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Executive Summary  

Presently, there is an expanding interest among transportation agencies and state 

Departments of Transportation to consider augmenting traffic data collection with probe-based 

services, such as INRIX. The objective is to decrease the cost of deploying and maintaining 

sensors and increase the coverage under constrained budgets. This report documents a study 

evaluating the opportunities and challenges of using INRIX data in Nebraska. The objective of 

this study was twofold: (1) evaluate the reliability and accuracy of probe-data streams against 

fixed, infrastructure-mounted sensor data and (2) report the real-time performance monitoring 

and historical trend assessments. 

This study demonstrates a systematic way to compare the reliability and accuracy of 

probe-data streams for monitoring traffic conditions and supporting operations decisions. Out of 

65 automatic traffic recorders (ATRs) in Nebraska, 16 locations were identified based on various 

criteria. For each of the selected ATRs there were corresponding traffic message channels 

(TMCs), which are maintained by INRIX to collect the traffic details on major freeways and 

urban areas. Various traffic performance measures were used to help understand the traffic 

conditions across different road segments or different time periods and to identify bottlenecks in 

Nebraska. The data visualization program can also be used with a real-time data feed to monitor 

and analyze current traffic conditions. 

The reliability and accuracy of the INRIX data were evaluated by comparing the data to 

PVR (per-vehicle record) sensor data. The factors that were taken into consideration for 

examining the performance of the INRIX data are as follows: (1) percentage availability of 

INRIX; (2) speed bias between INRIX segments and PVR sensors; (3) incident detection, which 

provides the number of congestions, and detection latency; and (4) performance measures, such 

as congested hour(s), buffer time index, and reliability curves. By comparing sensor traffic speed 

data with segments, it was observed that INRIX is consistent for almost all minutes of a day on 

interstates. Moreover, it was shown in this study that INRIX is more reliable during the day than 

at night, especially during peak hours. Regarding incident detection, INRIX is more reliable in 

detecting recurring congestion as compared to incident related congestion. The congestion 

duration error varies with the congestion type. 

INRIX speed bias affected the process of congestion detection as well as calculation of 

congested hour duration. For instance, speed bias affects the magnitude of INRIX speed reported 

at segments with lower speed limits such that a 60-mph speed limit segment might shows speeds 

around 45 mph (the congestion threshold) or even less during non-congested times, whereas 

benchmarked sensor data reports speeds around 60 mph. Also, speed bias affects performance 

measures, such as congested hour, buffer time, and reliability curves, which are evaluated 

thoroughly in chapter 4. Accordingly, it is important to understand the factors that influence 

these biases and how to correct for them. Another critical issue that is discussed in this report is 

the quality of probe data, which depends heavily on the number of probes on the road network. 

Shortage of INRIX real-time data (confidence score 30), especially during off-peak hours or on 

arterials, influences the accuracy of the results. Substituting with historical data was not accurate 

and therefore not advised. In areas with limited probe penetration, transportation agencies can 

augment probe data with infrastructure-mounted sensors.  

A comprehensive analysis of performance monitoring and historical trend analysis using 

different measures for Interstate 80 (I-80) segments in Nebraska was also performed. The top 10 

congested segments on I-80 were identified and a detailed analysis of when congestion had 

occurred by month, day of week and time of day from 2013 through 2016 was performed. A 
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congestion-per-mile calculation was used to determine metro area congestion per mile, which 

supports contrasting performance given the varying amounts of segments and roadway lengths 

that exist. These values were calculated for each month for all metro areas across Nebraska to 

compare any trends in congestion. A yearly comparison is also provided for years 2013 through 

2016. The number of hours of congestion was used to display the severity of congestion by 

segment along I-80. Each segment was color coded based on the number of hours of congestion 

by summer and winter months. Once identified, these locations can also be analyzed by year, 

month, week, day, or time of day. Finally, the severity of congestion was evaluated by observing 

the percentage of time speeds were within a 10-mph bin from 0 to 75+ mph.  
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1. Introduction 

 

1.1 Background 

 

For comprehensive performance assessments of freeways, highways, and arterials, state 

DOTs and many of transportation agencies conventionally rely on infrastructure-mounted 

sensors, but the cost of installing and retaining these sensors is high. Most of these infrastructure-

mounted sensors are deployed on major freeways and in critical urban areas, and this leads to 

less coverage on highways and arterials. Also, in terms of geographical scalability, they need to 

be deployed in large numbers to be able to control the traffic situation in a given area. 

Considering all the limitations of fixed local sensors, it is essential to devise new data-streaming 

sources to augment the sensors. 

The emergence of probe vehicle technology, which has grown over the past few years, 

has caused a remarkable change in traffic data collection, processing, analyses, and utilization. 

Being able to access a huge volume of historical and real-time traffic data without any of the cost 

of installation, configuration, and maintenance of infrastructure-mounted sensors interests many 

agencies that want to utilize a single, uniform data source for monitoring traffic conditions across 

most routes in the U.S. Traffic information is collected from millions of cell phones, vans, 

trucks, connected cars, commercial fleets, delivery vehicles and taxis, and other global position 

system (GPS)-enabled vehicles. Presently, several probe-data vendors, such as INRIX, HERE, 

TomTom, NAVTEQ, TrafficCast, etc., provide broad and high quality real-time and historical 

traffic data around the world.  

INRIX provides speed, travel time, incidents, and quality data updates along each mile-

long travel segment at a frequency of once every minute. The resulting stream for traffic message 

channels (TMCs) comprises approximately 9–10 GB/month, or more than 100 GB/year, and for 

XD segments is approximately 45 GB/month, or more than 545 GB/year for the entire Nebraska 

roadway system. With the addition of new higher spatial coverage and resolution, the size of 

input streams is expected to increase [1].  

 

1.2 Vehicle Probe Data from INRIX 

 

In this study, we utilized the historical and real-time traffic data collected through the 

INRIX TMC monitoring platform. Real-time traffic data, including speeds and travel times, as 

well as location information, were provided by INRIX, which is currently regarded as the largest 

crowd-sourced traffic dataset. With the help of today’s technologies, including connected 

vehicles and smartphones, INRIX leverages the vast amount of historical and real-time data that 

can be analyzed and investigated to improve transportation networks’ performance. INRIX’s 

historical traffic flow data is a spatial and temporal database of average speeds for major 

roadways and arterials across all 50 states. These speeds are determined by algorithms that 

evaluate multiple years’ worth of data collected using INRIX’s patented Smart Dust Network 

system, which reports speed values on roads across the country. The speed data are then 

processed across several different temporal resolutions and reported on a customer-configurable 

basis for each temporal resolution.  
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1.2.1 INRIX Data Sources  

 

INRIX derives historical flow data using the following:  

 Traffic sensors – Sensors put in place by local DOTs or private sector companies, from 

which traffic speed is either reported or can be inferred. The sensors utilize one of 

several types of technology:  

o Induction loop sensors imbedded in the roadway,  

o Radar sensors, and/or  

o Toll tag readers along stretches of roadway  

 Probe vehicles – The INRIX network includes hundreds of thousands of probe 

vehicles—trucks, taxis, buses, and passenger cars with onboard GPS devices and 

transmitting capability—to relay speed and location back to a main location. INRIX 

has agreements with several fleets to obtain the speed and location data anonymously.  

 INRIX Smart Dust Network – This network works by combining real-time GPS probe 

data from more than 650,000 commercial vehicles across the U.S. that travel on a 

specific segment of road during a particular time window, physical sensor information, 

and other real-time traffic flow information with hundreds of market-specific criteria 

that affect traffic—such as construction and road closures, real-time incidents, sporting 

and entertainment events, weather forecasts, and school schedules. This component 

gathers all input points, weights them appropriately based on input quality and latency, 

and calculates the speed occurring on that road segment to a measured degree of 

accuracy.  

1.2.2 INRIX Data Format  

 

All the INRIX historical traffic flow data for the state of Nebraska is delivered in CSV 

(comma separated value) format. Data provided by INRIX [2] contains the following 

information (refer to Figure 1.1): 

 TMC ID – the basic spatial unit used by INRIX to report the traffic flow data; INRIX 

uses a 9-digit TMC ID to define a unique segment.  

 Time segment – a 19-digit time format used by INRIX to define the year:month:day: 

hours:minutes:seconds (e.g., 2014-09-30 23:59:33 for September 30, 2014 at the 23rd 

hour, 59th minute, and 33rd second) for each TMC.  

 Speed – representing the average speed for a 

given TMC code, calculated from live data 

from the most current time slice.  
 Referenced speed - an uncongested “free-

flow” speed determined for each TMC 

segment using the INRIX traffic archive. 

 Average speed – the historical average mean 

speed for the reporting segment for that time 

of day and day of the week in miles per hour. 

 Travel time – reported by INRIX based on an 

aggregation of data provided by GPS probes. 

 Confidence – an attribute reported by INRIX 

having three levels: 10, 20, and 30. A 
Figure 1.1 An instant of Nebraska 

INRIX data 
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confidence of 30 indicates that enough base data were available to estimate traffic 

conditions in real time, rather than using either historical speed based on time of day and 

day of week (indicated by confidence of 20) or free-flow speed for the road segment 

(indicated by a confidence of 10). 

 C_value – the confidence value (range 0–100), designed to help agencies determine 

whether the INRIX value meets their criteria for real-time data. 

1.3 Performance Measures 

 

Transportation system reliability is defined in various ways, such as travel time 

reliability, connectivity reliability, and capacity reliability. The focus of this study was on travel 

time reliability, which is one of the key performance measures used by a majority of 

transportation agencies and state DOTs. Section 2.3 contains a summary of previous studies that 

were conducted on different kinds of probes and sensors as well as the accuracy and reliability of 

probe-sourced data using several measures such as congestion level percentage, travel time 

index, planning time index, buffer time index (BTI), user delay cost, average travel time, 

volume, space mean speed, density, average speed bias, absolute average speed error, absolute 

average travel time error, travel time bias, lane-miles congested, vehicle miles traveled, 

congested hour, latency, etc. Additionally, in section 4.2.4 congested hour, buffer time, and 

reliability curves are presented as three main measures for evaluating the performance of INRIX 

versus sensors data.  
 

1.4 Conclusion 

 

This report is organized as follows. A literature review summarizing previous related 

studies is provided in Chapter 2. Chapter 3 presents the how different criteria were used to select 

the 16 sites out of 65 ATRs in Nebraska. In Chapter 4 the experiments and results are explained 

in detail, the evaluation of reliability and accuracy of real-time INRIX data using different 

performance measures for selected ATRs is discussed, and insight is given about the observed 

results. In addition, the chapter includes a detailed analysis of some of the performance 

measures, such as congested hour, buffer time, and reliability curves, and a discussion about 

INRIX drawbacks such as speed bias and device penetration. Next, in Chapter 5, performance 

monitoring and historical trend analysis using the top 10 most congested roadways are discussed, 

and the number of hours of congestion in different metros, speed performance, and travel time 

reliability are identified for I-80 from 2013 through 2016. The report concludes with the findings 

of this study and a discussion of future recommendations in Chapter 6.  
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2. Literature Review 

 

2.1 Introduction  

 

This chapter provides a review of previous studies conducted on probe data, sensor 

technologies, and all performance measures using probe-sourced data. 

 

2.2 Review of Existing Opportunities for and Challenges of Using INRIX Data 

 

As demand for comprehensive traffic monitoring grows from both travelers and 

transportation agencies, a new technology that would reduce both installation and maintenance 

costs is needed for collecting accurate and real-time traffic details. Probe-based methods of 

measuring travel time and speed data can easily scale across large networks without the need for 

deploying any additional infrastructure [3].  

The objective of this study was to evaluate the reliability and accuracy of probe data 

streams against fixed, infrastructure-mounted sensor data. This report, based on a critical 

evaluation of the INRIX stream, will highlight key considerations for incorporating probe data 

into traffic operations, planning, and management activities. The accuracy of the data stream was 

evaluated under different factors such as: INRIX coverage on freeways and non-freeways and 

during peak and non-peak hours; speed bias between INRIX TMC segments and PVR (per-

vehicle record) infrastructure sensors; incident management; and performance measures such as 

congested hour, BTI, and reliability curves.  

Although many studies comparing the accuracy and reliability of probe-sourced data 

against local sensor data such as radar sensor data, loop detector data, etc., have been conducted 

[4], [5], [6], [7], [8], [9], [10], Kim and Coifman [7] showed that INRIX speeds tend to lag 

behind loop detector measurements by almost 6 min. Although INRIX reports two measures of 

confidence, these confidence measures do not appear to reflect the latency or the occurrence of 

repeated INRIX reported speeds. Kim and Coifman used two months of concurrent data against 

the concurrent loop detector data to evaluate INRIX performance on 14 mi of I-71, including 

both recurrent and non-recurrent events. To calculate the amount of latency, they used a 

correlation coefficient with several months of continuous data from concurrent detectors while 

shifting the time-series loop detector with 10 sec steps [7].  

The Federal Highway Administration (FHWA) conducted a survey to gather information 

on: (1) products and services offered by private sector data providers and (2) public sector 

agency uses of the private sector data products and services. It found that agencies are using a 

range of data sources including GPS data from fleet vehicles, commercial devices, cell phone 

applications, fixed sensors installed and maintained by other agencies, fixed sensors installed and 

maintained by data providers, and cell phone locations. Most providers did not disclose specific 

quality evaluation results or quality assurance algorithms. INRIX explicitly stated its capability 

of meeting an availability level of more than 99.9% and an accuracy of greater than 95% [8].  

Nanthawichit et al. [9] proposed a method for treating probe vehicle data together with 

fixed detector data to estimate the traffic state variables of traffic volume, space mean speed, and 

density. The method uses a macroscopic model along with the Kalman filtering technique and 

was verified with several sets of hypothetical traffic data. They suggested the possibility of using 

estimated/predicted states to estimate/predict travel time. Coifman [5] has investigated various 

means of measuring link travel times on freeways. He used basic traffic flow theory to estimate 
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link travel time using point detector data without requiring any new hardware. Sadrsadat and 

Young [10] worked on the Vehicle Probe Project (VPP) to determine the probability of real-time 

data as a function of hourly volume. They compared the VPP data against travel time collected 

using BluetoothTM traffic monitoring equipment. The VPP provides an indication of real-time 

data by a confidence score attribute equal to 30, which is provided by INRIX. Their study 

confirmed the availability of real-time data with increasing traffic volume as measured by the 

percentage of 30 confidence scores. Feng et al. [4] investigated the analytical relationships 

between travel time prediction–estimation accuracy and sensor spacing, by means of two basic 

travel time prediction–estimation algorithms, and they also probed vehicle penetration rate. Their 

findings provide support for detector placement and probe vehicle deployment, especially along 

a freeway corridor with existing detectors. Online estimation and prediction of travel time using 

induction loop detectors were evaluated against observed travel time. Lindveld et al. [6] found 

reasonably accurate (10 to 15% root mean square error proportions) across different sites for 

uncongested to lightly congested traffic conditions. They used various travel time estimators, but 

only speed-based travel time estimators could be tested under congested conditions. 

The Florida Department of Transportation (FDOT) used several metrics, such as absolute 

average speed error, average speed bias, absolute average travel time error, and travel time bias, 

to determine the accuracy of the vendors’ (NAVTEQ, TrafficCast, and INRIX) system data. 

Overall, the data looked consistent with the ground truth and the license plate reader data, and no 

significant differences in data accuracy among the three vendors were observed [11]. Adu-

Gyamfi et al. [12] explored the reliability of probe data for congestion detection and overall 

performance assessment using an adaptive, data-driven, multiscale data decomposition algorithm 

called the Empirical Mode Decomposition. The cost of deploying large-scale control strategies 

for traffic networks has increased the need for more reliable real-time traffic condition 

prediction. Liu et al. [13] discussed two approaches: dynamic mode decomposition and 

spatiotemporal pattern networks. Their results show that data-driven approaches have effectively 

detected changes in traffic system dynamics during different times of the day. 

The FDOT’s [14] technical memorandum summarizes the various data available for 

analyzing bottlenecks and congestion on Florida’s Strategic Intermodal System. This technical 

memorandum also makes recommendations concerning the applicability of using existing FDOT 

data versus the vehicle probe data from INRIX. Rick and Ryan [15] discussed how INRIX 

launched the world’s first crowd-sourced traffic network with sensors in fleet vehicles and 

mentioned how the INRIX XD™ gives greater traffic detail on any map and a traffic platform 

for planning, analysis, and operation of road networks. Matsumoto et al. [16], using probe data 

for CO2 emission reduction, defined three services (traffic flow analysis, improvement of the 

signal control performance, and priority control of bypass) that enhance traffic flow control. 

They confirmed detection of a bottleneck without depending on deployment rate of the in-

vehicle unit by using probe data statistically in traffic flow analysis. 

Different techniques (data assimilation, Newtonian relaxation) to incorporate probe data 

into macroscopic traffic flow models have been used to solve the optimization problem in urban 

areas, and they have confirmed the possibility of decreasing probe data for congested traffic with 

negligible degradation on the quality of traffic status estimation [17]. To reduce CO2 emissions 

using intelligent traffic control requires many detectors and high installation costs. Nagashima et 

al. [18] used probe data collected by vehicles through GPS or other devices and a signal control 

system that calculates consecutive spatial traffic information (spatial data) such as queue length. 

They showed that it is possible to reduce the number of detectors [18]. Haghani et al. [19] 
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described a new validation scheme for comparing travel time data from two independent data 

sources with an emphasis on arterial applications. In addition, a context-dependent-based travel 

time fusion framework was developed to integrate data from INRIX and BT datasets to improve 

data quality. To minimize the impact of random errors that can occur with INRIX data, two new 

techniques, confidence value and smoothing, have been developed by a coalition of the 

University of Maryland and INRIX.. When used together, these techniques reduce both the 

frequency and severity of the sudden changes that have been observed [20]. Kobayashi et al. [21] 

suggested using probe data to collect spatial traffic information toward CO2 emission reduction 

and verified the possibility of detecting bottleneck intersections based on traffic flow analysis 

utilizing infrared beacon probe data collected from the real field. 

 

2.3 Review of Sensor Technologies 

 

To evaluate the reliability and accuracy of a probe data stream against fixed 

infrastructure-mounted sensor data, it is important to understand the process for both data 

collection and data processing. The collection of real-time quality data depends on the reliability 

and accuracy of the sensor technology used. In this section, we focus on the characteristics of 

different types of sensors used for traffic operations. We differentiate between point-based 

sensors, which collect the traffic information at a single point on the roadway, and section type 

sensors, which provide the traffic characteristics over a section of roadway. The strengths and 

limitations of different sensor technologies are compared, and they can be divided into three 

categories: roadway based, probe based, and driver 

based, as shown in Figure 2.1. 

Roadway-based sensors can be considered a 

part of the roadway infrastructure system. This 

technology generally involves the use of inductive loop 

detectors (ILDs) and loop emulators. Underwood [22] 

considered three types of detection means: magnetic 

sensing (i.e., ILDs and magnetic sensors), range 

sensing (i.e., microwave, infrared, ultrasonic, and 

acoustic sensors), and image sensing (i.e., video image 

processors). Roadway-based sensors are installed at the 

side of the road or below the road surface. They scan 

traffic and provide traffic information extracted from 

passing vehicles. 

Probe-based sensors are carried by vehicles to 

collect traffic details. They generally come in automatic 

vehicle identification (AVI) systems, used for vehicle 

positioning and navigation. Compared to roadway-

based sensors, probe-based sensors can probe traffic 

flow variation over space. Traffic flow information is 

collected only from a portion of vehicles traveling on 

roads due to the limitation of the current market 

penetration rate. 

Figure 2.1 Types of sensors 

Sensors

Roadway-based Sensors
* Inductive Loop Detectors
* Magnetic Sensors
* Microwave Sensors
* Infrared Sensors
* Ultrasonic Sensors
* Acoustic Sensors
* Laser Sensors
* Video Image Processors

Probe based-Sensors
*Automatic Vehicle Location / GPS
* Signpost / Beacon System
* Cellular Geolocation System
* Automatic Vehicle Identification

Driver-based-Sensors
* Highway Service Patrol
* Remote CCTV Monitoring
* Cellular Phone Reports



 

7 

Unlike the other two types of sensors, driver-based sensors provide manual incident-

detection reports from drivers and/or service patrol crews, including wireless phone reports (to 

911), freeway service patrol units, in-vehicle personal communication systems, and emergency 

centers. The term sensor used here refers to a device that includes software to detect vehicles and 

converts real-time data into data that a computer can understand. The software can be installed 

within the sensor device, in a roadside cabinet, or at the traffic management center. This software 

includes the processing algorithms, which provide other traffic information such as vehicle 

speed, travel time, etc. [23]. 

Roadway-based sensors refer to the use of ILDs and loop emulators. ILDs comprise a 

large-scale application for traffic surveillance and monitoring, and they help in traffic 

management and incident detection systems. As loops are limited to one or two short sections, 

they cannot represent comprehensive roadway situations. Traditionally, they measure spot time-

average traffic parameters, such as speed, volume, occupancy, and vehicle classification, so it is 

difficult to collect the traffic details from urban arterial roads, where spatial variation of traffic 

flow is complex. Recent developments, such as vehicle identification techniques based on pairs 

of ILDs [24], [25], [26], video image processors [27], [28], and laser sensors [29], have provided 

promising results for traffic incident detection. Traffic surveillance and monitoring applications 

regularly use ILD sensors. Presently, most incident detection algorithms use traffic data derived 

from ILDs. ILDs are made up of insulated wire bent into a square or rectangular shape, and they 

are connected to a power source on both sides of the wire. When a vehicle passes over the loop, 

the oscillation frequency increases and causes the electronic unit to send a pulse to the controller, 

which registers its presence in its detection zone. With new developments, ILDs can be used to 

classify vehicles [23] and can also be tuned for different locations and environments, as the 

sensitivity of an ILD is adjustable. At times, readjustments are needed, as an ILD can go out of 

tune over time. All the collected traffic details can be used to calculate volume and occupancy. 

However, ILDs fail to detect long vehicles, as tractor-trailer units are too far above the loop, 

resulting in detection gaps. Also, when installed in poor pavement or in extreme weather 

conditions, ILDs are only poorly reliable. Moreover, most cities with mature systems report that 

25 to 30% of their sensors are not working properly at any given time [22], and the installation 

and maintenance of ILDs require lane closures, causing traffic disturbances. Finally, ILDs are 

less effective for incident detection in low volume conditions. 

Magnetic sensors work on the principle that the presence of a vehicle distorts the 

magnetic field within the earth. Although different in appearance and specific technology, they 

all operate on principle similar to ILDs. They are often installed in place of loops on bridge 

decks and in heavily reinforced pavement, where steel adversely affects loop performance [23]. 

Both types of sensors have their respective applications and tend to complement one another. 

There are two different types of magnetic sensors used for traffic flow management: active 

devices (two-axis fluxgate magnetometers), excited by an electrical current in windings around a 

magnetic core material, and passive devices, which sense perturbations in the earth’s magnetic 

flux produced when a moving vehicle passes over the detection zone. The self-powered vehicle 

detector, a type of magnetometer developed with FHWA support, is connected to a remotely 

located controller via a radio link. It has installation and maintenance problems similar to ILDs, 

as traffic needs to be disrupted to remove and re-insert the sensor. Although they are similar in 

price, magnetic detectors are easier to install and maintain than are ILDs, and compared to ILDs, 

magnetic detectors can sustain more stress. However, one of the biggest disadvantages of 

magnetic detectors is that they cannot measure lane occupancy; although, lane occupancy can be 
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measured using magnetic detectors, they may interfere with each other if two sensors are placed 

too close together [30].  

In terms of working waveforms, microwave sensors can be divided into two types: 

constant-frequency waveforms and frequency-modulated waveforms. Continuous microwave 

detectors work under the same principle as Doppler to compute vehicle speed from constant-

frequency waveform microwave radar that transmits electromagnetic energy at a constant 

frequency. This type of microwave sensor is not suitable for incident detection, as vehicle 

presence cannot be measured with this waveform. Pulse microwave detectors can count vehicles, 

record speeds, and detect vehicle presence [31]. Microwave sensors provide a cost-effective 

substitute for ILDs for detecting vehicle presence and for collecting other traffic details. 

Comparatively, microwave sensors are smaller, lighter in weight, and easier to install than are 

ILDs and magnetic sensors. They can be mounted overhead or in a side-looking configuration 

and can detect multi-lane traffic and cover a longer range. Because of their small size, low cost, 

and low power consumption, they are suitable for traffic surveillance at intersections and on 

highways. However, newly installed microwave sensors may interfere with other similar 

microwave-based devices in the vicinity.  

Infrared sensors can work in active or passive modes. Active infrared sensors measure a 

vehicle’s presence, speed, volume, occupancy, and classification, but they are vulnerable to 

weather conditions such as fog, clouds, shadows, mist, rain, and snow. When using these sensors 

in the active mode, a detection zone is “illuminated” with infrared energy transmitted from laser 

diodes operating in the near infrared spectrum, then a portion of transmitted energy is reflected to 

the sensor by vehicles travelling through the detection zone, and finally the reflected energy is 

converted into electrical signals that are analyzed in real time. Active sensors are not widely used 

in traffic surveillance, as they are more expensive than passive ones. Passive infrared sensors do 

not transmit their own energy but, instead, use an energy-sensitive element. They measure the 

same traffic parameters that active detectors do except for speed; because the extended nature of 

a vehicle distorts the infrared signature, passive infrared sensors have difficulty measuring the 

speed. Another type of passive infrared sensor, known as the multi-zone passive infrared sensor, 

can measure the speed and length of a vehicle. Like with active infrared sensors, the performance 

of this type of sensor may be adversely affected by fog, snow, and precipitation, which scatter 

energy and change light [32].  

Ultrasonic sensors transmit pressure waves of sound energy at frequencies between 25 

and 50 KHz [23],[30] and can be divided into two types: pulse-waveform ultrasonic sensors and 

constant-frequency ultrasonic sensors. Here, only the pulse waveform sensor is discussed, as 

most of the time it works with pulse waveforms. Pulse waveforms ultrasonic sensors can 

measure speed, occupancy, presence, queue length, and the distance to the road surface and the 

vehicle surface. Ultrasonic sensors are small and can be used as portable units, so they tend to be 

reliable and durable. However, bad weather can adversely affect their operational performance. 

If installed above the roadway, vehicle classification can be achieved for most vehicle types. 

Ultrasonic sensors work using the same technique is used by pulse microwave sensors, 

converting the received signal into electrical energy.  

Acoustic sensors are configured as a two-dimensional dipole array of microphones that 

are sensitive to acoustic (audio sound) energy. They work in a passive mode: the time delay 

between the arrival of sound (at the upper and lower microphones) changes with time as the 

vehicle emits a sound. As soon as vehicle passes through or leaves the detection zone, it is 

detected by the signal-processing algorithm. The best results are achieved when the data are 
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filtered to a bandwidth of 50–2000 Hz, and the preferred mounting is at a 10 to 30 degree angle 

from vertical. Acoustic sensors measure vehicle presence, speed, volume, occupancy, and they 

can count vehicles, but their performance is affected by low temperature, snow, and dense fog 

[31]. Another type of acoustic sensor can monitor up to 7 lanes of traffic using a fully populated 

microphone array, adaptive spatial processing, and mounting heights ranging from 20 and 40 

feet.  

Laser sensors operate in active mode and are used for traffic surveillance. They offer 

high-speed measurement accuracy and collect all vehicle characteristics such as vehicle 

presence, classification, speed, volume, and occupancy [29]. Moreover, they can uniquely 

identify vehicles by measuring the travel times between two locations. Generally, they can be 

mounted on highways, and each unit can provide coverage for two adjacent lanes. They transmit 

the information between the sensor and the control and processing computer using a wireless 

modem. 

Video image processors automatically analyze traffic data, which are collected from 

closed circuit television systems using machine vision techniques. These units consist of one of 

more video cameras, a microprocessor for digitizing and processing the video imagery, and 

software for interpreting the image. They use an image-processing algorithm to calculate traffic 

flow information. These systems fall into three classes: tripline, closed-loop tracking, and data-

association tracking. With tripline, the user can define the limited number of detection zones. 

With closed-loop tracking, vehicle detection is allowed along larger roadway sections, which 

provides additional traffic flow information such as lane-to-lane vehicle movements. Tracking a 

specific vehicle or group of vehicles as it passes through the field of view of the camera is 

possible using data-association tracking systems [27].  

Probe-based sensors, also referred to as vehicle-mounted sensors, have the capability of 

transmitting real-time individual probe data. The sensors measure the point data, point-to-point 

data, and/or section data and then send these measurements to the traffic management center or 

traffic operations center. The sensors move within the traffic stream and report an individual 

vehicle’s movement parameters, i.e., position and velocity with a time tag, with a pre-selected 

frequency or as they pass reader locations. Compared to roadway-based sensors, they can sense 

the spatial variation of traffic flow over a wide area. If there are more probe vehicles equipped 

with sensors in a traffic network, traffic stream conditions can be determined temporally and 

spatially at the finest level and the collected information can better reflect actual traffic 

conditions. With the latest probe-based sensor technologies, including automatic vehicle 

location/global positioning systems, AVI, Signpost/beacon systems, and cellular locating 

systems, these sensors are highly recommended for incident detection. 

Automatic vehicle location systems help to determine the position/location of a vehicle 

(typically using long-range communications) at a particular time. They use GPS, a satellite-based 

radio positioning, and a time transfer system. With a horizontal positioning accuracy of 5 meters 

95% of time, they enhance the reliability of real-time traffic information collection. As a GPS 

signal is transmitted via high-frequency microwave, it cannot handle obstructions. Therefore, 

these systems may suffer from signal blockage in tunnels or under bridges. With the latest 

developments, other positioning techniques, such as dead reckoning, have been incorporated 

within or combined with receivers to improve reliability.  

Signposts/beacons can be mounted at the sides of roadway or on existing cellular base 

stations. These can be infrared, microwave, or radio frequency devices, and they can transmit 

and receive the data from vehicles equipped with transceivers. Signposts/beacons can be either 
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self-positioning, by which a tag in the vehicle picks up a signal from the beacon, or remote 

positioning, by which the beacon senses a tag on the vehicle. The devices consist of antennas, 

transmitter electronics, and receiver electronics. With applications for traffic surveillance and 

parking management, radio frequency beacon systems are becoming more popular. Petty et al. 

[33] explored an incident detection algorithm using probe vehicles equipped with radio 

transponders and discussed the feasibility, infrastructure requirements, and performance of radio 

frequency beacon systems.  

Intelligent transportation system applications of cellular geolocation technology are 

currently being studied by many researchers. The main aim of this technology is to provide 

innovative services related to different modes of transport and to make the use of transport 

networks safer, more coordinated, and smarter. To determine locations, pattern recognitions 

using radio frequency signals are transmitted from a cellular phone. After identifying a signature 

based on the radio frequency pattern, the signature is then compared with a database of 

previously identified radio frequency signatures and their corresponding geographic locations. 

Finally, by matching the signature patterns, the caller’s location is identified. The data stored in 

the cellular location system include: the mobile identification number of each call, the longitude/ 

latitude of the call location, instantaneous speed, the current compass heading of the call’s 

mobile device, and a time stamp. This sensor technology used for traffic surveillance has several 

advantages, as it uses existing infrastructure and requires no alteration to the base station or 

subscriber handset, therefore significantly reducing the cost of establishing service.  

Automatic vehicle identification systems have two main components: an in-vehicle unit 

(transponder/reader) and a wireless communications link. These systems help to identify vehicles 

at specific location at a specific time. Most AVI systems transmit information through 

microwave, infrared, or radio frequency. Under good conditions, the reported accuracy of an 

AVI system is usually in the 99.5% to 99.9% range. However, accuracy may be reduced by 

adverse weather conditions and interference from other radiation sources. AVI technology is 

applied principally for electronic toll collection, electronic congestion pricing, and fleet control. 

Presently, most incident detection algorithms use traffic data derived from loop detectors. 

When a vehicle passes over the loop, the oscillation frequency increases, which causes the 

electronic unit to send a pulse to the controller and register its presence in its detection zone. 

With new developments, loop detectors can be used to classify vehicles. In this study, PVR 

sensors were considered the benchmark for evaluating the reliability of INRIX data. Hence, it 

was necessary to evaluate the performance of PVR sensors with another reliable source of data. 

Therefore, we utilized trailers to collect a few samples of Wavetronix sensor data to check the 

performance of PVR-reported data. Wavetronix sensors use radar technologies to collect traffic 

operations data. Each sensor unit consists of a Doppler radar, a wireless modem, a solar panel, 

and onboard processors for real-time processing of traffic information such as speed, volume, 

occupancy, etc. 

 

2.4 Review of Performance Measures Used for INRIX Data 

 

Numerous studies, using various methods, have been conducted on the evaluation of 

probe vehicle technology performance. An overview of reviewed freeway and non-freeway 

system performance measures is provided in Table 2.2. 
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Table 2.1 Overview of literature review on performance measures 
Source of Probe 

Data Used 
Performance 

Measures 

Comments 

Reference Positive Negative 

(not mentioned) 

 

 

Traffic volume, 

space mean speed, 

density 

1. Proposed method can treat both 

conventional fixed-detector data and 

probe-vehicle data in a unified manner, 

regardless of the observation 

conditions.  

2. Estimation method that uses both 

fixed-detector and probe data provides 

the smallest errors.  

3. Errors from both travel-time 

estimation and prediction are small, 

having a MARE below 0.04. 

1. Findings were validated only for a 

single freeway section.  

2. This study assumed that the probe 

data could be obtained perfectly and 

the effect of the biased data due to 

individual willingness of probe 

drivers was neglected. 

Chumchoke, N. et al. 

[9] 

(NAVTEQ, 

TrafficCast, and 

INRIX) 

 

 

Absolute average 

speed error, average 

speed bias, absolute 

average travel time 

error, travel time 

bias 

1. NAVTEQ, TrafficCast, and INRIX 

are all generally consistent with the 

ground truth data. 

2. INRIX data on Route 1 appeared to 

have a slight advantage in accuracy 

compared to other probe datasets. 

1. TMC segments in urban areas with 

traffic signals experienced a larger 

variability in the results. 

 

Technical 

Memorandum. 

(FDOT) [11] 

(not mentioned) 

 

 

95th percentile 

travel time, standard 

deviation, 

coefficient of 

variation, percent 

variation, skew 

statistic buffer index 

(w.r.t. average), 

buffer index (w.r.t. 

median), PTI, 

frequency of 

congestion, failure 

rate (w.r.t. average), 

failure rate (w.r.t. 

median), travel time 

index 

1. The coefficient of variation is a 

good proxy for a number of reliability 

measures, including planning time 

index, median-based buffer index, and 

skew statistic. 

2. Defining the buffer index and 

failure rate on the basis of the median, 

rather than the average, is 

recommended to avoid 

underestimating unreliability, 

especially for heavily right-skewed 

travel time distributions. 

3. The mathematical relationship 

between the reliability measures 

revealed in the studycould easily be 

used to predict one measure on the 

basis of another, or estimate their 

relative magnitudes. 

1. Standard deviation, is not 

recommended as a proxy because its 

magnitude relative to other measures 

is not stable. 

2. Travel time reliability generally 

deteriorates as traffic congestion 

increases. 

3. A notable limitation of this study 

was posed by the assumption of 

lognormal distributed travel times. In 

the real world, travel time distribution 

can have non-lognormal distributions, 

for example, bimodal, Weibull. 

Pu, W. (2011).  [35] 

 

(not mentioned) 

 

 

Travel time 

window, percent 

variation, variability 

index, displaying 

variation, buffer 

time, BTI, PTI, 

travel rate envelope, 

on-time arrival, 

misery index 

Travel time reliability was described as a measure of the amount of congestion 

transportation system users experience at a given time. 

Lomax, T. et al. 

(2003) [36] 

(INRIX) 

 

  

Annual hours of 

delay per mile, 

hours of target 

delay per mile, TTI, 

PTI, top N 

congested segments 

1. INRIX is immediately available at 

relatively low cost for the entire 

arterial street network. 
2. Mobility performance measures for 

arterials should be travel speed-based 

measures that compare peak traffic 

speeds to speeds during light traffic, 

recognizing that the light traffic speed 

is not a target value but simply a 

reference point for performance 

----- 

(MnDOT Report) 

(Turner and Qu, 

2013) [37] 
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Source of Probe 

Data Used 
Performance 

Measures 

Comments 

Reference Positive Negative 

measures. Thus, INRIX is a reliable 

data source in this case. 
3. PTI is the recommended reliability 

measure.  

(INRIX) 

 

 

Congestion hours, 

distance-weighted 

congestion hours, 

congestion index, 

speed profile, speed 

deficit, travel time 

deficit, congestion 

cost, top N 

bottlenecks 

Focused mainly on freeway measures. Congestion hours were reported as total 

hours across all segments when average 15-minute speed fell below 45 mph 

(threshold). 

2012 Indiana 

Mobility Report 

(Remias et al., 2013) 

and 2013-2014 

Indiana Mobility 

Report (Day et al., 

2014) [38] 

(INRIX) 

 

 

Number of 

intersections and 

mile of roadway 

(direction-wise) for  

LOS categories (D 

or better, E, F), list 

of intersections and 

road segments at 

LOS E and F, top N 

bottlenecks for 

freeways 

Focused mainly on freeway measures and also on an arterial route. It provided 

several pieces of information, such as speed limit, number of signals, number of 

lanes in each direction, average daily traffic, percentage of trucks, corridor 

length, etc. for each corridor and used INRIX data for bottlenecks and freeway 

measures.  
2013 Maryland State 

Highway Mobility 

Report (Mahapatra et 

al., 2013) [39] 

(not mentioned) 

 

 

Average travel time 

per 10 miles, 

additional travel 

time needed for on-

time arrival (80% of 

time), annual 

congestion costs 

Used RITIS and travel time data using wireless technology. Covered two metro 

areas and used mobility map, which showed high, medium and low levels in 

different colors.   

MoDOT Tracker 

(MoDOT, 2013) [40] 

(INRIX, HERE, 

TomTom, and 

NPMRDS) 

 

 

TTI, BI, and PTI, 

user delays, user 

delay costs, 

bottlenecks 

It hosted HERE, INRIX, TomTom and NPMRDS data and used INRIX 

historical average speed to calculate buffer index. 

RITIS VPP Suite 

(UMD CATT Lab, 

n.d.) [41] 

(NPMRDS) 

 

 

Congested hours, 

PTI, TTI 

Focused completely on freeways using HPMS volume data and 15-minute 

aggregated NPMRDS data by day of week and month. 

(UCR) (FHWA, 

2015b) [42] 

(INRIX) 

 

 

Travel speed, travel 

delay, annual 

person delay, 

annual delay per 

auto commuter, 

total peak period 

travel time, TTI, 

PTI, CSI, RCI, 

number of rush 

hours, percent of 

daily and peak 

travel in congested 

1. Improvements in the INRIX traffic 

speed data. 

2. Given availability and high quality 

of INRIX, they could track congestion 

problems for the midday, overnight 

and weekend time periods. 

----- 

(UMR) (Schrank et 

al., 2012) (Urban 

Mobility Scorecard 

in 2015) [43], [44] 
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Source of Probe 

Data Used 
Performance 

Measures 

Comments 

Reference Positive Negative 

conditions, percent 

of congested travel 

(not mentioned) 

 

 

Lane-miles 

congested, total and 

cost of delay, TTI 

Defined congestion as speeds below 70% of the posted speed limit. Calculated 

delays on the basis of maximum throughput speeds (85% of posted speed limit). 

TTI was calculated using reference speed rather than free flow speed. It 

identified daily congested segments on individual corridors with segment length 

and hours. Several more measures like congested miles, etc. were calculated. 

Reports used loop detectors, automated license plate readers, Bluetooth, 

Wavetronix, vehicle detection, and private sector data. 

WSDOT Gray 

Notebook (WSDOT, 

2014) and Corridor 

Capacity Summary 

(WSDOT, 2013) 

[45], [46] 

(INRIX) 

 

 

Delay per vehicle, 

total delay, TTI, 

Buffer index, PTI, 

on-time arrival, 

congested travel, 

misery index 

Used INRIX and focused on freeways and arterials. Percentage of on-time 

arrival calculated as proportion of days when peak period travel time was less 

than 1.1 times mean peak period travel time. It also defined Congested Travel as 

the product of corridor length and volume of peak period. Percentage of 

congested travel and misery index were also calculated.  
VDOT Pilot Study: 

2010 [47] 

(not mentioned) 

 

 

Highway travel time 

reliability, vehicle 

hours of delay, 

percent of miles 

severely congested, 

VMT. Mobility 

performance 

measures grouped 

into quantity, 

quality, 

accessibility, and 

utilization. 

Highway travel time reliability defined as percentage of travel greater than 45 

mph on freeways. Percentage of miles severely congested was defined as 

percentage of roadway miles operating at LOS F during peak hours.  

FDOT Performance 

Report (FDOT, 

2013b) [48] 

(INRIX) 

 

 

INRIX TTI, wasted 

time in congestion 

Used INRIX speed data. It defined INRIX TTI as percentage increase in 

average travel time of a commute above free flow conditions. Used average 

delay of typical commute trip, length of typical commute trip, and number of 

trips a commuter takes monthly or annually to calculate wasted time in 

congestion.   
INRIX Traffic 

Scorecard (INRIX, 

2015) [49] 

(TomTom) 

 

 

Congestion level 

percentage 

Used TomTom speed data to calculate the extra travel time a driver experiences 

compared to an uncongested situation. 

TomTom Traffic 

Index (TomTom, 

2016) [50] 

(INRIX) 

 

 

Latency, occurrence 

of repeated  INRIX 

reported speed   

1. Similar patterns of congestion, 

queue growth, and so forth between 

INRIX and ground-truth data. 

 

1. INRIX speeds tend to lag the loop 

detector measurements by almost 6 

min. 

2. Most of the time, INRIX reported 

speed is identical to the previous 

sample and repeating for average 3 to 

5 minutes. 

3. INRIX confidence measures do not 

appear to reflect the latency or the 

occurrence of repeated INRIX 

reported speeds. 

Kim, S., Coifman, B. 

(2014) [7] 

(INRIX) 

 

 

Travel time, 

average speed 

1. Paired-t method can be effectively 

applied for verification of probe data. 

 

1. Paired-t method has a binary 

outcome which says probe data for 
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Source of Probe 

Data Used 
Performance 

Measures 

Comments 

Reference Positive Negative 

Aliari, Y., Haghani, 

A. (2012) [51] 

specified speed bin is good or not. No 

additional info is provided. 

2. Since the method uses average 

errors over all time, high variance 

outliers can invalidate the whole 

segment. 

(INRIX, TomTom, 

Google, etc.) 

 

 

Traffic jams, traffic 

jams on (surface 

streets, highways) 

1. All probe sources reported traffic 

jams on highways significantly better 

than streets. 

2. The longer the jam, the better 

chance probe can accurately report. 

 

1. They experienced some type of 

operational failure or disruption 

during their study. 

Belzowski, B., 

Ekstrom, A., (2013) 

[52] 

(INRIX) 

 

 

Speed error, speed 

error bias 

1. Speed data provided by INRIX is 

generally of good quality. 

1. Segments with length less than one 

mile are in-accurate. 

2. Different confidence scores 30, 20, 

and 10 are not significant indicator of 

INRIX data quality. 

3. For speeds below 45 mph, INRIX 

overestimates the speeds and for 

speeds over 60 mph, it 

underestimates the actual speed. 

Haghani, A. et al. 

(2009) [53] 

(INRIX, NAVTEQ, 

and TrafficCast) 

 

 

Travel time, Speed 

bias 

----- 1. INRIX speed has a 6 mph bias 

relative to ground truth on an 

uncongested freeway. 

Lattimer and 

Glotzbach (2012) 

[54] 

(INRIX, NAVTEQ, 

and TrafficCast) 

 

 

Travel speed, Speed 

error 

----- 1. Overall average speed errors to be 

within 10 mph throughout various 

levels of congestion. 

2. Data providers missed a major 

incident lasting more than 4 hours. 

3. INRIX reported speeds 30 mph 

higher than ground truth data while 

INRIX classified those speeds with 

"high confidence" during this major 

incident. 

Kim et al. (2014) 

[55] 

(INRIX) 

 

 

Speed bias, latency, 

similarity index 

1. Probe data is reliable for monitoring 

the performance of transportation 

infrastructure over time. 

2. Latency on freeways is less than 

non-freeways. 

1. Various levels of amplitude bias 

between INRIX and benchmarked 

data.  

Adu Gyamfi Y. et al. 

(2017) [56] 

(INRIX) 

 

 

Travel time 

reliability, PTI, 

FOC 

1. Both FOC and PTI are capable to 

identify and rank recurrent freeway 

bottlenecks. 

1. Using either FOC or PTI alone 

may not be possible to identify the 

intensity of bottlenecks’ traffic 

congestion. Gong, Linfeng, and 

Wei Fan (2017) [57] 

(INRIX) 

 

 

Hourly traffic 

volume 

1. Probe data is promising for 

estimating hourly traffic volume using 

machine learning models. 

 

----- 

P Sekuła et al. [58] 

PTI, Planning time index; BTI, Buffer time index; TTI, Travel time index; LOS, Level of service; MAP-21, Moving Ahead for 

Progress in the 21st Century Act; RITIS, Regional Integrated Transportation Information System; VPP, Vehicle Probe Project; 

BI, Buffer index; NPMRDS, National Performance Management Research Dataset; HPMS, Highway Performance Monitoring 

System; CSI, Commuter stress index; RCI, Roadway Congestion Index; WSDOT, Washington State DOT; VMT, vehicle miles 

traveled. 
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Transportation system reliability has been defined in various ways: first, as travel time 

reliability, which is the probability that trips can be successfully accomplished within a specified 

timeframe; second, as connectivity reliability, which focuses on trips carried out successfully 

based on the remaining connectivity between an origin–destination pair; and third, as capacity 

reliability, which refers to trips that can be completed at a certain level of link capacity [34]. The 

focus of this study was on travel time reliability, which is one of the key performance measures 

used by the majority of transportation agencies and state DOTs. More formally, FHWA defines 

travel time reliability as “the consistency or dependability in travel times, as measured from day-

to-day and/or across different times of the day” [59]. Lomax et al. [36] describes travel time 

reliability as a measure of the amount of congestion users of the transportation system experience 

at a given time. The 1998 California Transportation Plan explains “reliability” as the 

inconsistency between the projected travel time, which is based on the scheduled or average 

travel time, and the real travel time due to the effects of nonrecurring congestion [60].  

Travel time reliability in the transportation engineering field is measured in several ways: 

the 90th or 95th percentile of travel time, the standard deviation, the coefficient of variation, the 

percentage of variation, the buffer index, the planning time index, the travel time index, etc. 

FDOT used some metrics, such as absolute average speed error, average speed bias, absolute 

average travel time error, and travel time bias, to evaluate the accuracy of probe stream data of 

different vendors (INRIX, TrafficCast, etc.). Altogether, different vendors’ data looked 

consistent with the ground truth and the license plate reader datasets, and there was no 

considerable difference between them in terms of data accuracy [11]. 

In a recent study conducted by Venkatanarayana [61], hours of congestion for a segment 

was considered the total number of hours when the average speed of the segment drops below a 

predetermined threshold. FHWA conducted a report to calculate congestion and reliability 

metrics with the National Performance Management Research Data Set. It defined hours of 

congestion as the amount of time when freeways operate at less than 90% of free-flow freeway 

speeds [62]. Another measure is the buffer index, which is defined as the extra time a traveler 

should take into account to arrive on time. Lomax et al. [36] calculated buffer time using the 

difference between the 95th percentile of travel time and the average travel time for a trip as a 

measure of the extra time a traveler would need to arrive on time. Similar to Pu [35], this study 

introduces a modified buffer time index (BTI) that incorporates the median, rather than average, 

travel time as a new travel time reliability measure. Pu [35] recommended using the median 

rather than the average travel time for calculating the buffer index, as this avoids trivializing the 

reliability in travel time, especially for heavily right-skewed travel time distributions. 

 

2.5 Conclusion 

 

This chapter comprised a summary of previous studies that were conducted on various 

kinds of probes and sensors as well as the accuracy and reliability of probe-sourced data using 

several measures such as congestion level percentage, travel time index, planning time index, 

BTI, user delay cost, average travel time, volume, space mean speed, density, average speed 

bias, absolute average speed error, absolute average travel time error, travel time bias, lane-miles 

congested, vehicle miles traveled, number of congested hours, latency, etc. In the next chapter, 

data collection for this study and how some specific locations were selected will be explained in 

detail.  
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3. Data Collection 

3.1 Introduction 

 

In today's complex global economy, transportation connections enable a business to 

locate in any region offering the best possible combination of labor, land, tax, and cost—while 

competing worldwide. All the state DOTs are relying on fixed-mounted sensors to collect traffic 

information such as travel time, traffic speed, volume, etc. This traffic information can be used 

by Nebraska Department of Transportation (NDOT) councils to identify which routes are used 

most and to decide whether to improve that road or provide an alternative if there is an excessive 

amount of traffic.  

Presently, NDOT is maintaining 65 ATRs in different locations. However, the cost of 

deploying and maintaining these sensors is very high compared to alternatives provided by non-

traditional data streaming sources. Probe-data collection is a set of relatively low-cost methods 

for obtaining travel time and speed data for vehicles traveling on freeways and other 

transportation routes. NDOT has already procured probe data streams through a third-party 

vendor, INRIX, to augment traffic data collection and assess the performance of its operations. 

INRIX is maintaining 4125 traffic management centers to collect the traffic information for 

major freeways and urban areas. 

 

3.2 Selection of Sites 

 

To evaluate the reliability and accuracy of probe data streams, it is important to identify 

the location of the ATRs. The research team and the technical advisory committee for the project 

decided to select 16 specific locations based on the following five criteria: 

• Nearest TMC from the ATR mid-point, 

• 2014 continuous traffic count data and traffic characteristics from Nebraska Streets and 

Highways (April 2015) and Automatic Traffic Recorder Data (June 2016), 

• Winter segments (given by NDOT), 

• Level of confidence available in particular areas, and 

• Anomalies found from cumulative distribution function (CDF) distributions. 

To improve decision making, we also considered the percentage of heavy truck usage and the 

interquartile range for each TMC. 

The dashboard view of all the ATR locations in Nebraska, along with their reliability 

curves, nearby TMCs, average annual daily traffic, confidence levels, and minimum distance 

from ATR mid-point, is shown in Figure 3.1. The 16 sites selected are shown in Figure 3.2. 
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Figure 3.1 Dashboard view of 16 selected locations 

 

 
Figure 3.2 Location of 16 selected sites 

 

Raw data files received from the INRIX server were parsed using Hadoop technology 

and then visualized with tools like Tableau and R programming to aid in choosing the final 16 

sites for evaluating the reliability and accuracy of probe data streams against fixed, 

infrastructure-mounted sensor data. The 16 sites with above criteria selected for this study are 

shown in Table 3.1.  
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Table 3.1 Selected sites with different criteria 

No. TMC Dir County Road 

% of 

Confi-

dence AADT IQR 

Heavy 

Truck  

Nearest 

TMC/XD  Remarks 

1 118-12176 EB Chase US-6 7.10 570 3 188 

118+12177 

3096189 

3096305 

Nearest 

mid-point 

ATR#19 

2 118-04527 WB Douglas I-680 67.08 16094 4 1600 

118+04528 

48151029 

5111124 

Nearest 

mid-point 

ATR#32 

3 118-04559 SB Lancaster I-180 40.88 32399 7 837 

118+04560 

5115670 

5115743 

Nearest 

mid-point 

ATR#46 

4 118-04752 WB Sarpy I-80 97.76 67773 2 10,075 

118+04545 

5118286 

5118291 

AADT 

ATR#17 

5 118+04785 EB Dawson I-80 97.9 17917 3 7701 

118-04784 

5106319 

5106309 

AADT 

ATR#20 

6 118+04552 EB Douglas I-80 98.62 173168 4 ---- 5111192 ATR#24 E 

7 118+04805 EB Seward I-80 97.89 27086 3 7918 

118-04804 

5118482 

5118490 

Winter 

segments; 

near ATR 

#38 

8 118-04787 WB Buffalo I-80 97.97 20673 3 ---- 

118+04788

5105936 

5105935 

Winter 

segments; 

near ATR 

#54 

9 118-04765 WB Deuel I-80 95.11 7297 2 4426 

118+04766 

3136954 

3136959 

High 

confidence; 

near ATR 

#31 

10 118-04773 WB Lincoln I-80 97.87 15667 2 7195 

118+04774 

5116674 

5116683 

High 

confidence; 

near ATR 

#43 

11 118-07638 SB Thayer US-81 66.68 3812 4 1270 

118+07639 

5059806 

5059878 

Middle 

confidence; 

near ATR 

#64 

12 118-09466 EB Dodge US-30 47.14 5335 3 661 

118+07729 

5110005 

5110018 

Low 

confidence; 

near ATR 

#61 

13 118-09439 EB Dawson US-30 10.08 2646 4 191 

118+09438 

5109780 

5109790 

Anomaly 

variance 

high; near 

ATR #2 
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14 118+07802 NB Otoe US-75 39.22 4122 3 630 

118-11849 

5107356 

5107390 

Anomaly 

variance 

high; near 

ATR #6 

15 118+08702 NB Howard US-281 19.85 5434 3 528 

118-08701 

5114752 

5114762 

Anomaly 

variance 

middle; 

near ATR 

#39 

16 118-11097 EB Otoe NE-2 82.67 11569 0 2872 

118+11098 

5116156 

5116160 

Anomaly 

variance 

middle; 

near ATR 

#65 

(suggested 

by NDOT) 

TMC: Traffic message channel; Dir: Direction; AADT: annual average daily traffic; IQR: Interquartile range.  

 

3.3 Checking Performance of PVR against Wavetronix 

 

To consider PVR data as benchmarked, it was necessary to evaluate the performance of 

PVR sensors using another reliable source of data. Therefore, to check the performance of PVR 

reported data we utilized trailers (as shown in Figure 3.3) to collect a few samples of Wavetronix 

sensor data. Wavetronix sensors use radar technology to collect traffic operations data. Each 

sensor unit consists of a Doppler radar unit, a 

wireless modem, a solar panel, and onboard 

processors for real-time processing of traffic 

information such as speed, volume, occupancy, 

etc. The date, time, and total number of minutes 

the data were collected by trailers for each 

location are shown in Table 3.2. Two locations, 

17 and 24 Eastbound, were excluded from 

further analysis. 

To evaluate the reliability of PVR data, 

the data were compared with data collected by 

the trailers (Wavetronix data). As shown in 

Figure 3.4, we used CDF to illustrate the 

difference in speed between PVR and Wave-

tronix sensors. CDF is the probability that a 

variable takes a value less than or equal to x. In 

Figure 3.4, the horizontal axis represents the 

allowable domain for the given probability 

function (speed). Because the vertical axis 

reflects probability, it must fall between 0 and 1. 

In all images, the probability increases from 0 to 

1 from left to right on the horizontal axis. The 

speeds shown on horizontal axis range from 

 

 

Figure 3.3 Wavetronix sensor during 

data collection 
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Table 3.2 Wavetronix data collected with trailer 
Sensor Time Number of minutes 

2 11/22/2016  2:01:17 pm – 11/22/2016  4:03:43 pm 122 

6 11/21/2016 4:16:23 pm – 11/21/2016 6:18:39 pm 122 

17 11/22/2016  2:10:03 pm – 11/22/2016  4:19:59 pm 130 

19 11/21/2016  2:45:37 pm – 11/21/2016  4:45:40 pm 120 

20 11/22/2016  5:08:49 pm – 11/22/2016  7:11:35 pm 123 

24E 11/21/2016  8:45:49 pm – 11/21/2016  10:47:42 pm 122 

31E 

11/21/2016  9:55:00 am – 11/21/2016  9:57:06 am 

11/21/2016  10:02:24 am – 11/21/2016  10:08:40 am 

11/21/2016  10:35:43 am – 11/21/2016  12:50:31 pm 

33 

32 11/23/2016  11:51:55 am – 11/23/2016  2:24:03 pm 153 

38 11/20/2016  7:52:35 pm – 11/20/2016  9:53:29 pm 121 

39 11/23/2016  11:20:12 am – 11/23/2016  1:23:11 pm 122 

43 11/22/2016  9:29:05 am – 11/22/2016  11:47:28 am 138 

46 11/21/2016  9:12:50 am – 11/21/2016  11:16:36 am 124 

54 

11/22/2016  8:29:29 pm – 11/22/2016  8:46:10 pm 

11/22/2016  10:41:57 pm – 11/22/2016  10:59:44 pm 

11/22/2016  11:01:16 pm – 11/22/2016  11:59:49 pm 

11/23/2016  12:00:03 am – 11/23/2016  1:05:01 am 

158 

61 11/22/2016  5:59:28 pm – 11/22/2016  8:07:52 pm 128 

64 
11/20/2016  3:00:20 pm – 11/20/2016  5:02:20 pm 

11/20/2016  6:52:01 pm – 11/20/2016  7:55:15 pm 
185 

65 11/21/2016  12:46:35 pm – 11/21/2016  2:55:42 pm 129 

Note: Sensors appearing in red were excluded from further analysis. 

 

 

 
Figure 3.4 Cumulative distribution function of speed for PVR and Wavetronix datasets 
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40 to 90 mph. We expected that the two CDF lines for the PVR and Wavetronix sensors for each 

location would nearly overlap each other. However, it is obvious from Figure 3.4 that different 

traffic speed performance was detected by the two sensors at locations 6N, 6S, 19E, 19W, 32W, 

39S, 61E, and 65E. Thus, these locations were excluded from further analysis. The location of 

the selected ATRs are shown in Figure 3.5 as red asterisks; excluded ATRs are shown as blue 

triangles. 

 

 

 
Figure 3.5 Location of ATRs (red asterisk: selected location), (blue triangle: excluded locations) 

 

3.4 Conclusion 

 

In summary, this chapter provides a brief description of how the 16 sites, out of the 65 

ATRs in Nebraska, were selected based on different criteria. For each selected ATR, there are 

corresponding TMCs, which are maintained by INRIX to collect traffic details on major 

freeways and urbanized areas. To make better informed decisions, we also considered the 

number of heavy trucks and the interquartile range for each TMC. Also, we examined the 

reliability of the PVR data by comparing those data with Wavetronix sensor traffic information 

collected by roadside trailers. In the next chapter, the reliability and accuracy of real-time INRIX 

data using different performance measures for selected ATRs is discussed. 
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4. Evaluation of Reliability and Accuracy of Real-Time INRIX Data 

4.1 Introduction 

 

For this study, real-time and historical traffic data, which were collected through two 

different methods—probe-sourced streamed data and fixed, infrastructure-mounted sensors—

were utilized. The probe data stream used in the current study was obtained from INRIX, which 

aggregates traffic-related information from millions of GPS-enabled vehicles, mobile devices, 

road sensors, and other sources. The data collected were processed in real time, creating traffic 

speed information for major freeways, highways, and arterials in the state of Nebraska. The 

INRIX probe data stream was compared to a benchmarked sensor data source to explain some of 

the challenges and opportunities associated with using wide-area probe data. The benchmarked 

dataset used in this work was obtained from PVR sensors, which provided traffic data for each 

vehicle passing the sensor. 

In the remainder of this chapter, INRIX performance will be thoroughly evaluated by 

various factors including coverage, speed bias, latency, count, congested hour, rank order for 

congested hour, BTI, rank order for BTI, and reliability curves. The performance measures that 

will be addressed in this chapter 4 are summarized in Table 4.1.  

 

Table 4.2 Overview of performance measures 

 

 

4.2 Evaluating INRIX using PVR 

 

4.2.1 Percentage Availability of INRIX 

 

The most critical consideration in evaluating probe data is the geographic coverage 

provided by the vendor. The quality of probe data is heavily dependent on the number of probes 

on the road network. The more probes on the network, the better the coverage. In Figure 4.1, the 

yearly coverage for interstate and non-interstate roadways in the state of Nebraska is shown from 

2013 through 2016. In 2013 there was 73.14% availability of real-time data from interstate 

roadways as compared to 43.73% from non-interstate roadways (Figure 4.1a). In 2014, there was 

Performance Measures Comments 

Percentage availability of 

INRIX 

Total percentage of time level 30 data is available for given TMC segment 

Speed bias Difference been speeds reported by INRIX as compared to the Wavetronix speed 

Congestion detection latency A measure of delay between two time series datasets, which is used to measure the difference 

of start times of a congestion detected by INRIX compared to PVR.  

Congestion counts Number of congestions detected by both INRIX segments and PVR sensors with latencies 

lower than 20 minutes. 

Congested hour In this study, two scenarios were considered for comparing number of hours of congestion 

between the INRIX and PVR datasets:  

 Scenario 1: total number of hours during which speed of each segment was less than 

45 mph.  

 Scenario 2: duration of congestions that were detected by both INRIX segments and 

PVR sensors with detection latency lower than 20 minutes.  

The two scenarios were compared for two time periods: single day and three weeks.  

Buffer time index Calculated by subtracting the 85th percentile of TTPM (travel time per mile) from the median 

of TTPM and then dividing that result by the median TTPM; calculated for 1- and 3-week 

periods. 

Reliability curves The inverse of speed multiplied by 60 was considered TTPM in minutes. 
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an increase in availability of real-time data from interstate roadways with 77.21% and a decrease 

from non-interstate roadways with 41.01% (Figure 4.1b). The lowest availability of real-time 

data from interstate roadways during the time period studied (2013–2016) was in 2015 with 

71.90% (Figure 4.1c), and the highest was in 2016 with 78.82% (Figure 4.1d). There were a 

number of roads that had no coverage; however, this may improve with time as the number of 

probes increases. In regions with limited probe data, vendors derive real-time data from 

historical traffic data trends. Agencies may rely on this dataset; however, the accuracy should be 

evaluated. However, in these areas, the agency could augment probe data with infrastructure-

mounted sensors.  

 

(a) 2013 (b) 2014 

(c) 2015 (d) 2016 

Figure 4.1 Percentage coverage of INRIX in the state of Nebraska 

 

In addition to real-time data, INRIX provides historical data whenever real-time data are 

not available. The higher the device penetration (i.e., more cell phone probes), the better the data 

are. For each speed measurement, INRIX reports a measure of confidence, reported as one of 

three possible values: 

 Score 30: speed estimate for that segment based completely on real-time data (the 

highest confidence score),  
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 Score 20: speed estimate based on real-time data across multiple segments and /or 

based on a combination of expected and real-time data. and  

 Score 10: speed estimate based primarily on historic data (the lowest confidence score).  

The daily availability of INRIX traffic data is shown in Figure 4.2, reflecting how traffic 

speed data from interstates and non-interstates are spread over a span of a full day based on 

confidence scores 10, 20, and 30. As expected, INRIX was able to provide real-time speed data 

(score 30) most of the day on interstates, whereas on non-interstates, real-time data were 

provided mostly from around 6 am to 6 pm. For instance, at point A on Figure 4.2b, the blue and 

red lines (scores 10 and 20, respectively) descend drastically while the yellow line (score 30 = 

real-time) rises significantly. On the other hand, from midnight to 6 am (before point A) and 

around 6 pm to midnight (after point B), when there was less device penetration, historical data 

were used to predict speed and was reported with a confidence score value of 10. Thus, INRIX 

provides a higher percentage of real-time data on interstates compared to non-interstates and the 

data are more reliable during the day than at night. 

 

 
(a)  

 

A B 
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(b)  

Figure 4.2 Daily availability of traffic speed data for selected INRIX segments of (a) interstates 

and (b) non-interstates in the state of Nebraska 

4.2.2 Speed Bias 

 

Speed bias is defined as the difference of speed between two traffic speed data providers. 

There is almost always a speed bias between data streaming from probes and traditional 

infrastructure-mounted sensors. Different factors, such as the measurement technique, the 

number of probes on road, roadway type (interstates or non–interstates), geographical location, 

etc., influence the magnitude of probe data speed bias. To use these data accurately, it is critical 

to understand the factors that influence and handle these biases. In this study, speed bias was 

calculated by subtracting INRIX speed from PVR speed (Equation 1). 

 

 𝑆𝑝𝑒𝑒𝑑 𝑏𝑖𝑎𝑠 = 𝑃𝑉𝑅 𝑠𝑝𝑒𝑒𝑑 − 𝐼𝑁𝑅𝐼𝑋 𝑠𝑝𝑒𝑒𝑑  (1) 

 

Speed bias was evaluated based on three different categories: (1) confidence scores, (2) 

locations, and (3) congestion vs. non-congestion times.  

First, we examined how different speed biases are calculated using different scores. Probe 

technology calculates speed as the average speed of vehicles over a segment of a road, which is 

called space mean speed (SMS). Time mean speed (TMS), which is an arithmetic mean of 

vehicles’ speed passing a point, is the calculated speed for benchmarked local sensor dataset. 

There is always a difference between space mean speed and time mean speed due to the 

measurement technique used. CDF can be used to illustrate the different speed biases for all 

sensors with respect to different scores (10, 20, and 30). As explained previously, CDF is the 

probability that a variable takes a value less than or equal to x. The horizontal axis represents the 

allowable domain for the given probability function. Because the vertical axis reflects 

probability, it must fall between 0 and 1; it increases from 0 to 1 from left to right on the 

horizontal axis.  

The CDF of speed bias between INRIX and PVR datasets for all selected location based 

on confidence scores 10, 20, and 30 is shown in Figure 4.3a–c. In Figures 4.3a and b, some CDF 

lines (43W, 20W, 38E, 54E, 43E, etc.) are not in the shape of a curve due to the lack of sufficient 

confidence score 10 or 20 data. High speed bias is shown in Figure 4.3a, for lines 46N, 46S, 

39N, and for lines 46N and 39S of both Figures 4.3b and c. No trends in the speed biases of 

various locations are shown in Figures 4.3a and b; however, in Figure 4.3c, speed biases at all 

locations are shown in a nearly homogeneous cluster. Dashed lines at the very left and right of 

Figures 4.3a, b, and c depict the abnormal magnitude of speed bias. Accordingly, INRIX data 

with confidence scores 10 and 20, which represent historical data, should be excluded for speed 

bias analysis. Speed biases for all locations on aggregate by different confidence scores (10, 20, 

and 30) are shown in Figure 4.3d.  
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(a) CDF of speed bias for confidence score 10 

 

 
(b) CDF of speed bias for confidence score 20 
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(c) CDF of speed bias for confidence score 30 

 

 
(d) CDF of speed bias of all locations for confidence scores 10, 20, and 30 

 

Figure 4.3 Segment–sensor pairwise cumulative distribution function of speed bias for: (a) 

confidence score 10, (b) confidence score 20, and (c) confidence score 30. (d) Score-wise 

cumulative distribution function of speed bias for all segment–sensor pairs. 
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After evaluating speed bias for the different confidence scores of 10, 20, and 30, we 

compared real-time speed biases of all locations separately. An example of errors associated with 

traffic speed reported using only real-time data for some sites is illustrated in Figure 4.4. In this 

case, because the magnitude of speed bias matters over all minutes of the day, error was defined 

as the absolute value of speed bias between PVR and INRIX data. The red dashed line in each 

image of Figure 4.4 shows the median error for each ATR site. At the right side of daily error 

plot for each site, CDF of the error is also plotted with a horizontal axis between 0 and 20. Due 

to a lack of sufficient real-time data from midnight to almost 6 am (point A in Figure 4.4), speed 

bias was higher compared to other times of a day. Plots for all other locations can be found in 

Appendix B (Figure B.1).  

 

 

 
Figure 4.4 Errors associated with traffic speed reported using only real-time data for some sites 

 

The median speed bias for each ATR with respect to each direction is shown in Table 4.2. 

ATR 39 Northbound, with a speed bias of 14.32 mph, accounts for the highest speed bias among 

all sites. The average speed bias of all other locations was 6.06 mph. 

  

A 
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Table 4.2 Median error for each site 

ATR 

Median 

speed bias 

(mph) 

2E 4.88 

2W 5.00 

20E 6.91 

20W 6.71 

31E 6.63 

31W 5.25 

32E 5.64 

38E 7.55 

38W 6.96 

39N 14.32 

40N 2.86 

40S 2.67 

43E 6.95 

43W 6.81 

46N 6.94 

46S 5.95 

54E 6.82 

54W 7.53 

56E 5.78 

56W 6.33 

61W 8.01 

64N 5.54 

64S 4.98 

65W 6.67 

 

Finally, we examined how speed bias varies during periods of congestion and no 

congestion. Generally, speed bias changes in different conditions, such as day vs. night, scores 

10 vs. 20 vs. 30, freeway vs. non-freeway, congestion vs. no congestion, etc. A box plot of speed 

bias for each location during times of congestion and no congestion is shown in Figure 4.5. A 

box plot is a standard way of depicting the distribution of data based on five values: minimum, 

first quartile, median, third quartile, and maximum. In Figure 4.5, the central rectangle for each 

plot spans the first quartile to the third quartile (the interquartile range). The line inside the 

rectangle between the light- and dark-shaded areas represent the median, and the lines above and 

below the box represent the minimum and maximum values. The interquartile range, a measure 

of statistical dispersion, is equal to the difference between the 75th and 25th percentiles, or 

between the third and first quartiles. In Figure 4.5, there are two plots for each congested 

location, one showing the speed bias for non-congested periods (left) and the other showing the 

speed bias for congested periods (right). Based on the interquartile range of all boxes shown in 

Figure 4.5, on can observe that INRIX performance is constant and reliable both during periods 

of free flowing speed (non-congested periods) and congested periods; however, we could not 

determine any stable pattern for speed bias of congested versus non-congested periods. For 

instance, for sites 2W, 32E, and 38E, the speed biases for congested and non-congested periods 

were negative and close to zero, whereas they were positive for the 40N, 46S, and 61W sites. On 

the other hand, for 39N, 43E, 46N, 54W sites, the speed biases were positive during non-

congested periods and negative during congested periods. According to available data, no 

patterns were found for speed bias between non-congested vs. congested periods; however, we 

concluded that INRIX performs reliably during both congested and non-congested periods. 
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Figure 4.5 Speed bias during (left) non-congested and (right) congested periods 
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4.2.3 Incident Detection 

 

Improving traffic safety and operations have long been areas of motivation among 

researchers and engineers. Traffic incidents, particularly traffic crashes, are of great interest due 

to the huge delay and costs that traffic injuries and fatalities impose on society. Traffic delays 

can be attributed to nonrecurring incidents including but not limited to traffic crashes, 

construction events, and adverse weather conditions. These incidents may also have other 

consequences, such as secondary crashes and delays in emergency medical services, which can 

cause further complications and impose additional costs. Consequently, monitoring the 

transportation network and being able to detect and report anomalies in real time are of great 

importance in the realm of traffic management.  

 

4.2.3.1 Data Stream and Pre-Processing 

Most of the time in real-world scenarios, raw traffic data are incomplete, highly 

susceptible to noise, and inconsistent for many reasons, such as sensor failures, measurement 

technique errors, huge size, etc. Data pre-processing can be used to try to detect and correct 

corrupt and erroneous traffic data. However, the storage and analysis of massive amounts of 

INRIX and PVR data are impossible using traditional methods, as they require the processing of 

more than 500 GB of data, which would be prohibitively time intensive on a traditional machine. 

For this study, a high performing cluster was used for data processing. The Hadoop Distributed 

File System [63] was used for storage of the data, and map-reduce was used for processing. Pig 

Latin [64] was used as the language to implement map-reduce algorithms. 

 

4.2.3.2 Congestion Detection Algorithm 

After data processing, a congestion detection algorithm was implemented to detect and 

classify the onset of congestion throughout the network for the study period. Congestions were 

identified as when the speed data of the INRIX segment or the mean of the 1-minute aggregated 

speed data of the PVR sensor for that location indicated that the speed dropped below 45 mph. 

According to the Highway Capacity Manual (version 6) [65], LOS (level of service) on basic 

freeway segments is defined by density. Although speed, as it relates to service quality, is a 

major concern of drivers, describing LOS on the basis of speed is difficult, as it remains constant 

up to high flow rates [i.e., 1,000 to 1,800 pc/h/ln for basic freeway segments (depending on the 

free flow speed)]. There are six levels of service defined for basic freeway segments (levels A–

F). The minimum speed of around 50 mph for LOS E is almost constant for different free 

flowing speeds (from 75 to 55 mi/h). With an approximately 5 mph average speed bias, 45 mph 

is considered the threshold for traffic congestion.  

How the algorithm recognizes congestions is illustrated in Figure 4.6. The blue line 

represents the original traffic speed, and red line represents the fixed threshold of 45 mph. The 

congestion start time is when the speed drops below 45 mph, and the congestion end time is 

when the speed rises above 45 mph. 
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Figure 4.6 Example of congestion detection 

 

4.2.3.3 Latency and Count 

Latency is a parameter that represents the measurement of the time delay between two 

time-series datasets. In this study, latency was used to measure the difference between 

congestion start times detected by INRIX vs. PVR (Figure 4.7a). It is crucial to verify latencies 

within probe data streams for timely detection of events on roads. Based on work by Adu 

Gyamfi et al. [12], the average ranges of latencies associated with probe vs. sensor data are 

between 3 and 12 minutes on freeways and between 7 and 20 minutes on non-freeways. In this 

study, we considered only congestions that were detected by both INRIX segments and PVR 

sensors with latencies lower than 20 minutes. The location of all sites experiencing congestion 

with latencies lower than 20 minutes is shown in Figure 4.7b. 

 

 Additionally, the number of congestions that occurred at each site and the average latency 

between INRIX and PVR associated with each site are shown in Figure 4.8. There were many 

instances when congestions with higher latencies were detected by both INRIX TMC segments 

and PVR sensors; however, it should be noted that we considered only congestions that were 

detected by INRIX TMC segments and PVR sensors with latency below 20 minutes. The 

average latency for all congestions detected by both the INRIX and PVR datasets was 4.97 

minutes. As shown in Figure 4.8, the average latencies for a few ATRs (39N, 43E, and 46S) 

were negative, which means that the INRIX segments detected congestion earlier than PVR 

sensors did.  
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(a) 

 
(b) 

Figure 4.7 (a) Latency and (b) location of congestion at ATRs 

 

 
Figure 4.8 Number of congestions and average latency for each site 
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The number of congestions detected by either INRIX or PVR or by both during a 3-week 

fixed period of time for all sites is shown in Table 4.3. TP (true positive) indicates the rate of 

events that were detected by both INRIX and PV, FN (false negative) represents the rate of 

events detected by PVR but not by INRIX, and finally, FP (false positive) represents the rate of 

events detected by INRIX but not by PVR. The values in the last column show the precision of 

congestion detection by INRIX, calculated using Equation 2.  

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

Table 4.3 Reliability of INRIX in detecting congestion events 
Location INRIX PVR Both TP FN FP Precision 

2W 7 12 2 0.167 0.417 0.417 0.286 

32E 6 21 4 0.190 0.714 0.095 0.667 

38E 7 14 3 0.214 0.5 0.286 0.429 

38W 6 22 3 0.136 0.727 0.136 0.5 

39N 5 31 4 0.129 0.839 0.032 0.8 

40N 1 1 1 1 0 0 1 

40S 4 7 1 0.143 0.429 0.429 0.25 

43E 4 8 3 0.375 0.5 0.125 0.75 

46N 8 10 1 0.1 0.2 0.7 0.125 

46S 7 10 3 0.3 0.3 0.4 0.429 

54W 4 10 4 0.4 0.6 0 1 

61W 13 36 10 0.278 0.639 0.083 0.769 

 

It was difficult to derive any robust congestion detection results by comparing INRIX and 

PVR datasets using only 3 weeks of data and 16 different ATRs. For future studies, we strongly 

recommend using data from a longer period (1 year) and a larger number of sites. Using a 

congestion detection algorithm, 44 congestions were detected by both the INRIX and PVR 

datasets for all selected ATRs on all days. The timestamps for worst congestions for each 

congested site and the two worst congestions among all other sites are shown in Table 4.4. 

 

Table 4.4 Worst congestions 
ATR Worst Congestions 

2W 02/24/2017 08:38 am, 02/24/2017 09:25 am 

32E 10/31/2016 12:28 pm, 11/01/2016 09:27 am 

38E 02/24/2017 05:02 am, 2/24/2017 10:58 am 

38W 02/23/2017 08:45 pm, 2/24/2017 09:05 am 

39N 02/23/2017 05:01 pm, 2/24/2017 10:29 am 

40N 03/28/2017 05:13 pm 

40S 04/19/2017 07:47 am 

43E 02/24/2017 02:13 am, 02/24/2017 04:29 am 

46N 04/19/2017 05:24 pm 

46S 10/28/2016 07:49 am, 11/29/2016 07:42 am  

54W 02/24/2017 02:16 am, 02/24/2017 01:55 am 

61W 02/24/2017 05:39 pm, 02/24/2017 12:30 pm 

Two worst 

congestions among 

all ATRS 

ATR 46s: 02/23/2017 08:13 pm 

ATR 32e: 11/01/2016 09:27 am 
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4.2.4 Performance Measures 

 

4.2.4.1 Congested Hour 

Traffic congestion is widely known as a transport cost. It plays a key role in transport 

system performance evaluation and affects transport planning decisions. When a road system 

reaches its capacity, each additional vehicle makes it more overloaded and imposes more delay 

on other vehicles. Some impacts of congestion include increased travel time, accidents, 

unreliability of arrival times, increased fuel consumption and pollution emissions, adverse health 

effects, etc. Generally, there are two types of congestion: recurring and nonrecurring. Recurring 

congestion is considered congestion caused by routine traffic in a normal environment and is 

somewhat expected, whereas nonrecurring congestion is unexpected and most likely caused by 

an incident. Nonrecurring congestion may occur as a result of a variety of factors such as lane-

blocking crashes or disabled vehicles, work-zone lane closures, adverse weather conditions, etc. 

When computing congestion costs, some organizations consider only recurring costs, whereas 

others include both recurring and non-recurring costs. In this study, we attempted to evaluate the 

reliability of INRIX using a cost–benefit analysis. We also discuss the limitations of INRIX with 

regard to the detection of recurring and non-recurring traffic congestions. Congested hour is one 

of the measures that indicate how reliable INRIX can be when evaluating the cost of congestion.  

In this study, if the speed of a road segment fell below 45 mph for a period of time, the 

segment was defined as being congested for that period. After considering all congestions 

detected by INRIX and sensor datasets in a similar study conducted for state of Iowa, we 

determined 6 minutes as the threshold for the minimum duration when determining the period of 

traffic congestion (Figure 4.9). The distribution of congested traffic periods from two datasets 

(sensor and INRIX) over the span of a year in the state of Iowa is shown in Figure 4.9 (the 

horizontal axis in the original image extended to more than 400 minutes, but here the image was 

zoomed in to from 1 to 100 minutes for clearer visualization). Looking at the distribution of the 

two datasets, especially from the sensor data, it is clear that congestion periods of less than 6 

minutes are very different from others in terms of trend.  
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Figure 4.9 Distribution of congestion periods (in minutes) for sensor and INRIX data in the state 

of Iowa for 2016 (the red arrows indicate 6 minutes as the minimum acceptable 

threshold for a period of congestion) 

 

In this study, we considered two scenarios for comparing INRIX and PVR datasets in 

terms of congested hour. For the first scenario, we considered the congestion period as the total 

number of hours for which the speed of each segment was less than 45 mph for a minimum 6 

continuous minutes, which is a very common scenario. For the second scenario, we considered 

the congestion period as the total duration of congestions detected by both INRIX segments and 

PVR sensors with detection latency lower than 20 minutes. 

The above-described scenarios were compared for two time periods: (1) a single day and 

(2) 3 weeks. Because the total number of days of data varied for different ATRs, a 3-week period 

was considered the fixed maximum period of time for all ATRs in our analysis. However, this 

period of time did not occur in the same month for the different ATRs; for instance, for location 

46 southbound, the 3 weeks were in April 2017, and for location 46 northbound the 3 weeks 

were in November 2016. Scatter plots for congested hour determined by the INRIX and PVR 

single-day and 3-week datasets for the two predefined scenarios are shown in Figure 4.10. 

Congested hour were aggregated for the respective time periods (single day and 3 weeks). In the 

scatter plots, the vertical and horizontal axes of the plots represent the congested hour 

determined by INRIX and PVR data, respectively. Each point on the plot represents the total 

duration of congestion of a segment–sensor pair (in hours) over the period of time that was 

plotted. For instance, the scatter plot in Figure 4.10c for scenario 1 illustrates all days with 

congestion for all ATRs over 3 weeks. Additionally, a regression line is plotted for each scatter 

plot using its equation and R2 values.  
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Single day 

 
 

3 weeks 

 
Figure 4.10 (a, b) Single-day and (c, d) 3-week periods of congested traffic duration (in hours) 

for scenarios 1 and 2. All congestions reflect traffic speed of less than 45 mph, and all 

congestions were detected by both the INRIX and PVR datasets 
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Because for some ATRs INRIX reported traffic speed as being close to 45 mph or even 

slower for most of the time, the duration of congestion from the INRIX database compared to the 

PVR database was observed as tending to be longer, as shown in Figure 4.10a and c. The lack of 

sufficient confidence score 30 (real-time) data negatively influenced this situation. Two 

examples of when INRIX detected speed at mostly around 45 mph for location 46S are shown in 

Figure 4.11a. In both INRIX-46S time series shown, the speed was almost always around 45 

mph, even though no congestion occurred on that day. Moreover, the four samples shown in 

Figure 4.11b indicate a lack of real-time data, especially during periods of congestion. Points A, 

B, C, D, and E in Figure 4.11b depict the change in confidence scores from real time (score 30) 

to historical (scores 20 or 10) data during periods of congestion. These critical issues with INRIX 

data, especially during periods of congestion, persuaded us to make use of scenario 2 for further 

analyses. Using scenario 2, for which we considered all congestions detected by both INRIX and 

PVR with detection latency lower than 20 minutes, we obtained reliable results for comparing 

the two datasets.  

 

 

 
a) INRIX reported speed is around 45 mph for most of the day 

INRIX speed is around 45 mph 

PVR speed is around 60 mph 

INRIX speed is around 45 mph 

PVR speed is around 60 mph 
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A 

B 
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b) Insufficient INRIX confidence score 30 data during congestion 

 

Figure 4.11 Speed time series of PVR and INRIX data showing (a) INRIX speed being reported 

as around 45 mph and (b) lack of real-time (score 30) data during congestion 

 

  

C 

D E 
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The congestion duration rank order from the PVR and INRIX data for selected ATRs, 

after evaluating INRIX performance for calculating congestion duration, is shown in Figure 4.12. 

As shown in the figure, 8 out of 12 sensors and their corresponding segments had nearly the 

same rank in terms of congestion duration. The INRIX performance for congestion duration was 

mostly reliable; however, it would be better to have been able evaluate its performance on more 

segments with a higher number of congestions over a longer period of time.  

 

 

 
Figure 4.12 Rank order of segments and sensors based on congestion duration 

 

4.2.4.2 Buffer-Time Index (BTI) 

In this study, BTI was calculated by subtracting the 85th percentile of TTPM (travel time 

per mile) from the median TTPM and then dividing that result by the median TTPM (see 

Equation 3). BTI represents the percentage of extra travel time that almost all travelers would 

need to add to their trips to reach their destination on time in a given time-of-day and/or day-of-

week period. For example, a buffer index of 60% at 7 am on a freeway where the travel time is 

10 min when there is no congestion, would indicate that travelers should allow for 16 min at 7 

am to make sure that they arrive on time. 

 

  BTI (%) =
85th percentile ttpm – median ttpm 

median ttpm 
 (3) 

 

A comparison of the INRIX data stream versus the PVR sensor datasets based on weekly 

and three-weekly BTIs is shown in Figure 4.13. A BTI was calculated for each time period 

(weekly and three-weekly). Additionally, a regression line is plotted for each scatter plot using 

its equation and R2 values. 

As observed in Figure 4.13, the BTI for the PVR data was almost always more than that 

for the INRIX database. The main reason for this is low variation of the INRIX data. Because in 

Nebraska INRIX provides traffic data mostly via trucks traveling on the roads, it is hard to find 

considerable variability in the magnitude of the speed. On the other hand, local infrastructure 

sensors record traffic information from every vehicle on road, which leads to higher variability, 

or in other words, a wider range of speed. The speed profiles from raw, smoothed PVR sensor, 

and INRIX segment data corresponding to ATR 65 Westbound for a 1-week period of time are 

shown in Figure 4.14. It can be observed that level of variation for the INRIX data is less than 

the raw and even the de-noised sensor data. Considering variability as noise is one critical 

misunderstanding by many researchers. As can be seen in Figure 4.14, the time series of raw and 

de-noised PVR-65W data shows a wide range of speed compared to its corresponding INRIX-

65W segment. 



 

42 

 
1-week 3-week 

 
Figure 4.13 1-week and 3-weekly BTIs for probe and sensor datasets 

 

 

 
Figure 4.14 Sample time series showing difference of variability between probe and 

benchmarked data 
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Considering the definition of BTI, a wider range of travel time would lead to a higher 

BTI. In this study, TTPM was calculated using the inverse of speed multiplied by 60. Thus, a 

wider range of speeds would result in a higher BTI. It is important to note that noise does not 

affect the BTI significantly; however, this depends on the magnitude of noise reduction in the 

smoothing process. CDF of TTPM for some sample ATRs is shown in Figure 4.15. The bias 

shown between the PVR and INRIX CDF lines was corrected by shifting back the INRIX 50th 

percentile point to overlap on to the PVR 50th percentile point. By looking at the 85th percentile 

of TTPM on both CDF lines, it is clear that the magnitude of the 85th percentile of TTPM for 

PVR (blue line) was always higher than that for INRIX (red line), which led to a greater BTI. 

The comparison between INRIX and PVR raw data is shown in Figure 4.15a, whereas the 

comparison between the INRIX with the de-noised PVR datasets is shown in Figure 4.15b. 

Comparing the plots in Figure 4.15a with those in Figure 4.15b, it is clear that noise reduction 

did not drastically affect buffer time. Thus, we concluded that INRIX is not reliable for 

calculating BTI.  

 

 
(a) 

 
(b) 

Figure 4.15 Cumulative distribution function of travel time showing difference of 85th percentile 

between probe and (a) raw sensor data and (b) smoothed sensor data 
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After observing the poor performance of INRIX in calculating BTI, we calculated the 

BTI rank order of INRIX and PVR data for 1-week and 3-week periods of time (Figures 4.16a 

and 4.16b, respectively). Only 3 out of 24 sensors and their corresponding segments had almost 

in the same rank in terms of BTI. Therefore, it can be concluded that, for this analysis, INRIX 

performance was not reliable for either BTI or BTI rank order. However, it should be noted that 

this analysis was conducted on a limited number of ATRs over a short period of time. We 

recommend that more sites and longer period of time be used for further analyses. 

 

 
(a)  

 
(b)  

Figure 4.16 Rank order of segments and sensors based on BTI for  

(a) 1-week and (b) 3-week periods 

 

4.2.4.3 Reliability Curves 

As mentioned previously, TTPM was calculated as the inverse of speed multiplied by 60. 

A reliability curve is defined as the CDF of TTPM for each segment or sensor. The TTPM 

reliability curves for all ATRs for each direction are shown in Figure 4.17. As revealed in the 

graphs, there was almost always a visible shift between probe and sensor curves, known as travel 

time bias. Because TTPM was calculated using speed, speed bias was the reason for the small 
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differences in reliability curves at all locations. Equations (4) to (8) show how we calculated the 

travel time bias for this study.  

 

 Travel time bias (minutes) =  Sensor TTPM − INRIX TTPM, (4) 

 

where sensor TTPM and INRIX TTPM are explained in Equations (5) and (6) respectively. 

 

 Sensor TTPM (minute) =
1

X 
∗ 60         (𝑋 = 𝑠𝑒𝑛𝑠𝑜𝑟′𝑠 𝑠𝑝𝑒𝑒𝑑 (𝑚𝑝ℎ)) (5) 

 

 INRIX TTPM (minute) =
1

X−6 
∗ 60 (6) 

 

After considering the average speed bias as 6 mph, travel time bias can be calculated as follows: 

 

 Travel time bias (minute) =  
1

X 
∗ 60 − 

1

X−6 
∗ 60 (7) 

  Travel time bias =
6

X(X−6) 
∗ 60 (8) 

 

Reliability curves for all locations shown in Figure 4.17b have huge differences in TTPM 

(travel time bias) compared to the normal locations shown in Figure 4.17a. With regard to travel 

time bias, it was concluded that INRIX performance is usually reliable and consistent. 

 

 

 
(a) 
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(b) 

Figure 4.17 Cumulative distribution function of travel time per mile for (a) normal sites and (b) 

outlier sites 

 

4.3 Conclusion 

 

 To sum up, there are some critical points that state DOTs and transportation agencies 

should consider when using a probe data stream like INRIX. Some advantages and limitations of 

INRIX are as follows: 

 

 In terms of geographic coverage, INRIX has been evaluated for interstates and non-

interstates and has been shown to be reliable for almost all times of day on interstates.  

 This study showed that INRIX is more reliable during the day than at night, especially 

during peak hours. 

 Regarding incident detection, INRIX is reliable for detecting merely congestion, 

especially recurring congestion. When it detects congestion, it gets all the information 

related to the congestion, such as the duration of the congestion. 

 There is almost always a time delay (latency) for INRIX congestion detection. 

Congestion detection latency was evaluated in this chapter for 16 specific locations over 

a short period of time. Other data streaming sources, such as sensors, are more preferred 

for incident detection application; however, they are very costly and not applicable for 

many places. Thus, for locations without other data sources, detecting congestion by 

INRIX, even with latency, is better than not detecting it at all. 

 There will always be a bias between traffic speed data from probe sources and 

benchmarked sensors. Speed bias directly affects incident detection, travel time 

estimation, calculation of performance measures (such as congested hour, BTI, reliability 

curves, etc.) and other traffic-related measures. For instance, it could be observed from 



 

47 

Figure 4.11a that speed bias caused INRIX speeds to be shown as approximately 45 mph, 

which is usually considered the threshold for congestion. Accordingly, it is important to 

understand the factors that influence these biases and how to correct for them.  

 Traffic incident management, roadway performance assessment, and travel time 

estimation applications should be developed based on real-time data. The lack of 

confidence score 30 data (real time), especially during congestion, leads to incorrect 

results. Substitutions with historical data are not accurate and therefore not advised. In 

areas with limited probe penetration, the agency could augment probe data with 

infrastructure-mounted sensors. 

 

Finally, many different tests, analyses, and experiments have been left for future studies 

due to lack of sufficient data. The main point that should be taken into consideration is the length 

of time of data collection. Increasing collection time to a year or more would make possible the 

measurement of the performance of probe data versus local sensors over a longer period of time. 
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5. Performance Monitoring and Historical Trend Analysis 

 

5.1 Introduction 

 

In this chapter, performance monitoring and historical trend analysis of Interstate 80 (I-

80) is discussed. First, the top 10 congested segments were identified through a detailed analysis 

of when congestion occurred by month, day of week, and time of day. Second, congestion per 

mile was calculated for monthly and yearly comparisons of metro areas across Nebraska to 

determine any trends in congestion. Third, congestion duration was used to show the severity of 

congestion by segment during summer vs. winter months. Finally, yearly travel time reliability 

was calculated to measure the level of confidence that the traveler would arrive within an 

acceptable travel time. 

 

5.2 Top Congested Roadways on Interstate 80  

 

The top congested segments on I-80 in Nebraska are those that experience congestion 

throughout the year. The top 10 congested roadway lists were compiled by determining the 

segments with the most congestion and then identifying where the congestion began and ended. 

For our analysis, we included only segments with a length greater than 0.3 miles. A detailed 

analysis for each segment was conducted to determine when congestion occurred by month, day 

of week, and time of day. The top 10 list for each year was also compared to those of other years 

to determine trends in congestion along the segment. The top 10 most congested segments from 

2013 through 2015 are shown in Appendix C. 

 

5.2.1 Top 10 most congested segments in 2016 

 

The top 10 most congested segments in Nebraska in 2016 are shown in Figure 5.1. Compared 

with 2013 and 2015, the top 10 most congested locations were generally much more congested in 

2016, but less than in 2014. Most segments were consistent throughout year, except during 

February and March across weekdays and between 3 pm and 6 pm. The top segments were 

located in the Omaha and Lincoln areas. A summary of each of the top 10 locations is included 

below. 
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Figure 5.1 Top 10 congested segments on I-80 in Nebraska in 2016 
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I-80 Omaha WB | S 72ND ST | 0.39 miles 

 

 

Annual number 

of hours of 
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and weekday 

total hours of 

congestion  

Throughout the year with a high in June at 

60 hours, consistent across weekdays 

Longest conges-

tion duration by 

time of day  

3 pm to 6 pm and 6 am to 9 am 

Distribution of 

times of 

congestion  

 

 

 

 

I-80 Omaha WB | S 72ND ST | 0.39 miles 
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I-80 Omaha EB | S 84TH ST | 1.2 miles 
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I-80 Omaha WB | S 84TH ST | 0.41 miles 
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I-80 Omaha EB | S 60TH ST | 0.37 miles 
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I-80 Omaha WB | S 126TH ST | 1.4 mile 
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I-80 Omaha EB | I-680 | 1.25 miles 
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I-80 Omaha WB | L ST | 0.42 mile 
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Longest conges-

tion duration by 

time of day  
3 pm to 6 pm 

Distribution of 

times of 

congestion  
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I-80 Omaha WB | I-480/US-75 | 1.27 miles 

 

 

Annual number of 

hours of 

congestion 
Slight decrease from last year 

Highest monthly 

and weekday total 

hours of 

congestion  

Throughout the year, except in 

March; consistent across weekdays 

Longest conges-

tion duration by 

time of day  
3 pm to 6 pm 

Distribution of 

times of 

congestion  

 

 

Many I-80 segments appeared on the top 10 list repeatedly over the years of the study. 

For example, a 1.45-mile-long segment at the interchange with L St. appeared on the list twice, 

ranking in the top position for 2013 and 2014. Similarly, a 2.5-mile-long segment near Exit 382 

also appeared on the list for both 2013 and 2014. Seven segments appeared on the list for more 

than one year, but their rank order changed over the years. The segments of I-80 that appeared on 

the top 10 list more than once from 2013 through 2016 are listed in Table 5.1. The top 10 

congested segments on I-80 from 2013 through 2016 are shown in Figure 5.2. 

 

Table 5.1 Interstate 80 segments appearing on the top 10 list more than once 

from 2013 through 2016 
No. TMC segment Year (Rank) Intersection | Length of Segment 

1 118+04546 2013 (1) 2014 (1) L ST | 1.45 

2 118N04552 2013 (2) 2014 (2) 2015 (7) 2016 (10) I-480/US-75 | 1.27 

3 118+04549 2013 (3) 2014 (4) 2015 (2) 2016 (2)  S 72ND ST | 0.33 

4 118+04806 2013 (4) 2014 (3) Exit 382 | 2.5  

5 118-04549 2013 (5) 2014 (8) 2015 (3) 2016 (3) S 72ND ST | 0.39 

6 118-04550 2013 (6) 2014 (6) 2015 (1) 2016 (1) S 60TH ST | 0.83 

7 118+04548 2013 (7) 2014 (5) 2015 (4) 2016 (4) S 84TH ST | 1.2 

8 118+04550 2013 (8) 2014 (7) 2015 (9) 2016 (6) S 60TH ST | 0.37 

9 118P04547 2013 (10) 2014 (9) 2015 (10) 2016 (8) I-680 | 1.25 

 

 

129 
Hours 

 10 
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Figure 5.2 Top 10 congested segments on Interstate 80 from 2013 through 2016 

 

5.3 Comparison of Metro Congestion Duration 

 

Most of the congestion experienced in Nebraska is within urban areas, which have higher 

volumes of traffic. Given the varying numbers of segments and roadway lengths that were being 

considered, congestion per mile calculations for metro segments were used to contrast 

performance on different segments. 

The metro area segments were defined based on the last interchange when entering and 

exiting the urban area. Three commuter corridors—Dodge Street Omaha (US-6), North Platte 

(US-83), and NE–IA Border (US-275) were also included in the analysis. The durations of 

congestion for each segment along the route were added to determine the total number of hours 

of congestion. By dividing this value by the total route length, the average congestion per mile 

was determined. These values were calculated for each month for all metro areas across 

Nebraska to compare any trends in congestion. A yearly comparison is also provided for the 

years 2013 through 2016. Comparisons of metro congestion duration from 2013 through 2015 

are shown in Appendix C. 

 

5.3.1 Metro Congestion per Mile in 2016 

 

The average amount of congestion per mile in 2016 for metro areas across Nebraska is 

shown in Figure 5.3. The US 275 NE–IA border to Venice and US 6 Dodge Street Omaha 

segments were consistently among the most congested metro segments across the state.  

An annual comparison of the number of hours of congestion by roadway and selected 

metro areas are shown in Figures 5.4 and 5.5, respectively. The US 275 near NE–IA border to 
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Venice segment exhibited a consistent increase in the amount of congestion per mile in 2015 and 

2016. The congestion on the US 6 Dodge Street Omaha and I-129 in Sioux City segments 

significantly increased in 2014, 2015, and 2016. The I-180 in Lincoln segment exhibited a 

consistent amount of congestion per mile with slight increases in 2014, 2015, and 2016. Each of 

the remaining segments (I-80 Harrison St. to Omaha, US-83 North Platte, and I-690 Iowa 

border) exhibited consistent levels of congestion during the four reporting years. 

 

 

Figure 5.3 Congestion duration (hours) per mile metro area comparisons, 2016 
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Figure 5.4 Congestion duration (hours) per mile metro area comparison by year 

 

Figure 5.5 Selected metro routes with congestion 

 

 

5.4 Congestion Duration on Interstate 80  

 

In this section, we provide a detailed view of all segments along the I-80 corridor in 

Nebraska. Congestion duration (hours) were used to determine the severity of congestion by 

segment along I-80. This allowed for the locations with congestion, as well as the extent of 

where the congestion occurred, to be quickly identified. Once identified, the locations could also 

be analyzed by year, month, day, week, or time of day. 
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The congestion duration for the I-80 corridor from the Kimball to Omaha by direction of 

travel is shown in Figure 5.6. The right side of the chart represents the eastbound direction, and 

the left side represents the westbound direction, both sides directly across from each other 

representing the same location along I-80. The scale along each x-axis is the number of hours of 

congestion. Each segment is color coded based on the number of hours of congestion by summer 

(March, April, May, June, July, August, September, and October) and winter (November, 

December, January, and February) months.  

 
Figure 5.6 Congestion duration (hours) for westbound and eastbound Interstate 80 in 2013, 

2014, 2015, and 2016 
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5.4.1 Eastbound 

 

Congestion on I-80 eastbound was limited to the Omaha, Lincoln, and Julesburg areas: 

 

 Near the L ST interchange through Omaha 

Most congested year 2014 saw significant congestion. 

Most congested month Peaked in May but significant from April through November 

Most congested day All weekdays with peak on Thursday 

Most congested time of day 6 am – 9 am 

 Near I-80/EXIT 382 interchange through Lincoln 

Most congested year 2014 

Most congested month May 

Most congested day All weekdays with peak on Wednesday 

Most congested time of day 12 am – 6 am 

 

 Near NE-25B/EXIT 107, I-76, US-138/EXIT 101 interchanges 

Most congested year 2016 

Most congested month November 

Most congested day All weekdays with peak on Friday 

Most congested time of day 12 am – 6 am 

 

5.4.2 Westbound 

 

Congestion on I-80 westbound was limited to the Omaha, Lincoln, and near I-76 

interchanges. 

 

 Near S 60TH ST interchange through Omaha 

Most congested year 2016 saw significant congestion. 

Most congested month Peaked in August but significant from April through January  

Most congested day All weekdays with peak on Wednesday 

Most congested time of day 3 pm – 6 pm 

 

 Near US-6/EXIT 396 interchange through Lincoln 

Most congested year 2015 

Most congested month February 

Most congested day All weekdays with peak on Sunday 

Most congested time of day 12 am – 6 am 

 

 Near NE-56G/EXIT 179 interchange through North Platte 

Most congested year 2013 

Most congested month February and August 

Most congested day All weekdays with peak on Sunday 

Most congested time of day 12 am – 6 am 
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5.5 Speed Performance for Interstate 80 

 

One limitation with using congestion duration is the limited ability to evaluate additional 

speed thresholds lower than 45 mph without a web-based tool. One solution was to develop 

speed performance charts that allowed for the severity of the congestion to be evaluated by 

observing the percentage of time speeds were within 10-mph bins from 0 to 75+ mph. 

Similar to congestion duration, each segment is evaluated based on the number of 

minutes speeds are within a speed bin, using real-time data from the probe data source. Each 

segment varied in the amount of data that was provided in real time. To account for this, the 

number of minutes in each speed bin was divided by the total number of minutes of real-time 

speed data for that segment. This allowed for the data to be plotted on a chart running from 0 to 

100% to see what percentage of time speeds were within a defined range. 

The speed performance along I-80 in the eastbound and westbound directions is shown in 

Figures 5.7 and 5.8, respectively. Similar to the graph of the number of hours of congestion, the 

I-80 corridor through Nebraska is represented along with a reference bar along the left showing 

the nearest state routes. Each column of the chart represents a separate month, which allows for 

comparisons to be made. Each speed bin is represented by a separate color with lowest speeds 

represented by red and higher speeds represented by dark green. The scale along the x-axis 

identifies what percentage of the real-time data is within the designated bin. Speed performance 

data for I-80 for 2013 through 2015 are shown in Appendix C. 

As shown in Figures 5.7 and 5.8, the severity of congestion significantly increased near 

the Omaha and Lincoln areas in 2014, 2015, and 2016, as indicated by the larger percentage of 

slower speeds. No other significant changes in speed were identified along I-80. 
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Figure 5.7 Interstate 80 EB speed percentage in 2016 
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Figure 5.8 Interstate 80 WB speed percentage in 2016 

 

5.6 Travel Time Reliability for Interstate 80 

 

5.6.1 Yearly Travel Time Reliability 

 

Drivers across Nebraska expect to have few delays and to be able drive a similar route 

with little or no change in their travel time. Travel time reliability is an important performance 

measure that is used to measure drivers’ confidence that they will arrive within an acceptable 

travel time. In this report, the percentage increase in typical travel time was used to measure the 

increase in travel time that would be needed for 95% of trips to arrive on time. To compare this 

reliability between other routes with of different lengths, the increase for 95% confidence in 

travel time was divided by the average travel time to determine the percentage of additional 

travel time needed. 

Interstate 80 was divided into eight routes: through Omaha, from Chalco to Waverly, 

through Lincoln, from Lincoln to York, from York to Kearney, from Kearney to North Platte, 

from North Platte to Chappel, and from Lodge Pole to the NE–WY border. The travel time 

represents the time it took to travel all the segments through each route. After the travel time 

through each route was calculated every minute using the probe-based speed data, the average 

and 95th percentile of travel times were calculated. The 95th percentile travel time was 

determined for the entire year for the morning and evening peak periods during weekdays. This 

allowed for the reliability of the travel time to be analyzed during the more heavily congested 

hours of day. 
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Both directions of travel for I-80 are displayed in the charts of Figure 5.9. The center 

banner identifies the route along the interstate where the reliability was measured. The different 

colored bars represent the different times of day during which the reliability was measured and a 

comparison for the years from 2013 through 2016. The percentage increases in typical travel 

times along I-80 are displayed. Both directions of the NE–WY border segment experienced an 

increase in typical travel time from 2013 through 2016. Percentage increase in travel time 

reliability was fairly low from York to North Platte and remained consistent during all time 

periods. The segment from Waverly to Lincoln experienced a significant increase in the typical 

travel time from 2013 through 2016.  

 

Figure 5.9 Percentage increase in typical travel time on Interstate 80 

 

 

5.7 Conclusion 

 

In this chapter, we reported how we explored performance monitoring and historical 

trend analysis from INRIX data using different measures for I-80 in Nebraska. First, we 

identified the top 10 congested roadways by determining which segments had the most 

congestion and then the beginning and end of where the congestion occurred; we also included a 

detailed analysis of when congestion occurred by month, day of week, and time of day. Next, we 

presented the congestion per mile calculations that were used to determine metro area congestion 
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per mile, which supported comparing performance given the varying number and length of 

roadway segments that we investigated. These values were calculated for each month for all 

metro areas across Nebraska to compare congestion trends. A yearly comparison for years 2013 

through 2016 was also provided. Third, we reported on how congestion duration was used to 

show the severity of congestion by segment along I-80. Each segment was color coded based on 

the number of hours of congestion by summer and winter months. Once identified, the locations 

can also be analyzed by year, month, week, day, or time of day. Next, we presented how the 

severity of congestion could be evaluated by observing the percentage of time speeds were 

within a 10-mph bin from 0 to 75+ mph. Finally, we described how we divided I-80 into eight 

sections to calculate the change in travel time reliability from 2013 to 2016.  
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6. Conclusions and Recommendations 

6.2 Summary and Conclusions 

 

Traffic monitoring using wide-area probe-sourced data is growing as a viable means of 

comprehensive traffic monitoring without a large investment in deploying physical assets in 

right-of-ways and its associated costs and maintenance burden. Real-time and archived probe 

data streams have many uses, provided the above-mentioned considerations have been 

addressed. Real-time probe data is useful for traffic operations and safety management activities 

such as travel time estimation and incident management.  

 For travel time estimation, real-time probe data streams can serve as a good data source 

for calculating and displaying travel times on message signs on major freeways and highways. 

However, it is important to know how some of the challenges, as discussed in Chapter 4, may 

affect this travel time estimation. It was very complicated and not very efficient using point-

based detection models for incident management until the emergence of wide-area probe data 

streaming. Incident management activities, such as detecting the back of a queue, were 

previously nearly impossible. This problem has now been simplified through the use of probe 

data streams. Probe data are being used in Iowa and Indiana for a real-time application, which 

allows for the identification of locations experiencing queuing in an effort to eliminate back-of-

queue crashes.  

 In this study, we focused on several specific locations in the state of Nebraska to evaluate 

the reliability of INRIX data by comparing that data with data from PVR sensors using selected 

performance measures. A summary of the study appears in Table 6.1. 

 

Table 6.1 Summary of performance measures used in the study 

 

Performance Measures Comments 

Congestion detection latency This measure of delay between two time series datasets was used to measure the difference in 

detection of start times of a congestion period between INRIX and PVR sensors. The average 

latency calculated in this study was 4.97 minutes. 

Count of congestions Number of congestions that were detected by both INRIX segments and PVR sensors with 

latencies lower than 20 minutes. Using the congestion detection algorithm, 44 congestions 

were detected by both INRIX and PVR datasets for all selected ATRs for all days. 

Congestion durations Two scenarios for comparing INRIX and PVR datasets in terms of congested hour were 

considered:  

 Scenario 1: total number of hours for which the speed of each segment is less than 45 

mph.  

 Scenario 2: congestion durations detected by both INRIX segments and PVR sensors 

with detection latency lower than 20 minutes.  

The two scenarios were compared for two time periods; 1 day and 3 weeks. Scenario 1 

showed INRIX duration of congestion hour tended to be longer than for PVR because, for 

some ATRs, INRIX reported speed close to 45 mph or even less for most of the time. Also, 

lack of sufficient confidence score 30 (real-time) data negatively affected this situation. Using 

scenario 2, we obtained reliable results for comparing the two datasets. 

Buffer time index BTI was calculated by subtracting the 85th percentile of TTPM (travel time per mile) from 

the TTPM median and then dividing that result by the TTPM median. It was calculated for 1-

week and 3-week periods. Due to low variation of INRIX data, BTI for PVR is almost always 

greater than that for INRIX. In summary, INRIX did not perform reliably for calculating the 

BTI. 

Reliability curve Calculated as the inverse of speed multiplied by 60, was considered as TTPM in minutes. 

Except for some locations, INRIX performance was acceptable in terms of reliability curves.  
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 Archived probe data is useful for general transportation asset performance assessment 

and planning. Archived data can be used to build models to understand the performance of such 

assets, especially for low volume and low speed roadways where real-time operational activities 

cannot be performed due to high speed bias and latencies. A comprehensive analysis of 

performance monitoring and historical trend analysis using different measures for I-80 segments 

in Nebraska was also performed in this study. Almost all top 10 congested segments from 2013 

through 2016 were located near Omaha and Lincoln on I-80. 

  

Observations: 

 In 2013, most segments exhibited slightly longer hours of congestion hours during 

September and October, across weekdays, and between 3 pm and 6 pm.  

 In contrast to 2013, the top 10 most congested locations in 2014 were much more 

congested. Most segments exhibited consistent congestion throughout year, except from 

May through October, across weekdays and between 3 pm and 6 pm and between 6 am 

and 9 am.  

 In contrast to 2013 and 2014, the top 10 most congested locations exhibited less 

congestion in 2015. Most segments saw slightly longer hours of congestion in November 

and December, across weekdays and between 3 pm and 6 pm.  

 Finally, in contrast to 2013 and 2015, the top 10 most congested locations exhibited more 

congestion in 2016 but less than in 2014. Most segments exhibited consistent congestion 

throughout the year, except in February and March, across weekdays and between 3 pm 

and 6 pm.  

The average amount of congestion per mile was calculated across metro areas in 

Nebraska from 2013 through 2016. Three commuter corridors—Dodge Street Omaha (US-6), 

North Platte (US-83), and NE–IA Border (US-275)—were also included in the analysis.  

 

Observations:  

 US 275 near the NE–IA border to Venice exhibited a consistent increase in congestion per 

mile in 2015 and 2016.  

 The congestion on US 6 Dodge Street Omaha and I-129 in Sioux City significantly 

increased in 2014, 2015, and 2016.  

 I-180 in Lincoln exhibited a consistent amount of congestion per mile with slight 

increases in 2014, 2015, and 2016.  

 Each of the remaining routes (I-80 Harrison St. to Omaha, US-83 North Platte, and I-690 

Iowa border) experienced consistent levels of congestion during the four reporting years. 

The duration of congestion was calculated to show the severity of congestion by summer 

and winter months and by direction for all segments along the I-80 corridor in Nebraska from 

2013 through 2016. 

 

Observations:  

 Congestion on I-80 eastbound was limited to the Omaha, Lincoln, and Julesburg areas. In 

2014, significant congestion was exhibited near the L ST interchange through Omaha, 

peaking in May but significant from April through November, all weekdays with a peak 

on Thursday, and mostly between 6 am and 9 am. Also, in 2016 congestion was exhibited 
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near the NE-25B/EXIT 107, I-76, and US-138/EXIT 101 interchanges, peaking in 

November, all weekdays with a peak on Friday, and mostly between 12 am and 6 am.  

 Congestion on I-80 westbound was limited to areas in Omaha and Lincoln and near the I-

76 interchange. In 2016 significant congestion was exhibited near the S 60TH ST 

interchange in Omaha, peaking in August but significant from April through January, all 

weekdays with a peak on Wednesdays, and mostly between 3 pm and 6 pm In 2015, there 

was significant congestion near the US-6/EXIT 396 interchange through Lincoln, peaking 

in February, all weekdays with peaks on Sunday, and mostly between 12 am and 6 am. In 

2013, congestion was exhibited near the NE-56G/EXIT 179 interchange through North 

Platte, peaking in February and August, all weekdays with peaks on Sunday, and mostly 

between 12 am and 6 am. 

The severity of congestion was evaluated by observing the percentage of time speeds 

were within 10-mph bins from 0 to 75+ mph in both the eastbound and westbound directions. In 

2014, 2015, and 2016, the severity of congestion significantly increased near the Omaha and 

Lincoln areas, as shown by the larger percentage of slower speeds. No other significant changes 

in speed were identified along I-80. 

 The NE–WY border segment exhibited an increase in typical travel time from 2013 

through 2016 in both directions. The travel time reliability was low from York to North Platte 

and remained consistent during all time periods. From Waverly to Lincoln a significant increase 

in typical travel time was evident from 2013 through 2016. 

 

6.2 Recommendations 

 

 Ultimately, wide-area probe data offers a wide array of opportunities for the 

transportation industry. With connected vehicles and sophistication of personal and commercial 

technologies in the future, these innovative data streams, which can also provide user feedback, 

are going to continue to influence and support innovation within the transportation industry. We 

offer the following recommendations to agencies considering the use of a probe data streams to 

support traffic operations management and decision making: 

 

 Most transportation agencies define road segments based on a linear referencing 

system. To easily associate probe data with other significant data sources, such as 

weather and crash data, agencies must conflate the probe data segmentation to the 

linear referencing system. 

 The length of segments for which probe data are available varies greatly, from 0.5 

miles to about 8 miles. Agencies must examine whether the space granularity of probe 

data is sufficient for the intended application. For incident detection applications, high 

space granularity may lead to false alarms. Segments with shorter lengths should be 

excluded. On the other hand, for work zone performance assessment, high space 

granularity is preferred for estimating measures such as queue lengths, total delays, etc. 

 Agencies should arrange to work with probe data vendors toward identifying, 

communicating, and ultimately automatically detecting lane configuration changes to 

vendors. 

 In terms of geographic coverage, INRIX has been evaluated for interstates and non-

interstates, showing that INRIX is reliable for almost all minutes of a day on interstates. 
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Moreover, this study showed that INRIX is more reliable during the day than at night, 

especially during peak hours. 

 Regarding incident detection, INRIX is reliable for merely detecting congestion, 

especially recurring congestion; when it detects congestion, it gets almost all the 

information related to the congestion. 

 There will always be a bias between traffic speed data from probe sources and 

benchmarked sensors. Speed bias directly affects incident detection, travel time 

estimation, calculating performance measures (such as congested hour, BTI, etc.), and 

other traffic-related measures. It is important to understand the factors that influence 

these biases and how to correct for them.  

 Travel time estimation and incident detection applications should be developed based 

completely on real-time data. Substitutions with historical data are not accurate and 

therefore not advised. In areas with limited probe penetration, an agency could augment 

probe data with infrastructure-mounted sensors. 

 Agencies should note that there is almost always a time delay in probe-based streaming 

data. Compared to loop detectors and radar sensors, latency increases on low-volume 

roadways and especially when traffic is moving at lower speeds. Thus, for time-

sensitive applications, it is important to know the possible range of expected latencies 

and plan appropriately; however, sensors are very costly and not applicable for many 

places. Thus, for locations without other data providers, detecting congestion with 

latency by INRIX is better than not detecting it at all. 

 Internal TMC segments with lengths less than 0.5 miles should also be excluded from 

traffic performance evaluations. 

 In this era of big data, all transportation agencies and state DOTs must be able to handle 

a huge volume of data. Apache Hadoop, Apache Pig, and Apache Spark [66] are high-

level open-source “big data” technologies that allow for the analysis of “big” probe data 

streams. 

 

Many different tests, analyses, and experiments have been left for the future due to lack 

of sufficient data. Because this study was focused mainly on freeways, future work should be 

focused on a deeper analysis of arterials and urban areas. This would be possible by deploying 

more infrastructure sensors on both freeways and arterials. Another main point that should be 

taken into consideration is the length of time that data is collected. In the best case scenario for 

this study, the longest time period available data for each sensor was almost a month. By 

increasing it to a year or more, it would be possible to measure the performance of probe data 

versus local sensors over a longer period of time. 
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Appendix A: Total PVR Data Available for All ATRs 

The table below shows each ATR, its direction, and the total number of days in each 

month for which data were provided by NDOT. To evaluate the reliability of PVR data, a 

comparison was made with data collected by trailers (Wavetronix data). In chapter 3, cumulative 

distribution function (CDF) was used in Figure 3.3 to illustrate the differences in speeds detected 

between PVR and Wavetronix sensors. It was expected that the two CDF lines for PVR and 

Wavetronix sensor data for each location would nearly overlap each other. However, it is 

obvious from Figure 3.3 that sites 6N, 6S, 19E, 19W, 32W, 39S, 61E, and 65E showed different 

traffic speed performance. Thus, these locations were excluded from further analysis. The data 

from these ATRs are shown in red in the table. 

 

Table A.1 Total PVR data available for all ATRs 

ATR Dir 
Number of Days  

Oct Nov Dec Feb Mar Apr Total 

2 E 7 14 2 6 - - 29 

2 W 7 14 2 6 - - 29 

6 N - 24 2 - - - 26 

6 S - 24 2 - - - 26 

19 E 7 14 2 6 - - 29 

19 W 7 14 2 6 - - 29 

20 E 7 14 2 6 - - 29 

20 W 7 14 2 6 - - 29 

31 E 7 14 2 6 - - 29 

31 W 6 14 2 6 - - 28 

32 E 7 14 2 6 - - 29 

32 W 7 14 2 6 - - 29 

38 E 7 14 2 6 - - 29 

38 W 7 14 2 6 - - 29 

39 N 7 14 2 6 -- - 29 

39 S 7 14 2 6 - - 29 

40 N - - - - 9 21 30 

40 S - - - - 9 21 30 

43 E 7 14 2 6 - - 29 

43 W 7 14 2 6 - - 29 

46 N 7 14 2 6 9 21 59 

46 S 7 14 2 6 9 21 59 

54 E 7 14 2 6 - - 29 

54 W 7 14 2 6 - - 29 

56 E - - - - 8 21 29 

56 W - - - - 8 21 29 

61 E - 24 2 6 - - 32 
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61 W - 24 2 6 - - 32 

64 N 7 14 2 6 - - 29 

64 S 7 14 2 6 - - 29 

65 E 5 14 8 6 - - 33 

65 W 5 14 8 6 - - 33 
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Appendix B. Errors Associated with Traffic Speed Reported Using Only Real-Time Data 

for Some Sites 

Figure B.1 is continuation of Figure 4.4, illustrating the errors associated with real-time 

traffic speed data for the sites that were not shown in Figure 4.4.  

 

 
(a) 

 
(b) 
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(c) 

Figure B.1 Errors associated with traffic speed reported using only real-time data for some sites 
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Appendix C. Top 10 Most Congested Segments. Metro Congestion per Mile, and Speed 

Performance for Interstate 80 in 2013, 2014, and 2015 

 

Top 10 Most Congested Segments in 2013 

 

The top 10 most congested segments in 2013 are shown in Figure C.1. All of the 

segments were located in the Omaha and Lincoln areas. Nine of the ten locations were in 

Omaha; the other top congested segment was near Lincoln. Most segments exhibited slightly 

higher congested hours during September and October across weekdays and between 3 pm and 6 

pm. A summary of each of the top ten locations are included below. 

 

 
Figure C.1 Top 10 congested segments in 2013 
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I-80 Omaha EB | L ST | 1.45 miles 

 

 

Annual number 

of hours of 

congestion 

 

Around 319 hours 

 

 

Highest 

monthly and 

weekday total 

hours of 

congestion  

Throughout year with a high in 

October at 46 hours, consistent 

across weekdays 

 

Longest 

congestion 

duration by 

time of day  

 

6 am to 9 am 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha WB | I-480/US-75 | 1.27 miles 

 

 

Annual number 

of hours of 

congestion 

 

251 hours 

 

Highest 

monthly and 

weekday total 

hours of 

congestion  

Throughout year with a high in June 

at 29 hours, consistent across entire 

week, except Saturday 

 

Longest 

congestion 

duration by 

time of day  

 

3 pm to 6 pm 

 

Distribution of 

times of 

congestion  
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I-80 EB Omaha EB | S 72ND ST | 0.33 miles 

 

 

Annual 

number of 

hours of 

congestion 

 

215 hours 

 

Highest 

monthly and 

weekday total 

hours of 

congestion  

Throughout year with a high in 

September at 43 hours, consistent 

across entire week, except Saturday 

Longest 

congestion 

duration by 

time of day  

Primarily between 6 am to 9 am, peak 

from 3 pm to 6 pm with 91 hours 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Near Lincoln EB| Exit 382 | 2.5 miles 

 

 

Annual number 

of hours of 

congestion 

 

202 hours 

 

Highest 

monthly and 

weekday total 

hours of 

congestion  

 

January to July with a high in March 

at 45 hours, consistent across entire 

week 

 

Longest 

congestion 

duration by 

time of day  

 

12 am to 6 am 

 

Distribution of 

times of 

congestion  
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I-80 Omaha WB | S 72ND ST | 0.39 miles 

 

 

Annual number 

of hours of 

congestion 

 

167 hours 

 

Highest monthly 

and weekday 

total hours of 

congestion  

 

Throughout year with a high in 

February at 17 hours and Tuesday 

being the highest day 

 

Longest conges-

tion duration by 

time of day  

 

3 pm to 6 pm 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha WB | S 60TH ST | 0.83 miles 

 

 

Annual number 

of hours of 

congestion 

 

159 hours 

 

Highest 

monthly and 

weekday total 

hours of 

congestion  

 

Throughout year with a high in June 

at 19 hours, consistent across entire 

week, except Saturday 

 

Longest conges-

tion duration by 

time of day  

 

3 pm to 6 pm 

 

Distribution of 

times of 

congestion  
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I-80 Omaha EB | S 84TH ST | 1.2 miles 

 

 

Annual number of 

hours of 

congestion 

 

133 hours 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

Throughout year with a high in 

September at 28 hours, consistent 

across entire week, except Saturday 

Longest conges-

tion duration by 

time of day  

Primarily between 3 pm to 6 pm, 

peak from 6 am to 9 am with 54 

hours 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha EB | S 60TH ST | 0.37 miles 

 

 

Annual number of 

hours of 

congestion 

 

116 hours 

 

Highest monthly 

and weekday total 

hours of 

congestion  

Throughout year with a high in 

September at 24 hours, consistent 

across entire week, except Saturday 

 

Longest conges-

tion duration by 

time of day  

Primarily between 3 pm to 6 pm, 

peak from 6 am to 9 am with 41 

hours 

 

Distribution of 

times of 

congestion  
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I-80 Omaha EB | I-480/US-75 | 1.09 miles 

 

 

Annual number 

of hours of 

congestion 

 

104 hours 

 

Highest monthly 

and weekday 

total hours of 

congestion  

 

February to August with a high in 

August at 19 hours, consistent 

across entire week, except Tuesday 

 

Longest conges-

tion duration by 

time of day  

Primarily between 9 am to 3 pm, 

peak from 3 pm to 6 pm with 40 

hours 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha EB | I-680 | 1.25 miles 

 

 

Annual number 

of hours of 

congestion 

 

95 hours 

 

Highest monthly 

and weekday 

total hours of 

congestion  

Throughout the year with a high in 

September at 11 hours, consistent 

across entire week 

 

Longest conges-

tion duration by 

time of day  

Primarily between 3 pm to 6 pm, peak 

from 6 am to 9 am with 40 hours 

 

Distribution of 

times of 

congestion  
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Top 10 Most Congested Segments in 2014 

 

In contrast to 2013, the top 10 most congested locations were much higher in 2014. Nine 

of the ten locations were in Omaha, and the remaining segment was near Lincoln (see Figure 

C.2). Most segments exhibited consistent congestion throughout year, except for May through 

October across weekdays and between 3 pm and 6 pm and 6 am and 9 am. A summary of each of 

the top ten locations are included below. 

  

 
Figure C.2 Top 10 congested segments in 2014 
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I-80 Omaha EB | L ST | 1.45 miles 

 

 

Annual number 

of hours of 

congestion 

Second year at the top of the list 

increased from 248 hours in 2013 

 

Highest monthly 

and weekday 

total hours of 

congestion  

 

April to November with a high in May 

at 105 hours 

 

Longest 

congestion 

duration by time 

of day  

Primarily between 3 pm to 6 pm, peak 

from 6 am to 9 am with 307 hours 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha WB | I-480/US-75 | 1.27 miles 

 

 

Annual number 

of hours of 

congestion 

 

Increased from 17 hours in 2013 

 

Highest monthly 

and weekday 

total hours of 

congestion  

February to October with a high in July 

at 40 hours. Consistent across weekdays 

 

Longest 

congestion 

duration by time 

of day  

 

3 pm to 6 pm 

 

 

Distribution of 

times of 

congestion  
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I-80 Near Lincoln EB| Exit 382 | 2.5 miles 

 

 

Annual number 

of hours of 

congestion 

 

Increased from 30 hours in 2013 

 

Highest monthly 

and weekday 

total hours of 

congestion  

May to July with a high in September at 

43 hours, consistent across entire week 

Longest 

congestion 

duration by time 

of day  

Primarily between 3 pm to 6 pm, peak 

from 12 am to 6 am with 89 hours 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha EB| S 72ND ST | 0.33 miles 

 

 

Annual number 

of hours of 

congestion 

 

Decreased from 27 hours in 2013 

 

Highest monthly 

and weekday 

total hours of 

congestion  

Throughout the year with a high in 

February at 28 hours, primarily on 

Thursday 

 

Longest 

congestion 

duration by time 

of day  

 

3 pm to 6 pm and 6 am to 9 am 

 

Distribution of 

times of 

congestion  

 

 

 

 

 

 

  

3 

232
Hours 

4 

188
Hours 



 

86 

 

 

I-80 Omaha WB | S 84TH ST | 1.2 miles 

 

 

Annual number 

of hours of 

congestion 

 

Slight decrease from last year 

 

Highest monthly 

and weekday 

total hours of 

congestion  

 

Consistent by month and entire week, 

except July and Sunday 

 

Longest 

congestion 

duration by time 

of day  

 

6 am to 9 am and 3 pm to 6 pm 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha WB | S 60TH ST) | 0.83 miles 

 

 

Annual number 

of hours of 

congestion 

 

Decreased from 36 hours in year 2013 

 

Highest monthly 

and weekday 

total hours of 

congestion  

Consistent by month and entire week, 

except May and Saturday 

 

Longest 

congestion 

duration by time 

of day  

 

3 pm to 6 pm 

 

Distribution of 

times of 

congestion  
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I-80 Omaha EB | S 60TH ST | 0.37 miles 

 

 

Annual number 

of hours of 

congestion 

 

Decreased from 14 hours in year 2013 

 

Highest monthly 

and weekday 

total hours of 

congestion  

 

Throughout the year with a high in 

February at 18 hours, consistent across 

weekdays 

Longest 

congestion 

duration by time 

of day  

 

Primarily between 6 am to 9 am, peak 

from 3 pm to 6 pm with 45 hours 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha WB | S 72ND ST | 0.39 miles 

 

 

Annual number 

of hours of 

congestion 

 

Decreased from 70 hours in year 2013 

 

Highest monthly 

and weekday 

total hours of 

congestion  

 

Throughout year with a high in 

February, consistent across weekdays 

 

Longest 

congestion 

duration by time 

of day  

 

3 pm to 6 pm 

 

Distribution of 

times of 

congestion  
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I-80 Omaha EB | I-680 | 1.25 miles 

 

 

Annual number 

of hours of 

congestion 

 

Slight decrease from last year 

 

Highest monthly 

and weekday 

total hours of 

congestion  

June and December with consistent 

across entire week, except Sunday 

 

Longest 

congestion 

duration by time 

of day  

 

3 pm to 6 pm and 6 am to 9 am 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha EB | NE -- IA STATE BORDER | 0.67 miles 

 

 

Annual number 

of hours of 

congestion 

 

84 hours 

 

Highest monthly 

and weekday 

total hours of 

congestion  

 

May to October with consistent across 

entire week, except Saturday 

 

Longest 

congestion 

duration by time 

of day  

 

3 pm to 6 pm 

 

Distribution of 

times of 

congestion  
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Top 10 Most Congested Segments in 2015 

 

In contrast to 2013 and 2014, the top 10 most congested locations exhibited less 

congestion in 2015. Most segments had a slightly higher number of hours of congestions in 

November and December, across weekdays and from 3 pm to 6 pm. The top 10 segments were 

located in the Omaha and Lincoln areas (see Figure C.3). A summary of each of the top ten 

locations are included below.  

 

 
Figure C.3 Top 10 congested locations in 2015 

 

  



 

90 

 

 

I-80 Omaha WB | S 60TH ST | 0.83 miles 

 

 

Annual number of 

hours of 

congestion 

 

Increased progressively from 253 hours 

in 2014 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

Consistent by month and entire 

weekdays 

 

Longest 

congestion 

duration by time of 

day  

 

3 pm to 6 pm 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha EB| S 72ND ST | 0.33 miles 

 

 

Annual number of 

hours of 

congestion 

 

Increased progressively from 94 hours in 

2014 

 

Highest monthly 

and weekday total 

hours of 

congestion  

Throughout the year with a high in 

December at 35 hours, primarily on 

Thursday 

 

Longest 

congestion 

duration by time of 

day  

Primarily between 6 am to 9 am, peak 

from 3 pm to 6 pm with 123 hours 

Distribution of 

times of 

congestion  
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I-80 Omaha WB | S 72ND ST | 0.39 miles 

 

 

Annual number of 

hours of 

congestion 

 

Increased progressively from 143 hours 

in 2014 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

Throughout year with a high in 

December, consistent across weekdays 

 

Longest 

congestion 

duration by time of 

day  

 

3 pm to 6 pm 

 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha WB | S 84TH ST | 1.2 miles 

 

 

Annual number of 

hours of 

congestion 

 

Increased progressively from 72 hours 

in 2014 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

Consistent by month and entire week, 

except August and weekends 

 

Longest 

congestion 

duration by time of 

day  

 

6 am to 9 am and 3 pm to 6 pm 

 

Distribution of 

times of 

congestion  
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I-80 Near Lincoln WB | US - 6/EXIT 396 | 0.59 miles 

 

 

Annual number of 

hours of 

congestion 

 

142 hours 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

High in February and consistent across 

entire week 

 

Longest 

congestion 

duration by time of 

day  

 

12 am to 6 am and 6 pm to 12 am 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha WB | S 42ND ST | 0.859 mile 

 

 

Annual number of 

hours of 

congestion 

 

137 hours 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

Throughout year and across weekdays, 

except April 

 

Longest 

congestion 

duration by time of 

day  

 

6 am to 9 am and 6 pm to 12 am 

 

Distribution of 

times of 

congestion  
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I-80 Omaha WB | I-480/US-75 | 1.27 miles 

 

 

Annual number of 

hours of 

congestion 

 

Decreased from 134 hours in 2014 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

February, August and September with 

consistent across entire week 

 

Longest 

congestion 

duration by time of 

day  

 

6 pm to 12 am and 12 am to 6 am 

 

 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha WB | I-480/US-75 | 0.39 mile 

 

 

Annual number of 

hours of 

congestion 

 

134 hours 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

June through February with a high in July 

at 28 hours, consistent across entire week 

 

Longest 

congestion 

duration by time of 

day  

 

12 am to 6 am 

 

Distribution of 

times of 

congestion  
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I-80 Omaha WB | S 60TH ST | 0.37 miles 

 

 

Annual number of 

hours of 

congestion 

 

Slight increase from past two years 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

September through June with a high in 

October at 20 hours, across weekdays 

 

Longest 

congestion 

duration by time of 

day  

 

6 am to 9 am and 3 pm to 6 pm 

 

Distribution of 

times of 

congestion  

 

 

 

I-80 Omaha EB | I-680 | 1.25 miles 

 

 

Annual number of 

hours of 

congestion 

 

Slight increase from past two years 

 

Highest monthly 

and weekday total 

hours of 

congestion  

 

Throughout the year with a high in 

October at 23 hours, across entire week 

 

Longest 

congestion 

duration by time of 

day  

 

6 am to 9 am 

 

Distribution of 

times of 

congestion  
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Metro Congestion per Mile in 2013  
 

The average amount of congestion per mile in 2013 for metro areas across Nebraska is 

shown in Figure C.4. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were 

consistently among the most congested metro routes across the state.  

 

Figure C.4 Comparison of the number of hours of congestion per mile in metro areas, 2013 
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Metro Congestion per Mile in 2014   

 

The average amount of congestion per mile in 2014 for metro areas across Nebraska is 

shown in Figure C.5. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were 

consistently among the most congested metro routes across the state. A noticeable increase in 

congestion is seen for I-180 near Lincoln during June, July, August, September, and October.  

 

Figure C.5 Comparison of the number of hours of congestion per mile in metro areas, 2014 
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Metro Congestion per Mile in 2015  

 

The average amount of congestion per mile in 2015 for metro areas across Nebraska is 

shown in Figure C.6. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were 

consistently among the most congested metro routes across the state.  

 

Figure C.6 Comparison of the number of hours of congestion per mile in metro areas, 2015 
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Speed Performance for Interstate 80 
 

The speed performance along I-80 in the eastbound and westbound directions for 2013, 

2014 and 2015 is shown in Figures C.7 through C.12.  

 
Figure C.7 Interstate 80 EB Speed Percentage in 2013 

 

  
 

Figure C.8 Interstate 80 WB Speed Percentage in 2013 
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Figure C.9 Interstate 80 EB Speed Percentage in 2014 

 

 
 

Figure C.10 Interstate 80 WB Speed Percentage in 2014 
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Figure C.11 Interstate 80 EB Speed Percentage in 2015 

 

Figure C.12 Interstate 80 WB Speed Percentage in 2015 
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