permission was an impediment or if access was not possible due to lack of 

roads.  

STUDY SITES 

I conducted my study at 5 separate study sites located in eastern Nebraska during 

the summer of 2016 (Figure 4.1). The majority of sampling locations occurred on rural 

privately owned land that supported crop production and cattle grazing. The first study 

site was located approximate 14 miles north of Rushville, NE (42.92°N, -102.49°E) and 

sampling occurred between June 4 and June 11. This site was dominated by ponderosa 

pine (Pinus ponderosa), and to a lesser extent ash (Fraxinus sp.), juniper (Juniperus sp.), 

and hackberry (Celtis occidentalis). The second study site was located 6 miles southeast 
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of Naper, NE (42.90 N, -99.00 E) along the Keya Pahe River and sampling occurred 

between June 18 and June 25. The most common species were oak (Quercus sp.), juniper, 

ash, and elm (Ulmus sp.). The third study site was located approximately 2.5 miles east of 

Union, Nebraska (40.81 N, -95.85 E) and sampling occurred between July 1 and July 11. 

This site was predominantly deciduous hardwoods with oak, hackberry, elm, and honey 

locust (Gleditsia tricanthos). The fourth study site was located 3 miles northeast of 

Fairbury, NE (40.19 N, -97.22 E) and sampling occurred between July 18 and July 24. 

The dominate species were juniper, elm, hackberry, and oak. The fifth study site was 

located immediately west of Ft. Calhoun, Nebraska (41.45 N, -96.06 E) and sampling 

occurred between July 31 and August 6. The dominant tree species at this location were 

elm, hackberry, black locust (Robinia pseudoacacia), and ash. 

LARGE-SCALE SAMPLING LOCATIONS  

Within a 4.3 km radius around each study site, I created a 150 m buffer 

surrounding all forest locations as defined by the LANDFIRE v.14 landcover dataset 

(LANDFIRE 2014) in ArcGIS (ESRI 2011). Following the GRTS sampling approach, I 

generated 216 primary points and 648 oversample points (three overflow points for each 

primary point) within the 150 m forest buffer.  I conducted initial point sampling over 

such a large area to allow the sampling locations to vary based upon landowner 

permissions once surveyors were in the field as computer access was limited. The GRTS 

method assigns a selection number to each location. Once I received sufficient access to 

at least 23 sampling locations, I selected the lowest numbered 23 locations and began 

deployment. If two preselected sampling locations occurred less than 250 m apart, I 

deployed at the lowest numbered location and then selected a replacement point 
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beginning with the lowest numbered overflow sampling point. This was to ensure an even 

spatial distribution between sampling locations as per the GRTS framework. If a 

sampling location lacked any forested habitat, I rejected the location and replaced it with 

an overflow site. Deployment of acoustic detectors occurred within 100m of this selected 

point.  

SMALL-SCALE DETECTOR LOCATION 

Within 100 m of each of the 23 sampling locations, I ranked suitable recording 

locations based upon clutter in the recording environment, available flyways, and 

proximity to water. I selected the best-ranked recording site as the first detector 

deployment location. If the second best location was less than 50 meters from this point, I 

chose the next best-ranked location and so forth until I selected two sampling locations 

within the 100 m buffer.  

 DETECTOR DEPLOYMENT 

At each secondary sampling location, I recorded bat echolocations using AnaBat 

Express units (www.titleyscientific.com). I mounted each unit on a telescopic pole 

between 2.4 m and 7 m above the ground. I adjusted the height of the detector to place it 

between the understory and the canopy operating under the assumption that northern 

long-eared bats forage primarily in this open zone (Nagorsen et al. 1993). I oriented the 

microphone in the direction with the least amount of clutter to reduce interference, 

maximize recording space, and prevent false-detections of conspecifics (Weller and 

Zabel 2002, Broders et al. 2004). In cases where there was no understory, I elevated the 

detector a minimum height of 2.4 m as this was the collapsed height of the pole. I 

deployed all 46 detectors over the course of 2 - 4 days. Once I deployed all detectors, 
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they remained recording for at least five rain-free days before retrieval began which took 

2 - 3 additional days. Detectors recorded 30 minutes before sundown and continue until 

30 minutes after sunrise. 

ECHOLOCATION ANALYSIS 

I analyzed all recordings using Kaleidoscope v4.1.0 with the Bats of North 

America 4.1.0 classifier set to “-1 More Sensitive” (Wildlife Acoustics, Concord, MA, 

USA; www.wildlifeacoustics.com). I set the signal of interest parameters as follows: 16-

120 kHz, 2-20ms, maximum inter-syllable gap = 500ms, minimum number of pulses = 5, 

and advanced signal processing to ON. Prior to analysis, I divided the state into 17 

regions of unique potential species assemblages using historical capture records and 

expert knowledge allowing buffers for potential distribution error due to a lack of survey 

effort. These species assemblages determined which auto-classifiers I activated in 

Kaleidoscope with northern long-eared bat activated in all regions. I performed this 

division to increase accuracy of identification and to simplify the confusion matrix within 

Kaleidoscope.  

Once I auto-classified calls using Kaleidoscope, I applied additional conservative 

criteria to reduce false positives when determining detection or non-detection for a given 

night. For clarity, in my study I defined a pulse as an individual emission of echolocation 

and a call-sequence as a series of pulses within a single digital recording. I categorized 

each auto-classified call sequence as either high, medium, or low quality based upon the 

Kaleidoscope reported metrics. Specifically I used the number of pulses within the call 

sequence, the match ratio (a ratio of pulses matching the auto-assigned species vs the 

total number of pulses), and the maximum likelihood estimator (MLE; a test of the null 
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hypothesis of a species not being detected within a given night). If a call-sequence 

contained at least 10 pulses and a match ratio of 0.9 or greater, I categorized it as a high 

quality call-sequence and awarded it a score of 0.5. A call-sequence with at least 5 pulses 

and a match ratio greater than 0.75 received a score of 0.33, a call-sequence with at least 

5 pulses and a match ratio greater than 0.5 received a score of 0.25, and lastly a call-

sequence with a match ratio below 0.5 received a score of 0 regardless of the number of 

pulses. I totaled the scores assigned to the northern long-eared bats for each night at a 

given deployment location. If a single nights total score was at least 1.0 and the night’s 

MLE was less than or equal to 0.05, I scored that night as detected. If it did not meet the 

above criteria, it was determined to be non-detected for a given night. 

HABITAT SAMPLING 

At each sampling point, I delineated a circular plot (25m radius, 0.2 hectares) 

centered at the microphone location. Within this plot, I counted the number of snags with 

≥10cm diameter at a height of 130 cm (D130) (Brokaw and Thompson 2000). The 

microphone location also served as the sampling point for plotless point-quarter 

vegetation sampling (Cottam and Curtis 1956, Brower et al. 1998). I based sampling 

quadrants upon the pre-set direction of the microphone and a truncated the sampling 

distance to a maximum of 25m as described in Mitchell (2015). I recorded distances to 

the nearest tree with a D130 of 10cm or greater and then documented D130 and tree species. 

At the microphone location, and 25 m out following the quadrat directions, canopy and 

mid-story closure was estimated as either open (0%), low (1-25%), medium (26-50%), 

high (51-75%), or very high (76-100%).  
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SMALL-SCALE OCCUPANCY (Θ) COVARIATES 

I included habitat covariates at the detector level that potentially account for 

variation in small-scale occupancy. These are specific for each detector deployment 

nested within the 100 m sampling buffers. Using the measurements collected from the 

point-quarter sampling, I calculated mean basal area (cm2), tree density (stems/ha) 

adjusted for truncated sampling distances (Warde and Petranka 1981), and relative 

abundance of juniper (%). The relative abundance of juniper was included as this is 

species has received increased management attention due to juniper invasion in the Great 

Plains (Briggs et al. 2002). I estimated midstory closure and canopy closure separately by 

assigning scores of 0 (open), 25 (1-25%), 50 (26 – 50%), 75 (51 – 75%), or 100 (75-

100%) based upon the closure estimates at the 5 points within the plot and then averaging 

the five scores to estimate a single value. I calculated the distance to the nearest available 

water source by digitizing all available water sources within 2 km of the sampling 

locations using aerial imagery and on-the-ground site observations. These water sources 

included natural sources as well as anthroprogenic sources such as stock tanks (Jackrel 

and Matlack 2010) and swimming pools (Bowles et al. 1990). I also calculated the 

distance from the detector to the nearest non-forest 30 m pixel using the LANDFIRE 14 

dataset with landcover classes degraded to “forest” or ”non-forest” using lifeform equal 

to “tree” in the dataset (LANDFIRE 2014).  

LARGE-SCALE OCCUPANCY (Ψ) COVARIATES 

I included 9 covariates that pertained to large-scale occupancy (ψ) using digitally 

available landscape variables and on-the-ground habitat measurements. To assess if 

occupancy varied with site location, I included study site as a factor covariate in the 
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model set for large-scale occupancy. Using the measurements collected from the point-

quarter sampling, I calculated mean basal area (cm2), tree density (stems/ha) adjusted for 

truncated sampling distances (Warde and Petranka 1981), and relative abundance of 

juniper (%). I combined measurements from the two sampling locations within 100 m 

buffer for these estimates to describe the overall primary sampling location. I also 

combined the averages of the canopy scores to obtain to single mean canopy closure for 

the forest within the primary sampling site. The density of snags (stems/ha) was 

calculated by summing the number of snags observed within the two sampling plots and 

dividing by the area of the two plots combined (0.4 ha). I calculated the mean geodesic 

distance to the nearest bridge/box culvert from the two detectors locations (Munson 

2017). I included snag density and bridge distance to assess if potential roost availability 

influenced large-scale occupancy (Carter and Feldhamer 2005, Geluso et al. 2018). I also 

calculated the mean distance to available water using the measurements derived from the 

individual detector locations. Finally, I calculated the area of forest within a 125 m buffer 

centered on the geographic centroid between the two detector locations. I chose this 

distance as it contained the strongest association with occupancy in previous analyses 

when compared other distances (see Chapter 2).   

DETECTION PROBABILITY COVARIATES 

To understand factors that contribute to detection probability, I recorded site 

characteristics at each microphone deployment. To quantify the amount space in the 

recording environment (an inverse of the amount of clutter), I visually estimated 

distances to dense clutter as either <2.5m, 2.6-5m, 5.1-10m, or >10m from the front, 

back, left, right, above, and below relative to the microphone. Cluttered was defined as 
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any structure that could interfere with the flight path of a bat or cause echoes or 

interruption of an emitted echolocation pulse. Examples included trees, structures, and 

bluff faces. I measured the height of the microphone above the average understory 

vegetation within 10 m of the microphone to nearest 0.1 m. I extracted the minimum 

nightly temperature from Express unit log files that records internal ambient temperature 

in 5-minute intervals. Additionally, I subtracted the minimum temperature at a sampling 

location from the mean minimum temperature of all detectors at the study site on the 

same night. This was to test if detection probability was associated with microclimate 

differences between sites independent of nightly temperature effects. I also calculated 

mean nightly relative humidity (%) from Rapid Refresh (RAP) data during each nightly 

recording period. RAP data is an hourly updated weather model for North American at 

the 13-km resolution (Benjamin et al. 2016). To access the effects of insect or other 

environmental noise on detection probability, I quantified the number of files 

autoclassified as non-bat “noise” recordings for each recording night at each detector.  

Rather than including recording length to account for nights in which detectors ceased 

recording due to battery failure, I removed all partial nights from the analysis.  

MODELING APPROACH 

I applied a multi-scale occupancy modeling approach as first described by 

Nichols (2008) for use with multiple sampling devices. Rather than multiple devices, my 

replication within a sampling unit was individual detector deployments similar to 

Pavlacky’s (2012) analysis using point count transects. Detector deployments constituted 

primary occasions for estimating small-scale occupancy (θ), and nightly temporal 

replicates were secondary occasions for estimating detection probability (p) (Pavlacky et 
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al. 2012, Hagen et al. 2016). This modeling approach decomposes the probabilities of θ 

and p to improve the inference of grid occupancy (ψ) (Nichols et al. 2008, Hagen et al. 

2016). For all model sets, I ranked models according to Akaike’s Information Criterion 

(Akaike 1973) adjusted for small sample sizes (AICc) (Hurvich and Tsai 1989), assessed 

the strength of evidence for a given model i using AICc  model weights (wi), and 

estimated the plausibility of a particular model i using evidence ratios (wi /wtop).  

MODEL FITTING 

I fit all models in R using the package RMARK 2.2.4 (Laake 2013), an interface 

between MARK v8.0 (White and Burnham 2009) and R (R Development Core Team 

2018). I z-scored all covariates except temperature difference of a detector, to improve 

likelihood of convergence. I grouped covariates for p, ψ, and θ into 1 – 3 additive term 

groupings corresponding to discrete themes and hypotheses. For p these groupings 

corresponded to atmospheric conditions (minimum nightly temperature, difference in 

detector temperature from the nightly site mean, and relative humidity), recording 

environment (recording space and height above vegetation), and extrinsic noise (number 

of noise recordings for a given night and detector). For ψ these groupings corresponded 

to study site, relative abundance of red cedar, forest structure (mean basal area, mean tree 

density, and mean canopy closure), resource availability (forest area within 125 m and 

distance to water), and roost availability (snag density and distance to nearest bridge). For 

θ these groupings corresponded to stand structure (basal area and tree density), relative 

abundance of red cedar, resource proximity (distance to open area and distance to water), 

and forest closure (midstory closure and canopy closure). Prior to model fitting, I z-

scored all covariate values to improve convergence and comparison of β-estimates across 
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covariates. I then fit all possible models for p, θ, and ψ simultaneously in an all-

combinations approach (Doherty et al. 2012). This resulted in 4,096 potentials models. I 

defined the confidence set as all models 2 ΔAICc of the top ranked model. Rather than 

model averaging the β coefficients and their respective standard errors, I unconditionally 

averaged the predicted real values of occupancy from the models and included 

confidence intervals of 95%. I used the delta method to approximate the sampling 

variance and standard error when estimated overall site occupancy and detection 

probability (Oehlert 1992, Powell 2007). 

Results 

SURVEY RESULTS 

Between the 5 study sites, I sampled a total of 1,547 complete recording nights. 

Although the minimum target number of recordings nights per deployment was 5, I 

averaged 6.7 ± 0.09 SE recording nights stations per deployment due to number of days it 

took to deploy and retrieve detectors. Additionally, detectors remained deployed for 

additional days if I observed rain during a deployment schedule. The maximum number 

of recording nights for a deployment was 10 nights. Therefore, I defined the number of 

primary samples as K=2 to correspond to the maximum number of survey stations within 

a sampling buffer, and L=10 as the number of secondary samples to correspond to the 

maximum number of nights sampled. This resulted in an encounter history of K*L = 20.   

MODELLING RESULTS 

The final confidence set, as defined by all models within 2 ΔAICc the top ranked 

model, contained 2 of the 4,096 potential models (Table 4.1). The only ψ-covariates 
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included in the confidence set with β-estimates that did not overlap zero with 95% 

confidence was an effect of study site (Table 4.2). This failure to generate predictive 

covariates is likely an effect of the high naïve occupancy across sites and small sample 

size. Similarly, the only θ-covariate in the confidence that did not show overlap with zero 

with 95% confidence was a positive relationship with canopy closure (%) (Table 4.3, 

Figure 4.2). The p-covariates present in the confidence set with β-estimates that did not 

overlap zero with 95% confidence included an index of open recording space relative to 

the microphone, height of the microphone above vegetation, and the number of non-bat 

“noise” recordings for a given night (Table 4.4). Evidence supported a negative 

correlation between all covariates and detection probability with the strongest 

relationship between the number of noise files and detection (Figure 4.2).  

The estimated nightly detection probability for acoustically surveying the 

northern long-eared bat was 𝑝̂ = 0.37 which was above the moderate range of 0.3 

estimated by MacKenzie (2002) to provided unbiased estimates of occupancy. Using the 

equation 1 - (1-p)k  to estimated overall detection probability (d) for night (k), overall 

detection exceeded 95% after 6 nights. Northern long-eared bats occupied 68% of the 

survey stations (θ̂) and 75% of the larger sampling units (Ψ̂) (Table 4.5). This indicates 

that northern long-eared bats are both locally common and occupied a large portion of the 

forests within my study sites. Large-scale occupancy was not consistent across all study 

sites. The Ft. Calhoun site and the Naper site contained 100% large-scale occupancy and 

likely contributed to difficulties in predictive ability. The Union, Fairbury, and Rushville 

sites exhibited lower estimates of large-scale occupancy with Fairbury and Rushville 

significantly lower than the Union site at 95% confidence (Table 4.2, Table 4.5).  
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Discussion 

The effect of structural clutter on detection probability is mixed across bat species 

with some studies indicating a positive relationship while others report negative 

relationships (Weller and Zabel 2002, Broders et al. 2004, Ford et al. 2006, Yates and 

Muzika 2006, Bender et al. 2015, Kaiser and O’Keefe 2015). Due to these mixed results, 

it is probable that wing aspect ratio, echolocation call characteristics, and foraging 

behavior all potentially affect the relationship between clutter and detection probability 

through acoustic surveys (Aldridge and Rautenbach 1987). The northern long-eared bat is 

a high frequency, clutter-adapted species that exhibits gleaning foraging behavior, a 

foraging strategy where an individual listens for insect noise and captures prey off a 

substrate (Faure et al. 1993). This likely reduces the distance at which recording 

equipment can detect their echolocations (Lawrence and Simmons 1982, Adams et al. 

2012). This has lead others to suggest that a positive relationship between clutter and 

detection probability may simply be an effect of clutter causing bats to fly closer to the 

microphone (Kaiser and O’Keefe 2015). To provide additional evidence for this possible 

explanation, the height of the microphone above the understory vegetation was negatively 

associated with detection probability meaning microphones placed nearer the top of the 

understory were more likely to detect the northern long-eared bat.  If the species is flying 

between the canopy and the understory and gleaning insects off vegetation (Nagorsen et 

al. 1993), a microphone placement nearer to this vegetation may increase the likelihood 

of it being located between the bat and the direction of its echolocating. However, this 

deployment strategy is not without costs as a lower deployment height reduces the 

recording area of the microphone (Weller and Zabel 2002).  
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Others have mentioned extrinsic sound (e.g., insects, flowing water, wind, etc.) as 

possible interference in the recording environment, but to the author’s knowledge, its 

relationship with detection probability has yet to be assessed (Schnitzler and Kalko 2001, 

Broders et al. 2004). Evidence from this study indicate that, of the covariates included in 

the model set, the number of noise files recorded in a night had the strongest association 

with detection probability (Figure 4.2, Table 4.4). At extremely high numbers of noise 

files, nightly detection probability even neared zero. This is likely due to extrinsic sounds 

masking bat echolocations thus preventing the zero-cross recording technology used in 

this study from recording identifiable echolocation pulses. Future studies should consider 

limiting deployments during periods of high insect noise or include this factor to in 

modeling to reduce bias in detection probability estimates.  In contrast with previous 

occupancy studies, minimum nightly temperature failed to provide predictive estimates 

(Kaiser and O’Keefe 2015). The same was true for temperature differences between a 

detector location and the average minimum temperature of the site. 

Due to this study detecting the northern long-eared bat at a majority of sampling 

locations, the predictive ability of both large-scale and small-scale occupancy covariates 

was poor. The study, however, still provides some insights into multi-scale habitat use of 

the northern long-eared bat. For example, at the larger scale, evidence does not support a 

relationship between canopy closure and occupancy but results did support a significant 

positive relationship at the smaller scale. This suggests that within an occupied forested 

habitat patch, the northern long-eared is more available for sampling within closed 

canopy forests. This is consistent with prior habitat use studies of the species and 

supports the generalization of the species as an interior forest species (LaVal et al. 1977, 
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Brack, Jr. and Whitaker Jr. 2001, Carroll et al. 2002, Patriquin and Barclay 2003).  

However, my results suggest that it will occupy sparsely treed habitat patches as two of 

my study sites had an estimated 100% large-scale occupancy. Future researchers and 

managers should consider the observed relationship between small-scale occupancy and 

canopy closure when selecting survey locations within forest patches as others have also 

described the relationship between fine-scale sampling location selection and perceived 

species assemblages (Carroll et al. 2002). It is worth noting that evidence did not support 

a relationship, either positive or negative, between occupancy and red cedar abundance. 

This warrants future studies to assess the relationships between northern long-eared bats 

and encroaching juniper in the Great Plains. Additionally, although reports describe 

northern long-eared bat to both day and night roost within bridge structures, I found no 

evidence to support an effect of bridge proximity to occupancy; however, my predictive 

ability was likely low in this study. 

Immediately prior to this study, managers detected the fungus responsible for the 

disease white-nose syndrome within Nebraska, and the next winter, the state observed the 

first die offs due to the disease (U.S. Fish and Wildlife Service 2017). Research indicates 

that of the eastern bat species, the northern long-eared bat experiences the highest rates of 

mortality prior to infection (Frick et al. 2015). This study provides a baseline of 

occupancy estimates to which researchers can compare futures studies and determine the 

population effects of the disease. While this study indicates that the northern long-eared 

bat was locally common at the study sites, it unlikely this will remain post-infection 

(Frick et al. 2010). 
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Tables and Figures 

Table 4.1. Confidence set of all models within 10% of the top ranked model’s weight 

assessing multi-scale occupancy of the northern long-eared bat at 5 study sites across 

Nebraska. Models accessed the effects of covariates on grid occupancy (ψ), site 

occupancy (θ), and detection probability (p). I grouped covariates into discrete thematic 

parings (roost availability, forest closure, stand structure, resource availability, etc.). An 

“X” below a covariate group indicates that the paring was included in that particular 

model. Number of estimated parameters (K), Akaike’s Incormation Criterion for small 

samples (AICc ), difference between the corresponding models AICc  and the top 

performing model’s AICc  (ΔAICc ), Akaike weight (weight), and -2 log-likelihood 

function (-2LnL) are included.  
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Table 4.2. Covariate estimates pertaining to large-scale occupancy (ψ) included in the 

confidence set for a multi-scale occupancy analysis of northern long-eared bat occurrence 

at five study sites in Nebraska. Table includes covariate terms occurring in the confidence 

set and their corresponding β-estimate and standard error in parenthesis. “N.S.” 

represents estimates with 90% confidence intervals overlapping zero. 
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Table 4.3. Covariate estimates pertaining to small-scale occupancy (θ) included in the 

confidence set for a multi-scale occupancy analysis of northern long-eared bat occurrence 

at five study sites in Nebraska. Table includes covariate terms occurring in the confidence 

set and their corresponding β-estimate and standard error in parenthesis. “N.S.” 

represents estimates with 90% confidence intervals overlapping zero. 
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Table 4.4. Covariate estimates pertaining to detection probability (p) included in the 

confidence set for a multi-scale occupancy analysis of northern long-eared bat occurrence 

at five study sites in Nebraska. Table includes covariate terms occurring in the confidence 

set and their corresponding β-estimate and standard error in parenthesis. “N.S.” 

represents estimates with 90% confidence intervals overlapping zero. 
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Table 4.5. Parameter estimates and standard error for northern long-eared bat multi-scale 

occupancy and detection probability at 5 study sites across Nebraska.  Psi (Ψ̂) is the 

estimate of large-scale occupancy and is reported for each of the 5 study sites and as an 

overall estimate of large-scale occupancy. Theta (θ̂) is the estimate of small-scale 

occupancy contingent upon occupancy at the large-scale level. Detection (𝑝̂) is the 

estimate of detection probability for a given recording night starting at 30 minutes before 

sundown and continuing until 30 minutes after sunup. I estimated parameters by model 

averaging the real predictions of all models within 10% of the top model weight as 

defined by AICc. I averaged standard error following a delta method approach. 

Parameter Estimate Standard Error 

Large-scale occupancy (Ψ̂) 0.75 0.04 

Psi:Union (Ψ̂) 0.85 0.11 

Psi:Ft.Calhoun (Ψ̂) 1.00 0.00 

Psi:Fairbury (Ψ̂) 0.39 0.14 

Psi:Naper (Ψ̂) 1.00 0.00 

Psi:Rushville (Ψ̂) 0.52 0.13 

Small-scale occupancy (θ̂) 0.68 0.05 

Detection probability (𝑝̂) 0.37 0.02 
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Figure 4.1 Study site locations (n=5) surveyed in 2016 for the northern long-eared bat to 

assess multi-scale occupancy and detection probability.  
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Figure 4.2. Predicted relationships of covariates associated with northern long-eared bat 

site occupancy and detection probability for all covariates in the confidence set that 

contained confidence intervals not overlapping with zero in at least one model. 

Predictions are the results of unconditionally averaging the real estimates of all models 

within 2 AICc of the top ranked model. Dashed lines denote 95% confidence intervals 

around the parameter prediction. To assess occupancy and detection probability, I applied 

a multi-scale occupancy approach to acoustic data collected during the summer of 2016 

at 5 study sites within the northern long-eared bat distribution in Nebraska. Covariate 

relationships includr the height in meters of the microphone above the dominant 

understory vegetation, the number of non-bat noise files recorded on a given night, an 

index of 3-dimensional recording space, and the relationship between small-scale 

occupancy and forest area. All covariates contained β-estimates that did not overlap with 

zero. Unconditional averaging the real estimates results across the confidence set results 

in a flattening of the effect. 
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CHAPTER 5: SYNTHESIZING THE FACTORS ASSOCIATED WITH ROOST TREE 

SELECTION AND HABITAT USE OF THE NORTHERN LONG-EARED BAT 

Introduction 

Insight into the northern long-eared bat’s habitat associations is a necessity to 

ensure biologically relevant management practices (Morrison et al. 2006). Understanding 

these relationships, however, requires a holistic approach that addresses the multiple 

levels at which the species is interacting with its environment (Miller et al. 2003). The 

objective of my thesis was to address these relationships following a multi-scale approach 

that assessed the factors associated with roost tree selection, distribution, and intra-forest 

habitat use.  

To expand the inferential range beyond a traditional single-site roost study, I 

mined the current corpus of studies across the northern long-eared bat’s distribution and 

quantified the structural characteristics associated with roost tree selection. As expected, 

evidence of selection for many roost tree characteristics varied greatly among studies, 

further highlighting the importance of caution when extrapolating results from single 

studies to the species as a whole (Miller et al. 2003). Even with this variation, however, 

results supported species-wide conclusions pertaining to roost tree selection and roosting 

behavior. To move beyond traditional observation-based range maps, I sought to 

understand the factors associated with the northern long-eared distribution in Nebraska. 

Results from this study enabled the prediction of the likelihood of occupancy across the 

state and thus provided insight into unsampled portions of Nebraska. Lastly, in an attempt 

to assess factors associated with occupancy at finer spatial scales, I combined spatially 

concentrated survey efforts with on-the-ground habitat measurements. While this third 
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study failed to provide insight into these habitat associations, it did provide an 

understanding of forest structure associated with species availability within occupied 

survey locations. Additionally, the two habitat studies provided insight into factors that 

are associated with detection probability of the northern long-eared. This provides 

guidance to future studies while also reducing bias in occupancy estimates.  

Study Methods and Results 

To determine the roost tree characteristics that support evidence of selection by 

the northern long-eared bat across its range, I gathered published studies, dissertations, 

theses, and grey literature using research search engines and a priori search operators.  I 

extracted reported means of all roost tree characteristics and means of all available non-

roost trees for all studies that employed a use-versus-available study design. For roost 

tree characteristics with ≥5 studies, I calculated Hedges’ g Standardized Mean Difference 

to compare effect sizes (Hedges 1981). I then applied an intercept-only random effects 

model to assess evidence of selection (i.e. statistically significant deviation from a zero 

effect size). When compared to available trees, selected roost trees had a greater amount 

of bark remaining on the bole, a larger diameter at breast height, a lower decay class, and 

were taller. Compared to results from meta-analyses that pooled studies from multiple of 

species, the effect size for the 4 most common roosting characteristics showed closer 

proximity to zero indicating a reduce strength of selection (Kalcounis-Rueppell et al. 

2005, Fabianek et al. 2015).  I then applied a multi-model meta-regression approach to 

determine which external variables explained the most variation in the standardized mean 

difference of roost tree diameter as this was the most commonly reported characteristic. 

Evidence supported a positive relationship with relative abundance of softwood roost 
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trees and the square root of latitude. Additionally, I generated intercept-only random 

effects estimates for each of the following behavior characteristics: the distance from the 

first roost to the capture site (m), the distance between subsequent roosts (m), and the 

number of days spent in a roost before switching. A northern long-eared bats first roost 

following capture was approximately 521 ± 173 m (SE = 88.3) from its capture site. It 

spends an average of 2.17 ± 0.48 days (SE = 0.24) in a roost before switching, and 

consecutive roosts were approximately 327 ± 123 meters (SE = 62.6) apart. This is the 

first meta-analysis to summarize roosting behavior and provides species-wide movement 

estimates of behavioral characteristics referenced in federal regulations (Fish and 

Wildlife Service 2016).  

In the summer of 2015, I acoustically surveyed 101 10 km x 10 km grids 

distributed across the state. I applied a multi-scale occupancy approach to assess factors 

associated with large-scale occupancy (ψ), small-scale occupancy (θ), and detection 

probability (p) (Nichols et al. 2008, Pavlacky et al. 2012). Evidence supported a positive 

relationship between large-scale occupancy and mean summer temperature (°C), forest 

clumpiness, and availability of potential cliff habitat within 89km. Within occupied grids, 

evidence supported a positive relationship between small-scale occupancy and the area of 

forest within 125 m. By conducting repeated visits, I assessed the relationship between 

various covariates and nightly detection probability. Evidence supported a negative 

relationship between detection probability and recording space around the microphone 

and mean nightly temperature, and a positive relationship with the day of the season. I 

then predicted large-scale occupancy across the state using remotely available covariates. 

Estimates of ψ, θ, p, provided by this modeling approach suggested the northern long-
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eared bat is rare within its previously estimated geographic range, but locally common 

and easily detected.  

Since I conducted the 2015 study over a large geographic scale with the intent to 

create a predictive occupancy map, I was restricted to remotely sensed covariates in the 

form of GIS layers. To understand the relationship between occupancy and forest 

structure, resource availability, and invasive species abundance, I intensively sampled 5 

study sites within the Nebraska range of the northern long-eared bat. At each of these 

sites, I simultaneously deployed 23 pairs of acoustic detectors for multiple nights. High 

naïve large-scale occupancy at sites approaching 100% at some sites, likely contributed 

to a failure to generate predictive models for large-scale occupancy (ψ). However, there 

was support for a positive relationship between canopy closure and small-scale 

occupancy (θ), with greater availability of northern long-eared bats at deployment 

locations with increased canopy closure. Additionally, evidence supported a negative 

correlation between detection probability (p) and the number of noise files during a given 

night, recording space, and the height of the detector above understory vegetation. 

Averaging large-scale occupancy across all sites revealed an estimate comparable to the 

small-scale occupancy in the 2015 study with an overlap of their 95% confidence limits 

(2015: θ = 0.70 ± 0.18, 2016: ψ = 0.76 ± 0.10).  

Conclusion 

Results from all three studies are inconsistent with previous descriptions of the 

northern long-eared bat as a specialist species and uncommon on the western expanse of 

their range (Jung et al. 1999, Caceres and Barclay 2000). While still exhibiting evidence 

of roost selection for multiple characteristics, the species shows a reduced strength of 
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selection and greater plasticity when compared to multi-species meta-analyses and in 

comparative studies with other congenerics (Foster and Kurta 1999, Lacki et al. 2009, 

Timpone et al. 2010). This observation could be the result of greater roost plasticity or 

the failure accurately capture microclimatic characteristic through the measurement of 

structural proxies such as diameter at breast height (Boyles 2007). Regardless of the 

explanation, traditional singletree management strategies may be impractical and 

potentially ineffective (Silvis et al. 2012), especially considering the regularity of roost 

switching.  

Evidence from both field studies supports describing the northern long-eared bat 

as locally common, occupying ~70% of treed habitats within its distribution. 

Additionally, the high large-scale occupancy estimates at multiple sites in 2016, indicated 

the northern long-eared bat occupied even sparsely treed habitats contrary to previous 

descriptions as an interior forest species (LaVal et al. 1977, Brack, Jr. and Whitaker Jr. 

2001, Carroll et al. 2002). The majority of comparative habitat studies of the northern 

long-eared bat are located in portions of the range that overlaps with multiple forest 

dwelling Myotis species. Much of the northern long-eared distribution in Nebraska, 

however, only overlaps with a single other congeneric, the little brown bat (M. lucifugus), 

and in portions of its state range it is the only Myotis species known to occur. When 

designing future studies, researchers should consider comparing the species habitat use 

relative to the co-occurrence of other Myotids in Nebraska as reduced competition could 

be enabling a broadening of the species niche breadth into more open habitats than 

traditionally observed further east.  
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I wish emphasize that I conducted these field studies prior to the detection of 

white-nose syndrome in Nebraska and the observation of subsequent die-offs (U.S. Fish 

and Wildlife Service 2017). As such, one should consider my reported occupancy 

estimates as pre-white-nose estimates of occupancy. It is likely that the effects of the 

disease have substantially reduced northern long-eared bat populations since this data 

was collected (Frick et al. 2010). My occupancy estimates, however, should serve as 

baseline estimates to compare against future occupancy studies to estimate population 

trends post-white-nose syndrome (MacKenzie 2006). 
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