Inventory, Operations, and Safety at Free Right-Turn Ramps

Aemal Khattak, PhD
 Director, Mid-America Transportation Center
 Professor, Department of Civil \& Environmental Engineering
 University of Nebraska-Lincoln

Jonathon Camenzind, MS
Graduate Research Assistant
Department of Civil \&
Environmental Engineering
University of Nebraska-Lincoln

MM Shakiul Haque, PhD
Postdoctoral Research Associate
Department of Civil \&
Environmental Engineering
University of Nebraska-Lincoln

```
Mid-America Transportation Center
330E Prem S. Paul Research Center at
Whittier School 2200 Vine Street (402) 472-8126
Lincoln, NE 68583-0851

Dr. Aemal J. Khattak, PhD
Director, Mid-America Transportation
Center
Professor, Department of Civil \&
Environmental Engineering
University of Nebraska-Lincoln
Lincoln, NE 68583
Jonathon Camenzind, MS
Graduate Research Assistant
Department of Civil \& Environmental
Engineering
University of Nebraska-Lincoln
Lincoln, NE 68583-0851

Dr. MM Shakiul Haque, PhD
Postdoctoral Research Associate
Department of Civil \& Environmental Engineering
University of Nebraska-Lincoln
Lincoln, NE 68583-0851

Sponsored by
Nebraska Department of Transportation and U.S. Department of Transportation Federal Highway Administration

May 31, 2023

\section*{TECHNICAL REPORT DOCUMENTATION PAGE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{2. Government Accession No.} & \multicolumn{2}{|l|}{3. Recipient's Catalog} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
4. Title and Subtitle \\
Inventory, Operations, and Safety at Free Right-Turn Ramps
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
5. Report Date \\
May 31, 2023
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
7. Author(s) \\
Dr. Aemal J. Khattak, Jonathon Camenzind, Dr. MM Shakiul Haque
\end{tabular}} & \multicolumn{2}{|l|}{8. Performing Organization Report No.
26-1121-4058-001} \\
\hline \multicolumn{4}{|l|}{9. Performing Organization Name and Address University of Nebraska-Lincoln 2200 Vine Street, PO Box 830851 Lincoln, NE 68583-0851} & \multicolumn{2}{|l|}{11. Contract or Grant SPR-FY22(012)} \\
\hline \multicolumn{4}{|l|}{12. Sponsoring Agency Name and Address Nebraska Department of Transportation 1500 Nebraska 2 Lincoln, NE 68502} & \multicolumn{2}{|l|}{13. Type of Report and Period Covered NDOT Final Report} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
15. Supplementary Notes \\
Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
16. Abstract \\
This research focused on traffic safety and operational performance of rural, minor approach stop-controlled intersections with free right-turn (FRT) ramps. The objectives of the research were to: \\
- Create a statewide inventory of rural FRT ramp intersections and provide to the Nebraska Department of Transportation (NDOT), \\
- Using NDOT 10 -year crash data, conduct statistical safety analysis of rural FRT intersections extending \(1 / 4\)-mile in each direction from the intersection, \\
- Study vehicular operations at rural intersections with and without FRT ramps including a comparison of vehicular conflicts, and \\
- Develop guidelines for operations and safety tradeoffs to assist with NDOT projects on maintaining similar locations, removing, or reconstructing ramps. \\
As of 2023, 79 FRT ramps exist at 68 rural highway intersections in Nebraska. FRT ramps may be located on three-legged or fourlegged intersections and may be on the minor, the major, or both minor and major approaches of the same intersection. The research compared the 68 rural FRT ramp intersections to 24 similar non-FRT rural intersections to identify differences in crash frequencies, crash rates, and crash severity using 2010-2019 crash data from NDOT. The analysis did not show any statistically significant differences between the two intersection groups. This result is identical to a 1995 Nebraska-based study of rural FRT ramp intersection safety. \\
The research investigated vehicular conflicts between right-turning vehicles by pairing six non-FRT intersections with six FRT ramp intersections and collecting data using video recording equipment. The comparison was between vehicular conflicts experienced by rightturning traffic on the same approach of the FRT ramp and non-FRT intersections. Data analysis showed that non-FRT right-turns on the minor approach, major approach with no exclusive right-turn lane, and major approach with an exclusive right-turn lane experienced statistically significantly higher conflicts per 1,000 entering right-turning vehicles than FRT ramp intersections. \\
A VISSIM microsimulation model of traffic operations at FRT ramp intersections and non-FRT intersections enabled the creation of 324 scenarios, based on varying traffic and roadway geometry. Assuming a 20-year lifespan, benefit cost (B/C) analysis was conducted for combinations of discount rates ( \(4 \%, 6 \%\), and \(8 \%\) ), major road AADT ( 5,\(000 ; 10,000 ; 15,000\) ), minor road AADT ( 2,\(500 ; 5,000\); \(7,500)\), percent right turning traffic \((10 \%, 25 \%, 50 \%)\), FRT ramp radius in feet \((650 ; 1,200 ; 1,800)\) and speed limit in mph \((45,55,65)\). Traffic operational benefits are the basis for considering FRT ramp construction, reconstruction, or removal at rural, minor approach stopcontrolled intersections in Nebraska. The reason is the absence of any discernable differences in safety at FRT ramp and comparable nonFRT intersections. NDOT can make more informed decisions on FRT ramp intersections based on guidance in this report.
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
17. Key Words \\
Safety, Intersection, Free Right Turn, Ramp, Traffic, Operations
\end{tabular}} & \multicolumn{3}{|l|}{18. Distribution Statement No restrictions.} \\
\hline 19. Security Classif. (of this report)
Unclassified & & \multicolumn{2}{|l|}{20. Security Classif. (of this page) Unclassified} & & 22. Price \\
\hline
\end{tabular}

Form DOT F 1700.7 (8-72)
Reproduction of completed page authorized

\section*{Disclaimer}

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The contents do not necessarily reflect the official views or policies of the Nebraska Department of Transportations nor the University of Nebraska-Lincoln. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report.

The United States (U.S.) government and the State of Nebraska do not endorse products or manufacturers. This material is based upon work supported by the Federal Highway Administration under SPR-1(19) (M092). Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Federal Highway Administration."

This report has been reviewed by the Nebraska Transportation Center for grammar and context, formatting, and 508 compliance.

NOTE: This report uses the term 'crash' to refer to vehicular collisions on roadways resulting in property damage and/or injuries and fatalities. However, the term 'accident' is also used when referring to legacy items or when referencing or quoting published literature.

\section*{Acknowledgments}

The authors thank the members of the Technical Advisory Committee (Alan Swanson, Scott Milliken, Kris Fornoff, Kyle Christensen, Abe Anshasi) for their guidance and input throughout this study. The authors are thankful for the help received from the NDOT Research Division (Mark Fischer, Lieska Halsey, Dina Harris) with all aspects of this research project. Abdul Farhan (UNL student) is acknowledged for his help with data collection and extraction from recorded video.

\section*{Table of Contents}
TECHNICAL REPORT DOCUMENTATION PAGE .....  i
Disclaimer ..... ii
Acknowledgments ..... iii
Abstract ..... viii
Chapter 1 Introduction ..... 2
1.1 Background ..... 2
1.2 Research Objectives ..... 4
1.3 Report Outline ..... 5
Chapter 2 Literature Review ..... 6
2.1 Free Right-Turn Ramps ..... 6
2.2 Rural, Unsignalized Intersections ..... 13
2.3 Sight Distance ..... 15
2.4 Acceleration and Deceleration Lanes ..... 16
Chapter 3 Inventory of FRT Ramp Intersections ..... 17
3.1 Identifying FRT Ramps and their Intersections ..... 17
3.2 FRT Ramp Intersection Characteristics ..... 19
3.3 Traffic Volume ..... 20
Chapter 4 Inventory of Comparison Intersections ..... 22
Chapter 5 Safety Analysis ..... 25
5.1 Methodology ..... 25
5.1.1 Empirical Bayes Method ..... 25
5.1.2 Crash Frequency and Crash Rate with Test of Significance ..... 26
5.1.3 Modeling Crash Frequencies ..... 28
5.1.4 Method Selection ..... 30
5.2 Data Collection ..... 30
5.3 Analysis and Results ..... 33
5.4 Significance Testing ..... 37
5.5 Modeling Results ..... 37
Chapter 6 Traffic Conflict Analysis ..... 40
6.1 Background ..... 40
6.2 Methodology ..... 40
6.2.1 Conflict Definitions ..... 42
6.3 Conflicts Observed at Each Site ..... 44
6.3.1 Category 1: Low AADT, 3-Leg ..... 45
6.3.2 Category 2: Low AADT, 4-leg ..... 45
6.3.3 Category 3: Medium AADT, 3-Leg ..... 46
6.3.4 Category 4: Medium AADT, 4-Leg ..... 47
6.3.5 Category 5: High AADT, 3-Leg ..... 48
6.3.6 Category 6: High AADT, 4-Leg ..... 49
6.4 Analysis and Results ..... 50
Chapter 7 Traffic Operations Analysis ..... 53
7.1 Background ..... 53
7.2 Methodology ..... 54
7.3 Data Preparation ..... 55
7.3.1 Data Collection Site Characteristics ..... 55
7.3.2 Data Collection and Processing ..... 61
7.4 Microsimulation Modelling ..... 63
7.4.1 Microsimulation Model Calibration Method ..... 64
7.4.2 Calibration and Validation Results ..... 68
7.4.3 Sensitivity Analysis ..... 70
7.5 Feasibility Studies of FRT Ramp ..... 71
7.5.1 Scenario Development ..... 72
7.5.2 Operational and FRT Construction Costs ..... 73
7.5.3 Benefit Cost Analysis ..... 75
Chapter 8 Summary and Conclusions ..... 78
8.1 Research Summary and Results ..... 78
8.1.1 Inventory of FRT and non-FRT Intersections ..... 78
8.1.2 Safety Analysis ..... 79
8.1.3 Conflict Analysis ..... 80
8.1.4 Operational Analysis ..... 82
8.2 Conclusions ..... 83
8.3 Limitations and Future Research ..... 84
References ..... 86
Appendix A ..... 91
Appendix B ..... 110
Appendix C ..... 113
Appendix D ..... 139
Appendix E ..... 142
List of Figures
Figure 1.1 Typical FRT Ramp Sketch (McCoy et al., 1995) ..... 3
Figure 2.1 Dilemma Zone Faced by Drivers on the Minor Approach (Pawar \& Patil, 2017) ..... 14
Figure 3.1 Map of all FRT Ramp Intersections in Nebraska ..... 18
Figure 4.1 Map of Non-FRT Intersections for Comparison ..... 24
Figure 5.1 Crashes from 2010-2019 at N16/N35 FRT Intersection ..... 31
Figure 5.2 Crash Severity Comparison ..... 32
Figure 5.3 Crash Type Comparison ..... 33
Figure 6.1 Miovision Scout Camera (https://miovision.com/scout/scout-hardware) ..... 42
Figure 6.2 Low AADT, 3-Leg Intersections ..... 45
Figure 6.3 Low AADT, 4-Leg Intersections ..... 46
Figure 6.4 Medium AADT, 3-Leg Intersections. ..... 47
Figure 6.5 Medium AADT, 4-Leg Intersections ..... 48
Figure 6.6 High AADT, 3-Leg Intersections ..... 49
Figure 6.7 High AADT, 4-Leg Intersections ..... 50
Figure 7.1 Three-Legged One-way Stop-Controlled Intersection with FRT Ramp at Bone Creek, Nebraska (Location coordinates: 41.333405, -97.129290) ..... 56
Figure 7.2 Four-legged Unsignalized Intersection with an FRT Ramp at Marietta, Nebraska (Location coordinates: 41.2341865, -96.502896) ..... 57
Figure 7.3 Three-legged Unsignalized Regular Intersection at David City, Nebraska (Locationcoordinates: 41.206305, -97.129958)59
Figure 7.4 Four-legged Unsignalized Regular intersection at Avoca, Nebraska (Location coordinates: 40.813046, -96.178535) ..... 60
Figure 7.5 Data Collection Devices ..... 61
Figure 7.6 Miovision Device Locations at the Four Test Sites ..... 62
Figure 7.7 Miovision Data Extraction using MAC Addresses ..... 63
Figure 7.8 Vehicle Pattern Observed Using Unique Object from Miovision ..... 63
Figure 7.9 Microsimulation Model Calibration Algorithm (Haque et al., 2022) ..... 65
Figure 7.10 Critical Left-Turn Movement from Minor Road to Major Road. ..... 68

\section*{List of Tables}

Table 2.1 Comparison of Public's Concerns of FRT Removal and Findings of McCoy's Research 8

Table 2.2 Summary of FRT-Related Research ............................................................................ 12
Table 3.1 Breakdown of the Intersections Containing FRT Ramps ............................................ 18
Table 3.2 Breakdown of FRT Ramp Approaches ........................................................................ 19
Table 3.32018 AADT by Intersection Type............................................................................... 20
Table 4.1 Non-FRT Ramp Intersection AADT Averages............................................................ 23
Table 5.1 Crash Frequency Comparison..................................................................................... 35
Table 5.2 Crash Rate Comparison............................................................................................... 36
Table 5.3 Negative Binomial Model for 10-year Crash Frequency ............................................. 39
Table 6.1 Intersections for Conflict Analysis............................................................................... 41
Table 6.2 Conflict Analysis Results............................................................................................. 51
Table 6.3 Traffic Conflict Scenario Results.................................................................................. 52
Table 7.1 Microsimulation Calibration Results for Intersections with and without FRT Ramp . 69
Table 7.2 Calibrated Microsimulation Parameter Values for Drive Behavior and Gap Acceptance
Model............................................................................................................................................. 70
Table 7.3 Sensitivity Analysis Results of Three Scenarios.......................................................... 71
Table 7.4 Cost Components and Unit Values for Operation, Construction and Maintenance .... 74
Table 7.5 Benefit cost ratio (B/C) for FRT Ramp under Different Traffic and Geometric
Conditions

\begin{abstract}
This research focused on traffic safety and operational performance of rural, minor approach stop-controlled intersections with free right-turn (FRT) ramps. The objectives of the research were to:
- Create a statewide inventory of rural FRT ramp intersections and provide to the Nebraska Department of Transportation (NDOT),
- Using NDOT 10-year crash data, conduct statistical safety analysis of rural FRT intersections extending \(1 / 4\)-mile in each direction from the intersection,
- Study vehicular operations at rural intersections with and without FRT ramps including a comparison of vehicular conflicts, and
- Develop guidelines for operations and safety tradeoffs to assist with NDOT projects on maintaining similar locations, removing, or reconstructing ramps.

As of 2023, 79 FRT ramps exist at 68 rural highway intersections in Nebraska. FRT ramps may be located on three-legged or four-legged intersections and may be on the minor, the major, or both minor and major approaches of the same intersection. The research statistically compared the 68 rural FRT ramp intersections to 24 similar non-FRT rural intersections to identify differences in crash frequencies and crash rates using 2010-2019 crash data from NDOT. The analysis did not show any statistically significant differences between the two intersection groups. This result is identical to a 1995 Nebraska-based study of rural FRT ramp intersection safety.
\end{abstract}

The research investigated vehicular conflicts between right-turning vehicles by pairing six non-FRT intersections with six FRT ramp intersections and collecting data using video recording equipment. The comparison was between vehicular conflicts experienced by right-
turning traffic on the same approach of the FRT ramp and non-FRT intersections. Data analysis showed that non-FRT right-turns on the minor approach, major approach with no exclusive rightturn lane, and major approach with an exclusive right-turn lane experienced statistically significantly higher conflicts per 1,000 entering right-turning vehicles than FRT ramp intersections.

A VISSIM microsimulation model of traffic operations at FRT ramp intersections and non-FRT intersections enabled the creation of 324 scenarios, based on varying traffic and roadway geometry. Assuming a 20 -year lifespan, benefit cost (B/C) analysis was conducted for combinations of discount rates ( \(4 \%, 6 \%\), and \(8 \%\) ), major road Annual Average Daily Traffic (AADT) \((5,000 ; 10,000 ; 15,000)\), minor road AADT \((2,500 ; 5,000 ; 7,500)\), percent right turning traffic ( \(10 \%, 25 \%, 50 \%\) ), FRT ramp radius in feet ( \(650 ; 1,200 ; 1,800\) ) and speed limit in mph \((45,55,65)\). Traffic operational benefits are the basis for considering FRT ramp construction, reconstruction, or removal at rural, minor approach stop-controlled intersections in Nebraska. The reason is the absence of any discernable differences in the crashes at FRT ramp and comparable non-FRT intersections. NDOT can make more informed decisions on FRT ramp intersections based on guidance in this report.

\section*{Chapter 1 Introduction}

\subsection*{1.1 Background}

Free right-turn (FRT) ramps are alternative right-turn lane designs for intersecting highways. In Nebraska, FRT ramps can be found in both rural and urban areas. In rural areas, they are typically located at two-way stop-controlled (TWSC) intersections, meaning traffic on the major road is free-flowing, while traffic on the minor road is controlled by a stop sign. Previous research, design standards, warrants, etc. are sparse, so there is no universal definition of an FRT ramp. For this research, a study conducted by McCoy et al. (1995) titled Guidelines for Free Right-Turn Lanes at Unsignalized Intersections on Rural Two-Lane Highways, was relied upon as a starting point when looking for definitions and common characteristics of FRT ramps. Therefore, an FRT ramp is being defined as it was in McCoy's research as "a turning roadway at an intersection to provide for free-flowing right-turn movements".

Figure 1.1 represents a typical FRT ramp in Nebraska, as depicted by McCoy. From the figure, the FRT ramp is located on the minor approach which is stop-controlled, with the major approach being uncontrolled. Leading to the ramp is a deceleration lane to separate the through traffic from the right-turning traffic. At the end of the ramp is an acceleration lane, which provides a safe merge with through traffic on the major approach. At the exit of the FRT ramp, before the acceleration lane, is a yield sign which indicates the right-turning vehicles must yield to the major through traffic, which has the right-of-way.


Figure 1.1 Typical FRT Ramp Sketch (McCoy et al., 1995)

The layout of an FRT ramp is not exclusive to the figure presented above. For example, FRT ramps may also be located on the major approach, or even on both a major and minor approach at the same intersection. Additionally, rather than having an acceleration lane to merge with the crossing-through traffic, a designated lane may exist, so that right-turning drivers do not have to merge at all. In this case, the yield sign would not be present. While there are no strict guidelines for what dictates a free right-turn ramp, the focal concept is that a free right-turn ramp is a right-turn lane design found at rural two-way stop-controlled highway intersections, in which right-turning vehicles can make unimpeded right turns separated from through traffic, at freeflow speeds.

The idea in constructing free right-turn ramps at intersections is to reduce delay for rightturning vehicles, as well as make the turning maneuver safer by separating the right-turning traffic from the through traffic. The specific benefits experienced from the use of an FRT ramp by right-turning drivers differ slightly from when it is located on the minor approach versus when it is located on the major approach. As in Figure 1.1, when an FRT ramp is located on the minor approach, delay is reduced because the driver does not have to slow to a stop, wait for an acceptable gap in traffic, then turn right. Instead, the driver can turn at a comfortable speed and merge with the crossing-through traffic. For the case of the ramp being located on the major approach, conflict is reduced in addition to delay reduction. Typically, rural highways are two lanes, therefore, through traffic and right-turning traffic have to share the same lane at intersections. If a vehicle on the major road slows to make a right turn and there is no right-turn lane of any kind, a following-through vehicle traveling at a high rate of speed will have to slow down to avoid a rear-end collision. The FRT ramp eliminates this problem by separating the traffic. These various scenarios will be explored in this research.

\subsection*{1.2 Research Objectives}

The main objective of the research is to statistically assess the safety of rural FRT intersections using the crash frequencies and crash rates, along with a two-sample t-test. Other objectives include:
- Identification of rural FRT intersections including geographic locations in Nebraska for analysis,
- Identification of rural non-FRT intersections that are similar to the FRT intersections based on considerations of intersection geometry and traffic characteristics,
- Collection of police-reported crashes for rural FRT intersections as well as for the nonFRT intersections for the period 2010-2019,
- Safety analysis using the collected data,
- Operational analysis of right-turning traffic at FRT intersections (conflict comparison of right-turning traffic at FRT and non-FRT intersections), and
- Safety and operational tradeoff analysis to determine the feasibility of FRT ramps.

\subsection*{1.3 Report Outline}

This research was conducted in six steps.
1. A detailed literature review of free right-turn ramps and topics associated with safety at rural, highway intersections.
2. Collection of Nebraska crash data from 2010 to 2019.
3. Collection of traffic conflicts using video recording equipment.
4. Statistical analyses of the traffic crash data.
5. Statistical analyses of the conflict data.
6. Examination of the safety and conflict results.
7. Feasibility studies of FRT ramps.

\section*{Chapter 2 Literature Review}

Published literature on free right-turn ramps is somewhat scarce, as the concept is not widely utilized by many state transportation agencies. For those states that do use FRT ramps at rural intersections, guidelines, design standards, safety analyses, etc., are limited. This literature review first presents a discussion of the studies that are directly related to FRT ramps, followed by other topics that are related and relevant to traffic operations and safety of rural, unsignalized intersections containing an FRT ramp. These other topics include operations and safety at unsignalized, rural intersections, intersection sight distance, and acceleration and deceleration lanes.

\subsection*{2.1 Free Right-Turn Ramps}

Free right-turn (FRT) ramps, also referred to as FRT lanes in prior research, are being defined in this study as "turning roadways for free-flowing right-turn movements at intersections, typically used to provide a high level of service at high-speed, high-volume intersections" (McCoy et al., 1995). The terms "FRT ramps" and "FRT lanes" will be used synonymously, as different reports use different verbiage, although they identify the same concept. A study conducted by McCoy et al. (1995) of the University of Nebraska-Lincoln, developed traffic volume warrants for when it was necessary to construct an FRT lane at two, two-lane rural, unsignalized intersections. Also included in the study was a discussion of the public's perspective regarding FRT lanes and a safety analysis comparing intersections with and without an FRT lane.

During the period in which McCoy's research was being conducted, an intersection in Genoa, Nebraska was going through the process of having an existing FRT lane removed. Citizens that frequented the intersection opposed this decision. From the perspective of the
drivers, FRT lanes remedy concerns that non-FRT approaches present. Some of these concerns, stated by citizens via a survey, were the inconvenience of having to slow down and stop to make a right turn, needing to speed back up to merge with cross traffic, and difficulty in making right turns for large trucks, especially in icy conditions. Because of the speed changes and sudden stopping required to turn, citizens believed that the occurrence of rear-end crashes would be significantly lower with FRT lanes present at the intersection.

These concerns were tested through a safety analysis in which 32 approaches with an FRT lane on two, two-lane rural highways were selected. These approaches had stop-controlled or uncontrolled through traffic with yield-controlled or uncontrolled FRT lanes. Fifty-seven nonFRT approaches with similar traffic and geometric characteristics were chosen for comparison. The safety analysis concluded that the presence of an FRT lane did not affect the frequency, severity, or types of accidents that occurred on approaches to unsignalized intersections of rural two-lane highways. Rear-end accidents were shown to decrease with the presence of an FRT lane, but these results were not statistically significant.

During field tests of intersections with FRT and non-FRT lanes, McCoy et al. (1995) concluded that FRT lanes reduce travel distances, speed changes, and delays of right-turning vehicles. After conducting a benefit-cost analysis, traffic volume warrants were created in which an intersection's right-turning daily volume and percent trucks traffic determined whether an FRT lane was warranted or not. Percent trucks was included because FRT lanes were found to provide greater operational cost savings to trucks than to passenger cars. Because the crash analysis was not statistically significant, it was not included as a part of the FRT warrants. In the recommendations of this research, it was stated: "FRT lanes should not be promoted to enhance safety, but to improve operational efficiency of right-turn movements" (McCoy et al., 1995).

Table 2.1 provides a summary of McCoy's research in terms of the public's concerns regarding the removal of an FRT lane at an intersection in Genoa, Nebraska compared to the findings from the study.

Table 2.1 Comparison of Public's Concerns of FRT Removal and Findings of McCoy's Research
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Public's Concerns of FRT \\
Lane Removal
\end{tabular} & Research Findings & \begin{tabular}{l} 
Public's \\
Concerns \\
Supported \\
through \\
Research?
\end{tabular} \\
\hline \begin{tabular}{l} 
An intersection with an FRT \\
lane would be safer than an \\
intersection without an FRT \\
lane
\end{tabular} & \begin{tabular}{l} 
A safety analysis concluded that the \\
presence of an FRT lane does not affect the \\
frequency, severity, or types of accidents \\
that occur
\end{tabular} & No \\
\hline \begin{tabular}{l} 
FRT lanes remedy the \\
inconvenience of having to \\
slow down, stop, and speed \\
back up when completing a \\
right turn
\end{tabular} & \begin{tabular}{l} 
Data from field tests revealed that FRT \\
lanes reduce travel distances, speed \\
changes, and delays of right-turning \\
vehicles
\end{tabular} & Yes \\
\hline \begin{tabular}{l} 
FRT lanes make the right- \\
turning process for trucks \\
easier and safer, especially at \\
night and during icy \\
conditions
\end{tabular} & \begin{tabular}{l} 
Data from field tests revealed that FRT \\
lanes provide even greater operational cost \\
savings to trucks than they do to passenger \\
cars
\end{tabular} & Yes \\
\hline
\end{tabular}

A study by Yang (2008) established warrants for FRT lanes as well. In this research, a statistical model was developed based on the concept of two-lane roadways where a decelerating right-turning vehicle forces the following through vehicle to decelerate to avoid a possible rear-
end collision (Yang, 2008). Warrants were subsequently created where the total through traffic volume of the approach and the percentage of right-turning traffic determined whether an FRT lane was necessary. It was noted that traffic volume should not be the only factor in the decision of whether or not to construct an FRT lane. According to Yang (2008), in cases where other operational or safety factors have a significant impact, engineering judgment should be used.

The National Cooperative Highway Research Program (NCHRP) Report 208 titled Design Guidance for Channelized Right-Turn Lanes (2014), provides a good understanding of FRT ramps, when they may be warranted, and their advantages and disadvantages. The primary reasons for adding an FRT ramp are to increase vehicular capacity at intersections, reduce delay to drivers by allowing them to turn at higher speeds, reduce unnecessary stops, clearly define the appropriate path for right-turn maneuvers at skewed intersections or at intersections with high right-turning traffic volumes, improve safety by separating the points at which crossing conflicts and right-turning traffic merge conflicts occur, and to permit the use of large curb radii to accommodate large turning vehicles (Potts et al., 2014). A significant advantage of FRT ramps is that delay to right-turning drivers is reduced. Yield-controlled FRT ramps can reduce right-turn delay by 25 to 75 percent compared to conventional right-turn lane designs (Potts et al., 2014). The use of acceleration and deceleration lanes can also reduce delay by allowing vehicles to separate from through traffic and have easier merge capabilities. An issue with FRT ramps is the conflict of turning vehicles with pedestrians. However, because the focus of this research is on rural intersections where there is little-to-no pedestrian traffic, that concern should not be of much influence, which was also stated in the NCHRP report.

The NDOT Roadway Design Manual (2012) does not contain much information on FRT ramps. They are identified in the text as "free-flow right-turn lanes." These lanes are defined as
channelized right-turn lanes at intersections, providing free-flow turn movements. The design of these turn lanes consists of "a deceleration lane leading to a horizontal curve, providing a gradual speed reduction with a more natural turning path for the driver" (Nebraska Department of Transportation, 2012). The document then references "Widths for Turning Roadways at Intersections" in A Policy on Geometric Design of Highways and Streets (2011) for further information.

Similar to the FRT ramp as defined in this research, a free right-turn channel is a freeflowing right-turn lane that is separated from through traffic, with a designated lane after the right-turn movement (Macfarlane et al., 2011). This design differs from an FRT ramp in that it requires no merging once the right-turn movement has been made. Free right-turn channels reduce delay, fuel emissions, and right-turn conflicts with crossing through traffic. A problem found with this design is that drivers tend to yield to cross traffic upon completing the turn even though it is not necessary, due to the added lane designated for right-turning traffic. This conflict thus increases delay at the intersection. A remedy suggested by the researchers was to add signage instructing drivers that they do not need to yield.

In another study regarding free right-turn channels, an email survey asked approximately 1,000 responding participants to indicate how they would behave at several right-turn lane designs at signalized intersections (i.e., STOP, YIELD, PROCEED, WAIT) (Macfarlane et al., 2011). These designs included free right-turn channels, yield right-turn channels, and standard right-turn lanes. The results showed that a statistically significant proportion of drivers behaved similarly at all intersection treatments, regardless of signage or channelization. This results in unnecessary added delay, as a free right-turn channel's purpose is to eliminate delay for rightturning vehicles.

Table 2.2 provides a summary of the related research on FRT ramps and the main findings and/or conclusions drawn from them.

Table 2.2 Summary of FRT-Related Research
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Research \\
Topic
\end{tabular} & \multirow{2}{*}{ Author(s) } & Main Findings \\
\hline
\end{tabular}

\subsection*{2.2 Rural, Unsignalized Intersections}

Intersections, compared to roadway segments, have greater potential for traffic crashes due to the complexity of traffic movements and potential conflicts between vehicles on the major and minor approaches (Kim et al., 2006). A typical rural, unsignalized intersection is a two-way, stop-controlled (TWSC) intersection. At these intersections, the major roadway traffic is freeflowing (uncontrolled), while the minor roadway traffic is stop-controlled. Drivers on the minor approach must decide on an acceptable gap in traffic to proceed through the intersection or make a turn. These intersections typically experience a higher crash frequency and severity than other rural intersections because of the difficulty in selecting gaps and poor decision-making by drivers on the minor approach (Leckrone et al., 2011). Comparing unsignalized and signalized, rural intersections, it has been noted that 90 percent of fatalities occur at the former, while 10 percent of fatalities occur at the latter (Pawar \& Patil, 2017). The area of the major roadway segment where minor approach drivers must analyze conflicts is often called the "dilemma zone." The dilemma zone is the zone of a major roadway segment over which, if a vehicle is present with a certain speed, a dilemma is created for minor road vehicles regarding maneuvering (Pawar \& Patil, 2017). If drivers on the minor approach are aggressive or misjudge the vehicles in the dilemma zone, potential conflict arises. Table 2.2, taken from Pawar and Patil's (2017) research, illustrates situations in which a driver can easily reject a gap, easily accept a gap, and one in which a dilemma arises where the decision is not clear.


Figure 2.1 Dilemma Zone Faced by Drivers on the Minor Approach (Pawar \& Patil, 2017)

An Indiana study analyzed 600 TWSC intersections and determined potential solutions to reducing the frequency and severity of crashes at these intersections. The authors recommended adding acceleration lanes, increasing the intersection angle, widening medians to more than 80 feet, and improving recognizability of intersections to improve safety (Leckrone et al., 2011). In an Iowa study, changes to signage on the minor roads and median were investigated by adding a double-yellow center line in the median and yield/stop bars, adding advance in-lane rumble strips for minor roadway traffic, and right- and left-turn lanes were recommended for safety improvement (Maze et al., 2004). There is no "fix-all" solution to solving the safety issues at rural, unsignalized intersections and many state agencies take measures that best suit their economic and operational needs.

On the topic of the minor approach of TWSC intersections, operations are also significantly influenced by the drivers' behavior. Drivers' decision on gap acceptance when
judging vehicles in the "dilemma zone" affects delay at the intersection (Khattak \& Jovanis, 1990). Some drivers are more conservative and experience anxiety in these situations, and they may not accept gaps that would be considered acceptable, thus increasing the delay experienced by the following vehicles. The type of signage present on the minor approach also has effects on traffic operations. Comparing stop control and yield control, yield control shows a decrease in travel time, gasoline consumption, and exhaust emissions (Hall et al., 1978).

\subsection*{2.3 Sight Distance}

Sight distance at rural, unsignalized intersections can be a potential safety hazard for vehicles on the minor approach. If an exclusive right-turn lane is present on the major road, drivers on the minor road have restricted sight distance. This can be dangerous because vehicles traveling on the major roadway are traveling at high speeds, so if a minor approach driver's view is obstructed by a right-turning vehicle, a potential conflict could arise if the driver on the minor approach enters the intersection and does not see a vehicle traveling through on the major road (Zeidan \& McCoy, 2000). A study of right-turn-on-red situations at signalized intersections revealed that with the obstructed sight distance, right-turning vehicles on the minor approach often accepted smaller gaps, which could have increased conflicts as a result (Yan \& Richards, 2009). A solution to the sight distance obstruction, presented by an Auburn University research team, is to offset the right-turn lane on the major approach, thus giving vehicles on the minor approach a clearer view of traffic on the main road (Zhou et al., 2017). This idea was studied at the University of Nebraska as well, in which design guidelines were provided on how to maximize the sight distance at TWSC intersections by using offset right-turn lanes (Schurr \& Foss, 2010). Research on offset right-turn lanes in Nebraska was explored further in 2018, where
economic and safety benefits were compared to intersections with non-offset right-turn lanes or no right-turn lanes at all (Khattak \& Kang, 2018).

\subsection*{2.4 Acceleration and Deceleration Lanes}

Acceleration and deceleration lanes provide both operational and safety benefits when accompanied by an FRT ramp. Deceleration lanes provide a means of safe deceleration outside the through-lane traffic and a means of separating right-turning vehicles from other traffic at stop-controlled intersection approaches (Potts et al., 2007). In low-traffic scenarios like FRT ramp locations, drivers can decelerate earlier and at higher speeds than in high-traffic scenarios, thus creating the expectation of a safe decelerating environment (Calvi et al., 2012). Potential conflicts increase as the deceleration lane length decreases; therefore, careful consideration should be taken when designing deceleration lanes (Bared et al., 1999).

Acceleration lanes provide an opportunity for vehicles to complete the right-turn maneuver unimpeded and then accelerate parallel to the cross-street traffic before merging. Depending on the type of traffic control, traffic volume, and other characteristics, acceleration lanes can reduce right-turn delay by 65 to 85 percent (Potts et al., 2014). Traffic volumes on the major roadway affect whether or not a driver accepts a gap when merging, and merging length increases as traffic volume increases. Unlike deceleration lanes, the length of the acceleration lane does not significantly influence drivers' speed, decision-making, or conflicts (Calvi \& De Blasiis, 2011). From McCoy's research, a survey was sent out to which 37 states' transportation agencies responded, and the majority of the concerns regarding FRT ramps was safety while merging from the FRT lane to the through traffic, therefore, an acceleration lane was highly suggested when designing FRT ramps (McCoy et al., 1995).

\section*{Chapter 3 Inventory of FRT Ramp Intersections}

At the beginning of this research, there was no complete inventory of the FRT ramps in Nebraska. The first objective of this research, therefore, was to develop one.

\subsection*{3.1 Identifying FRT Ramps and their Intersections}

The process began using the latest edition of the Nebraska Highway Reference Logbook, which identifies structures, grade changes, and other important characteristics of the highways, spurs, and connecting links in Nebraska by their numbered highway markings. Using a simple keyword search of the pdf file of the logbook, "RAMP" was searched, in which interchanges, weigh station entrances and exits, and a multitude of right-turn lane designs, including free rightturn ramps, were selected. Of the approximately 1,200 results, the interchanges and weigh stations were eliminated through a simple search on Google Earth, using the highway markings provided in the logbook as reference. With roughly 200 "ramps" remaining, criteria were developed so that only suitable FRT ramps would be selected for this study. These criteria included: the ramps being located in rural areas, with uncontrolled or yield-controlled traffic operations at the merge point; the major road being free-flowing (uncontrolled); and the minor road through traffic being stop-controlled. In the end, 79 FRT ramps were identified at 68 intersections, with 11 intersections having 2 FRT ramps. Figure 3.1 presents all 68 rural FRT ramp intersections on the Nebraska highway system.


Figure 3.1 Map of all FRT Ramp Intersections in Nebraska

Table 3.1 shows the number of intersections containing an FRT ramp, categorized into three-legged and four-legged intersections, as well as showing whether these intersections contain one or two FRT ramps. It is clear from the table that four-legged intersections are home to the majority of the two-ramp fixtures, with only one three-legged intersection having two FRT ramps. Additionally, it is a fairly even split between three-legged and four-legged intersections in relation to the presence of at least one FRT ramp.

Table 3.1 Breakdown of the Intersections Containing FRT Ramps
\begin{tabular}{|l|cc|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \begin{tabular}{c} 
3-Leg \\
\multicolumn{1}{c|}{} \\
Intersections
\end{tabular} & \begin{tabular}{c} 
4-Leg \\
Intersections
\end{tabular} & \begin{tabular}{c} 
All \\
Intersections
\end{tabular} \\
\hline Intersections with: & & & \\
1 FRT Ramp & 30 & 27 & 57 \\
2 FRT Ramps & 1 & 10 & 11 \\
\hline Total & \(\mathbf{3 1}\) & \(\mathbf{3 7}\) & \(\mathbf{6 8}\) \\
\hline
\end{tabular}

Regarding the FRT ramps themselves, rather than their intersections, Table 3.2 shows the number of FRT ramps at each intersection configuration, and if their location is on the major (uncontrolled) or minor (stop-controlled) approach. Although the number of intersections containing an FRT ramp are fairly even between three-legged and four-legged, four-legged intersections have more FRT ramps in total due to the significant number of intersections containing two ramps. Also, from the table, the majority of the FRT ramps are located on the major approach rather than the minor approach, especially for three-legged intersections.

Table 3.2 Breakdown of FRT Ramp Approaches
\begin{tabular}{|c|cc|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \begin{tabular}{c} 
3-Leg \\
Intersections
\end{tabular} & \begin{tabular}{c} 
4-Leg \\
Intersections
\end{tabular} & \begin{tabular}{c} 
All \\
Intersections
\end{tabular} \\
\hline FRT Ramps & \(\mathbf{3 2}\) & \(\mathbf{4 7}\) & \(\mathbf{7 9}\) \\
On Minor Approach & 5 & 18 & 23 \\
On Major Approach & 27 & 29 & 56 \\
\hline
\end{tabular}

\subsection*{3.2 FRT Ramp Intersection Characteristics}

With the FRT ramps identified, their characteristics and the characteristics of their intersections were of interest. Using Google Earth and NDOT's Pathweb online database, information describing the intersection, such as the number of legs, presence of lighting, and county, were recorded. Regarding the major and minor roads of the intersections, information such as the number of lanes, presence of shoulders, surface material, etc., were recorded. Additionally, for the FRT ramp itself, signage present, type of channelizing island, FRT radius, FRT length, and presence of acceleration and deceleration lanes were recorded. These data were stored in an Excel spreadsheet for easy access. Appendix A provides a complete list of the variables that were logged as a part of the FRT ramp intersection inventory process, some basic

FRT intersection characteristics, and a breakdown of the FRT intersections and ramps by the county they are located in.

\subsection*{3.3 Traffic Volume}

In addition to the characteristics in Appendix A, the traffic volume of the FRT ramp intersections from 2010 to 2019 was obtained to match the years of crash data used for this study. Because the intersections of interest are in rural areas, traffic volume was not always easily attainable. NDOT produced state highway Annual Average Daily Traffic (AADT) maps for 2010, 2012, 2014, 2016, and 2018, however, there were no reliable data found for the odd years. To substitute the missing data, this research used a simple average between the even years. For example, the 2011 AADT was taken as an average of the 2010 and 2012 values. To find the AADT of each intersection and give the total entering traffic volume, each highway leg's AADT was summed. In a few four-legged intersection cases, the fourth leg was unpaved or a nonhighway local road. A value of 50 was used for the AADT of that leg, as NDOT stated that as typical practice. The traffic volume data for each FRT intersection, for each year from 2010 to 2019 is tabulated in Appendix A.

For identifying non-FRT comparison intersections, the year 2018 was chosen as the best option to represent the AADT of the intersections. This is because it is the most recent data available, while not being affected by potentially skewed values as a result of the COVID-19 pandemic. Table 3.3 shows the average 2018 AADT values of three-legged, four-legged, and all intersections with an FRT ramp.

Table 3.3 2018 AADT by Intersection Type
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l} 
Intersection \\
Type
\end{tabular} & \begin{tabular}{c} 
3- Legged \\
Intersections
\end{tabular} & \begin{tabular}{c} 
4-Legged \\
Intersections
\end{tabular} & \begin{tabular}{c} 
All \\
Intersections
\end{tabular} \\
\hline \begin{tabular}{l} 
Number of \\
Intersections
\end{tabular} & 31 & 37 & 68 \\
\hline \begin{tabular}{l} 
Average 2018 \\
AADT
\end{tabular} & 8518 & 8478 & 8496 \\
\hline
\end{tabular}

\section*{Chapter 4 Inventory of Comparison Intersections}

Non-FRT ramp intersections were identified to serve as comparison locations to the FRT ramp intersections. Efforts were made to identify non-FRT ramp intersections that were similar to the FRT ramp intersections based on the number of legs, total through lanes of the major approach, and range of AADT. The first criterion was finding two-way stopped-controlled (TWSC) intersections located in rural areas. The majority of the FRT ramp intersections were two, two-lane highways, so that was the secondary deciding factor. Using the 2018 AADT of the FRT intersections, summary statistics were calculated, giving the average, range, and quartiles accounting for all FRT ramp intersections in Nebraska. The intersections were then divided into FRT ramps located at both three-legged and four-legged intersections. The year 2018 was selected for the AADT because the post 2018 years were potentially influenced by the COVID19 pandemic and may not be representative of "normal" values. For three- and four-legged intersections, the quartile values were used as limits for three ranges of AADT—"Low," "Medium," and "High." Six categories exist with these AADT ranges: Low, Medium, and High AADT for three-legged intersections and Low, Medium, and High AADT for four-legged intersections. Four sites were identified for each of these categories to comply with the other criteria, totaling 24 non-FRT ramp comparison intersections. The AADT ranges, as well as the 2018 AADT averages for the selected comparison sites, are given in Table 4.1.

Table 4.1 Non-FRT Ramp Intersection AADT Averages
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Three-Legged Intersections } \\
\hline \begin{tabular}{l} 
AADT \\
Range
\end{tabular} & \begin{tabular}{c} 
Lower \\
Limit
\end{tabular} & \begin{tabular}{c} 
Upper \\
Limit
\end{tabular} & \begin{tabular}{c} 
Number of \\
Non-FRT \\
Ramp \\
Intersections
\end{tabular} & \begin{tabular}{c} 
Average \\
2018 \\
AADT
\end{tabular} \\
\hline LOW & 4,657 & 6,720 & 4 & 5,203 \\
\hline MEDIUM & 6,721 & 10,098 & 4 & 7,808 \\
\hline HIGH & 10,099 & 27,050 & 4 & 15,323 \\
\hline \multicolumn{5}{|c|}{ Four-Legged Intersections } \\
\hline LOW & 4,714 & 9,068 & 4 & 7,120 \\
\hline MEDIUM & 9,069 & 13,888 & 4 & 11,349 \\
\hline HIGH & 13,889 & 23,338 & 4 & 15,983 \\
\hline
\end{tabular}

The locations of the non-FRT ramp comparison intersections are identified in Figure 4.1. The majority of the intersections selected for this study were in Eastern Nebraska for the needs of the conflict analysis, which will be presented later. Field visits had to be made to many of these sites, therefore they were chosen for shorter travel times.

Appendix B has basic non-FRT intersection characteristics, location by county, and the ten-year AADT values for each site.


Figure 4.1 Map of Non-FRT Intersections for Comparison

\section*{Chapter 5 Safety Analysis}

\subsection*{5.1 Methodology}

The research team considered several methods for the safety analysis of the FRT ramp intersections. The first was the Empirical Bayes method, the second was a comparison of crash frequencies and crash rates with a t-test measuring significance, while the last method was the use of the Poisson family of models for modeling crash frequencies.

\subsection*{5.1.1 Empirical Bayes Method}

Before-after studies are often used in transportation safety analyses. To determine the effect of some treatment, safety before and after the treatment can be measured, and if nothing else changes, any change in safety can be attributed to the treatment. This is referred to as a simple or naïve before-after study because the assumption that no other variables affect changes between the two periods is simplistic. A comparison group is often used to account for this shortcoming. The idea is that any other variables (i.e., weather, geometric characteristics, etc.) that may affect safety, will do so similarly to the sites with and without the treatment in the before and after periods, thus eliminating the flaw of the naïve before-after study, although issues may still arise with this procedure.

The Empirical Bayes method is thought to be the best version of the before-after study using a comparison group, as it accounts for the regression-to-mean problem and offers more precise estimations (Hauer, 1997). The Empirical Bayes method requires information about the safety of other similar entities, referred to as the reference population, and the crash history of the entity.

\subsection*{5.1.2 Crash Frequency and Crash Rate with Test of Significance}

Crash frequency and crash rate are two representations of safety for roadway segments and intersections. Crash frequency ( F ) is a straightforward crash count during a specified time period (usually 12 months) or the total number of crashes (C) divided by the number of years (N), as shown by Equation 5.1, giving crashes per year as an output.
\[
\begin{equation*}
F=\frac{C}{N} \tag{5.1}
\end{equation*}
\]

A limitation of relying on simple crash frequency for safety assessment is that it does not account for traffic volume, which is known to substantially impact crash frequency. Therefore, when comparing a low-AADT intersection to a high-AADT intersection, the latter will inherently have a higher crash frequency due to the greater possibility of crash occurrence (i.e., greater crash exposure). Crash rate, on the other hand, accounts for exposure, setting all locations, from those with low AADT to high AADT on an even playing field. Crash rate (R) was calculated by using Equation 5.2,
\[
\begin{equation*}
R=\frac{C * 1,000,000}{N * V * 365} \tag{5.2}
\end{equation*}
\]
where C is the total number of crashes in the study period, N is the number of years of data, and V is the daily entering traffic volume. Crash rate is given as crashes per million entering vehicles.

When comparing the crash frequency or crash rate of a group of intersections, it is good practice to use a test of significance to identify whether any changes in safety are statistically
significant or not. Because the crash rates of FRT ramp intersections and non-FRT ramp intersections were compared in this case, a two-sample \(t\)-test was used to measure the significance of the two means. The null hypothesis of the two-sample t-test is \(H_{0}: \mu_{1}=\mu_{2}\), or \(H_{0}: \mu_{1}-\mu_{2}=0\), meaning that there is no observed difference between the two tested means. The alternative hypothesis is \(H_{A}: \mu_{1} \neq \mu_{2}\), or \(H_{A}: \mu_{1}-\mu_{2} \neq 0\), meaning there is an observed difference between the two tested means. A two-sample \(t\)-statistic is calculated from the data in question and compared to a critical t -value that is determined from the Student's t -table, given the degrees of freedom and a chosen alpha value (probability of making a Type 1 error: rejecting the null hypothesis when it is true). If the two-sample \(t\)-statistic is greater than the critical \(t\)-value, it can be said that sufficient evidence is available to reject the null hypothesis and conclude that the two means are different. If the two-sample \(t\)-statistic is less than the critical \(t\)-value, it would be concluded that there is not sufficient evidence to reject the null hypothesis.

The two-sample t -statistic was calculated using Equation 5.3 , with \(\bar{x}_{1}-\bar{x}_{2}\) being the difference in means, \(\left(\mu_{1}-\mu_{2}\right)_{0}=0, \mathrm{n}_{1}\) and \(\mathrm{n}_{2}\) being the sample sizes of the two populations, and \(\mathrm{s}_{\mathrm{p}}{ }^{2}\) being the pooled sample variance. The pooled sample variance is calculated using Equation 5.4 , with \(\mathrm{s}_{1}{ }^{2}\) and \(\mathrm{s}_{2}{ }^{2}\) being the sample variances of the two respective populations.
\[
\begin{align*}
t & =\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{0}}{\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}}  \tag{5.3}\\
s_{p}^{2} & =\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \tag{5.4}
\end{align*}
\]

\subsection*{5.1.3 Modeling Crash Frequencies}

Crash frequencies comprise of count data that are appropriately modeled with the Poisson family of models. The basic Poisson model is a statistical model used for analyzing count data, in which the model assumes that the count data follow a Poisson distribution, which describes the probability of observing a certain number of events in an interval or area. The Poisson distribution is a probability distribution that is characterized by a single parameter, \(\lambda\), which represents the mean or expected value of the count data. The distribution assumes that the events occur independently and at a constant rate over time or area. The count data are modeled as a function of one or more explanatory variables, which can be categorical or continuous. The model assumes that the logarithm of the expected count, denoted by \(\log (\lambda)\), is a linear function of the explanatory variables. Equation 5.5 represents the model.
\[
\begin{equation*}
\log (\lambda)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{p} x_{p} \tag{5.5}
\end{equation*}
\]
where \(\lambda\) is the mean or expected value of the count data, x is the explanatory variable, and \(\alpha\) and \(\beta\) are the intercept and coefficients of the explanatory variables, respectively. An advantage of the Poisson model is its simplicity and ease of interpretation. It assumes that the events occur independently and at a constant rate, which makes it suitable for analyzing count data that satisfies these assumptions. The model assumes that the variance of the count data is equal to its mean, which may not always be the case in practice. In cases where the variance of the count data is larger than the mean, indicating overdispersion, the negative binomial model may be more appropriate.

The negative binomial model is a statistical model for count data when the data exhibit overdispersion, which occurs when the variance of the data is larger than the mean. The negative binomial distribution is a probability distribution that describes the probability of observing a certain number of events in a given interval or area. The distribution is characterized by two parameters: the mean or expected value, denoted by \(\mu\), and the dispersion parameter, denoted by \(\alpha\). The mean represents the average number of events that are expected to occur, while the dispersion parameter measures the degree of variation in the data. The count data are modeled as a function of one or more explanatory variables, which can be categorical or continuous. The model assumes that the count data follows a negative binomial distribution and estimates the parameters of the distribution using maximum likelihood estimation. Equation 5.6 presents the model equation.
\[
\begin{equation*}
\log (\mathrm{E}(\mathrm{Y} \mid \mathrm{x}))=\beta_{\mathrm{o}}+\beta_{1} \mathrm{x} 1+\beta_{2} \mathrm{x}_{2}+\ldots+\beta_{\mathrm{p}} \mathrm{x}_{\mathrm{p}} \tag{5.6}
\end{equation*}
\]
where Y is the count data, x is the explanatory variable, \(\beta_{\mathrm{o}}\) is the intercept, and \(\beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{p}}\) are the estimated coefficients of the explanatory variables. The log link function is used to ensure that the predicted values are non-negative.

One of the main advantages of the negative binomial model is its flexibility in handling overdispersed count data. The model can also handle data with excess zeros, which occur when a large proportion of the data points have a count of zero. This is achieved by adding an extra parameter to the model, known as the zero-inflation parameter, which measures the proportion of excess zeros in the data.

\subsection*{5.1.4 Method Selection}

While the Empirical Bayes method is a good option for measuring changes in safety due to a safety treatment (in this case the FRT ramp), this research lacked clear "before" and "after" periods. The before period for each site would be the duration before the FRT ramp was constructed, and the after period would be the duration from when it was constructed up until the present day. Because this information was not available, it was impossible to conduct a beforeafter analysis using the Empirical Bayes method. Therefore, this research relied on comparisons of crash frequencies and crash rates of FRT-ramp and non-FRT-ramp intersections and tests for significance thereafter, as well as modeling crash frequencies using the negative binomial model (overdispersion in crash data, i.e., mean \(<\) variance).

\subsection*{5.2 Data Collection}

The NDOT provided police-reported crashes in Nebraska from 2010 to 2019, along with the crash location geographic coordinates (latitude and longitude). These crashes were uploaded to ArcGIS and plotted using their geographic coordinates. Also using ArcGIS, shapefiles for the FRT ramp and non-FRT ramp intersections were created and plotted along with the crashes. The research took into consideration crashes reported within a quarter-mile of the center point of the intersection for each intersection leg and for each site. For each FRT-ramp and non-FRT-ramp intersection, polygon buffers were created in ArcGIS with a radius of 0.25 miles. Crashes occurring in these created buffers were then exported into separate shapefiles corresponding to each intersection. Figure 5.1 illustrates this process for the four-legged State Highway 16/State Highway 35 FRT intersection located in Wayne County.


Figure 5.1 Crashes from 2010-2019 at N16/N35 FRT Intersection

With shapefiles created for each FRT and non-FRT intersection containing the crashes occurring a quarter-mile from the center point of the intersection, the attribute tables were exported as an Excel file for data analysis. Examples of data found in these attribute tables include crash severity, crash type, number of involved vehicles, road conditions, weather conditions, and presence of alcohol impairment, to name a few. Appendix C details the crashes reported at each intersection, for each year, for both FRT and non-FRT intersections.

Figure 5.2 compares the crash severity experienced at all FRT-ramp and non-FRT-ramp intersections. These categories are presented on the x -axis in order of increasing severity. The categories correspond to the usual KABCO severity scale as: \(\mathrm{K}=\) fatal injury, \(\mathrm{A}=\) suspected serious injury,/disabling injury, \(\mathrm{B}=\) visible injury, \(\mathrm{C}=\) possible injury, and \(\mathrm{O}=\) property damage only, while the non-reportable crash category is not included in the KABCO scale. Overall, the
comparison reveals little differences in crash severity between the FRT-ramp and non-FRT-ramp intersections. The most notable finding is that the FRT intersections (1.41\%) experienced \(0.40 \%\) more fatal crashes from 2010 to 2019 than the non-FRT intersections (1.01\%).


Figure 5.2 Crash Severity Comparison

Figure 5.3 presents a crash type comparison of FRT-ramp intersections and non-FRTramp intersections. Two findings are notable; the first is the FRT-ramp intersections had 7.53\% fewer rear-end crashes than the non-FRT-ramp intersections. This supports the theory discussed in the Literature Review that by separating through and right-turning traffic, rear-end crashes would be less prevalent. The second finding is that FRT intersections had \(9.35 \%\) more sideswipe crashes than non-FRT intersections. This intuitively makes sense because the FRT ramp forces a
merging maneuver where sideswipe crashes would likely result with turning and crossing traffic conflicting more frequently than in cases where FRT ramps were not present.


Figure 5.3 Crash Type Comparison

\subsection*{5.3 Analysis and Results}

Calculations of crash frequencies and crash rates for each intersection were based on
Equation 5.1 and Equation 5.2, respectively. For crash rate, calculations were made for each year from 2010 to 2019, as well as collectively over the ten years, which is tabulated in Appendix C.

With these values, many comparisons were made to search for any trends or significant
differences. These comparisons included FRT vs non-FRT intersections with varying AADT and intersection legs, using the AADT ranges of low, medium, and high that were developed in Table 4.1. Additionally, comparisons of FRT intersections by the approach on which the FRT ramp is located were made to the non-FRT intersections. Table 5.1 presents the 20 scenarios where different comparisons were made. For viewing ease, the bolded items in the crash frequency columns indicate that they were higher than their counterpart. Of the 20 scenarios, the FRT intersections had a higher crash frequency in 14 scenarios.

Table 5.2 presents the same comparisons, but crash rate was analyzed instead of crash frequency. From comparing the 20 scenarios, the FRT intersections had higher crash rates in all but one scenario.

Table 5.1 Crash Frequency Comparison
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Scenario} & \multicolumn{2}{|l|}{Comparison1} & \multicolumn{2}{|l|}{Comparison2} \\
\hline & Sample Intersections & Crash Frequency (crashes/year) & Sample Intersections & Crash Frequency (crashes/year) \\
\hline 1 & Low AADT, 3-Leg FRT & 0.856 & Low AADT, 3-Leg Non-FRT & 0.525 \\
\hline 2 & Low AADT, 4-Leg FRT & 0.664 & Low AADT, 4-Leg Non-FRT & 0.925 \\
\hline 3 & Low AADT, All Legs FRT & 0.760 & Low AADT, All Legs Non-FRT & 0.725 \\
\hline 4 & Medium AADT, 3-Leg FRT & 0.763 & Medium AADT, 3-Leg Non-FRT & 1.025 \\
\hline 5 & Medium AADT, 4-Leg FRT & 1.413 & Medium AADT, 4-Leg Non-FRT & 0.975 \\
\hline 6 & Medium AADT, All Legs FRT & 1.088 & Medium AADT, All Legs Non-FRT & 1.000 \\
\hline 7 & High AADT, 3-Leg FRT & 3.014 & High AADT, 3-Leg Non-FRT & 1.925 \\
\hline 8 & High AADT, 4-Leg FRT & 2.486 & High AADT, 4-Leg Non-FRT & 2.050 \\
\hline 9 & High AADT, All Legs FRT & 2.750 & High AADT, All Legs Non-FRT & 1.988 \\
\hline 10 & All 3-Leg FRT & 1.319 & All 3-Leg Non-FRT & 1.158 \\
\hline 11 & All 4-Leg FRT & 1.170 & All 4-Leg Non-FRT & 1.317 \\
\hline 12 & All FRT & 1.245 & All Non-FRT & 1.238 \\
\hline 13 & FRT on Major Road, 3-Leg & 1.112 & All 3-Leg Non-FRT & 1.158 \\
\hline 14 & FRT on Minor Road, 3-Leg & 2.625 & All 3-Leg Non-FRT & 1.158 \\
\hline 15 & FRT on Major Road, 4-Leg & 1.095 & All 4-Leg Non-FRT & 1.317 \\
\hline 16 & FRT on Minor Road, 4-Leg & 0.738 & All 4-Leg Non-FRT & 1.317 \\
\hline 17 & FRT on Both Major and Minor Road, 4-Leg & 1.660 & All 4-Leg Non-FRT & 1.317 \\
\hline 18 & FRT on Major Road, All Legs & 1.104 & All Non-FRT & 1.238 \\
\hline 19 & FRT on Minor Road, All Legs & 1.367 & All Non-FRT & 1.238 \\
\hline 20 & FRT on Both Major and Minor Road, All Legs & 1.755 & All Non-FRT & 1.238 \\
\hline
\end{tabular}

Table 5.2 Crash Rate Comparison
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Scenario} & \multicolumn{2}{|l|}{Comparisonl} & \multicolumn{2}{|r|}{Comparison2} \\
\hline & Sample Intersections & Crash Rate (crashes/million vehicles) & Sample Intersections & Crash Rate (crashes/million vehicles) \\
\hline 1 & Low AADT, 3-Leg FRT & 0.546 & Low AADT, 3-Leg Non-FRT & 0.294 \\
\hline 2 & Low AADT, 4-Leg FRT & 0.428 & Low AADT, 4-Leg Non-FRT & 0.389 \\
\hline 3 & Low AADT, All Legs FRT & 0.478 & Low AADT, All Legs Non-FRT & 0.349 \\
\hline 4 & Medium AADT, 3-Leg FRT & 0.263 & Medium AADT, 3-Leg Non-FRT & 0.382 \\
\hline 5 & Medium AADT, 4-Leg FRT & 0.352 & Medium AADT, 4-Leg Non-FRT & 0.253 \\
\hline 6 & Medium AADT, All Legs FRT & 0.315 & Medium AADT, All Legs Non-FRT & 0.306 \\
\hline 7 & High AADT, 3-Leg FRT & 0.517 & High AADT, 3-Leg Non-FRT & 0.353 \\
\hline 8 & High AADT, 4-Leg FRT & 0.441 & High AADT, 4-Leg Non-FRT & 0.408 \\
\hline 9 & High AADT, All Legs FRT & 0.480 & High AADT, All Legs Non-FRT & 0.379 \\
\hline 10 & All 3-Leg FRT & 0.459 & All 3-Leg Non-FRT & 0.350 \\
\hline 11 & All 4-Leg FRT & 0.410 & All 4-Leg Non-FRT & 0.351 \\
\hline 12 & All FRT & 0.432 & All Non-FRT & 0.351 \\
\hline 13 & FRT on Major Road, 3-Leg & 0.417 & All 3-Leg Non-FRT & 0.350 \\
\hline 14 & FRT on Minor Road, 3-Leg & 0.547 & All 3-Leg Non-FRT & 0.350 \\
\hline 15 & FRT on Major Road, 4-Leg & 0.448 & All 4-Leg Non-FRT & 0.351 \\
\hline 16 & FRT on Minor Road, 4-Leg & 0.360 & All 4-Leg Non-FRT & 0.351 \\
\hline 17 & FRT on Both Major and Minor Road, 4-Leg & 0.388 & All 4-Leg Non-FRT & 0.351 \\
\hline 18 & FRT on Major Road, All Legs & 0.429 & All Non-FRT & 0.351 \\
\hline 19 & FRT on Minor Road, All Legs & 0.448 & All Non-FRT & 0.351 \\
\hline 20 & FRT on Both Major and Minor Road, All Legs & 0.395 & All Non-FRT & 0.351 \\
\hline
\end{tabular}

\subsection*{5.4 Significance Testing}

To further investigate these findings, a two-sample t-test was performed to identify the statistical significance of the differences in the crash frequencies and crash rates between FRT and non-FRT intersections. Using the collected data, a t -statistic was calculated for each comparison in Table 5.1 and Table 5.2 and was compared to a critical t -value found using the t table in Appendix D. Due to the large data set and multiple comparisons, the SAS programming language was used to calculate the \(t\)-statistics. Appendix \(D\) contains detailed results of the \(t\)-tests for crash frequency and the crash rate at alpha levels of both 0.05 and 0.10 (probability of making a type 1 error, which rejects the null hypothesis when it is true). For the results discussed here are based on an alpha value of 0.05 , giving a \(95 \%\) confidence level.

For the comparisons of crash frequency between FRT and non-FRT intersections, there were no statistically significant findings.

For the comparisons of crash rates between FRT and non-FRT intersections, there was one statistically significant finding: For FRT intersections that have an FRT ramp on the major approach, either at three-leg or four-leg intersections, a statistically significant higher crash rate was observed when compared to non-FRT intersections of all-leg types.

\subsection*{5.5 Modeling Results}

The 10-year crash frequency data for 68 FRT ramps and 24 comparison sites were analyzed using a Negative binomial regression model. Different independent variables such as 10-year total AADT (in thousands), number of intersection legs (3 or 4), intersection skew, presence of lighting, presence of nearby buildings, and presence of nearby rail tracks were explored for their effects on the 10 -year crash frequency. Table 5.2 presents the estimated model results. The model consists of a constant, the 10 -year total AADT (in thousands), along with an

FRT ramp indicator variable that distinguishes between the FRT ramp and the comparison site observations. It also includes the dispersion parameter alpha (different than the alpha value used in hypothesis testing). The statistical significance of this parameter indicates appropriateness of the Negative binomial model. Also, greater values of 10 -year total AADT were statistically significantly associated with greater 10-year crash frequencies (i.e., crashes increase with increasing AADT). The FRT indicator was statistically not significant showing that there was no difference in 10-year crash frequencies at FRT-ramp intersections and comparable non-FRTramp intersections after accounting for the AADT effect. Various other variables were tested in the model specification, but none showed statistical significance. The main findings were that the total 10-year AADT was associated with the 10-year crash frequencies, but the modeling effort did not uncover evidence of differences in the 10-year crash frequencies across FRT-ramp intersections and comparable non-FRT intersections.

Table 5.3 Negative Binomial Model for 10-year Crash Frequency
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Description & Estimated Coefficient & Standard Error & Statistic & PValue \\
\hline Constant & Model constant & 1.408 & 0.174 & 8.06 & 0.000 \\
\hline Total AADT & Total 10-year AADT in thousands & 0.010 & 0.001 & 8.67 & 0.000 \\
\hline FRT Indicator & 1 if FRT, 0 for comparison site & 0.121 & 0.148 & 0.82 & 0.413 \\
\hline Alpha & Dispersion parameter & 0.199 & 0.046 & 4.34 & 0.000 \\
\hline \multicolumn{2}{|l|}{Model Summary Statistics} & \multicolumn{4}{|l|}{} \\
\hline Number of observations & 92 & & & & \\
\hline Log likelihood (LL) function & -287.464 & & & & \\
\hline Restricted LL function & -333.269 & & & & \\
\hline Chi-squared (P-value) & 91.61025 (0.000) & & & & \\
\hline Pseudo R-squared & 0.137 & & & & \\
\hline
\end{tabular}

\section*{Chapter 6 Traffic Conflict Analysis}

\subsection*{6.1 Background}

Crash data, in the form of crash rate or crash frequency, is a typical metric used to measure safety at intersections. Although a common practice, it has its flaws. For example, crash data one sees in research is reported crashes, meaning there is no way to know how many crashes actually occurred. Each state has its own reporting criteria in the form of a dollar amount; so if a crash occurs, but there is minimal-to-no repair cost, it potentially will not be reported. Additionally, in single-vehicle crashes, crashes occurring at night, or situations where one or more drivers are under the influence of alcohol or drugs, drivers may opt not to report the crash, even if it is considered reportable. In lower traffic and rural areas, such as where this research was conducted, it would be safe to assume that not all of the actual crashes are reported because of the above factors and lack of witnesses or recording equipment in these types of areas.

Safety analyses using traffic conflicts are a widely used and standardized method. A traffic conflict is defined as a traffic event involving two or more vehicles, where one or both drivers take evasive action such as braking or swerving to avoid a collision (Parker Jr \& Zegeer, 1989). To have a reliable set of conflict data, adequate time for observation and a good understanding of what type of conflict is of interest.

\subsection*{6.2 Methodology}

For this research, 12 sites were selected for the conflict analysis using the AADT ranges of three-legged and four-legged intersections, identified in Table 6.1.

Table 6.1 Intersections for Conflict Analysis
\begin{tabular}{|c|c|c|c|c|c|}
\hline & AADT Range & \multicolumn{2}{|l|}{FRT Intersection [2018 AADT]} & \multicolumn{2}{|l|}{Non-FRT Intersection [2018 AADT]} \\
\hline \multirow{3}{*}{\begin{tabular}{l}
3-Legged \\
Intersections
\end{tabular}} & Low & N-4/N-103 & [5,460] & N-31/N-50 & [5,349] \\
\hline & Medium & N-15/N-65 & [9,975] & N-22/L-63A & [8,510] \\
\hline & High & US-77/N-109 & [20,390] & N-15/N-92 & [13,891] \\
\hline \multirow{3}{*}{\begin{tabular}{l}
4-Legged \\
Intersections
\end{tabular}} & Low & N-74/US-281 & [6,815] & N-9/N-16 & [6,994] \\
\hline & Medium & N-15/N-92 & [12,366] & N-1/N-50 & [13,595] \\
\hline & High & US-77/N-92 & [21,614] & N-1/US-34 & [14,570] \\
\hline
\end{tabular}

During field visits to these locations, Miovision Scout cameras (Figure 6.1) were affixed to utility poles or sturdy signage posts at the intersections where a good view of the right-turning vehicles could be observed. The cameras were then left for a minimum of 72 hours to ensure adequate data to perform an analysis. There were a few instances where the 72-hour mark was not reached due to the camera's battery dying or the memory card becoming full, but in the end, it was determined sufficient data were obtained to run the analysis confidently.

At the FRT intersections, the camera was positioned to view the right-turning vehicle's interaction with the crossing-through traffic. At the non-FRT intersections, the camera was positioned at the right turn on the same approach as its FRT counterpart. For example, if an FRT ramp was located on the major approach of an intersection, the right-turn movement observed at the non-FRT intersection of similar AADT was also on the major approach. These scenarios will be discussed in detail in a later section.


Figure 6.1 Miovision Scout Camera (https://miovision.com/scout/scout-hardware)

\subsection*{6.2.1 Conflict Definitions}

To get accurate data, sound definitions needed to be created to ensure uniformity across all sites when reviewing the videos. In general, a traffic conflict was defined as a traffic event involving two or more vehicles, where one or both drivers take evasive action such as braking or swerving to avoid a collision. When reviewing videos for FRT intersections and non-FRT intersections, different traffic conflicts were observed, depending on the presence of an FRT and other movements at the intersection.

For FRT intersections, there was one conflict that was of interest. This was defined as a merging conflict.
1. A Merging conflict - present when a vehicle with yield control impedes a right-of-way vehicle's path, causing the right-of-way vehicle to slow, swerve or brake to avoid a collision (Fazio et al., 1993).

For non-FRT intersections, there were several conflict types, depending on the number of intersection legs, turning movements, and the presence of exclusive right-turn lanes on the major approach. These conflicts are:
2. Right-turn, same-direction conflict - also referred to as a rear-end conflict. This is present when a vehicle on the major approach slows to make a right turn, where no exclusive right-turn lane is present, causing a follow-through vehicle to brake or cross the painted centerline to avoid a rear-end collision (Parker Jr \& Zegeer, 1989).
3. Opposing left-turn conflict - occurs when a vehicle turning right with the right-of-way, must brake to avoid an opposing left-turn vehicle that makes its turn in front of the rightturning vehicle's path (Parker Jr \& Zegeer, 1989).
4. Through, cross traffic from left conflict - occurs when a right-turning vehicle on the major approach slows to make a right turn and a vehicle from the minor approach on the left enters the intersection and impedes the right-of-way of the right-turning vehicle (Parker Jr \& Zegeer, 1989).
5. Right-turn-on-red (RTOR) conflict - a conflict observed at signalized intersections but is also useful for identifying conflict for right-turning vehicles on the minor approach of a two-way stop-controlled intersection. This conflict is present when a right-turning vehicle stopped on the minor approach misjudges the gap in the crossing-through traffic and proceeds to make its right turn, causing the crossing vehicle to slow or stop to avoid a collision (Parker Jr \& Zegeer, 1989).

These conflicts will be illustrated in the following section, to show which conflicts were experienced at each intersection and where.

It should be noted that although traffic conflicts are believed to be a sound method of evaluating safety at intersections, there are both liberal and more strict definitions, depending on the research study conducted. For example, in some studies, conflict is only recorded if nearmiss crashes occur, being the most extreme scenario. In other studies, conflict may be recorded if vehicles slow down or brake, with the assumption that a crash would occur if they did not. Additionally, some studies record conflict as single-vehicle traffic violations, such as a vehicle not stopping at a stop sign, making a wide turn, or turning on the shoulder (Parker Jr \& Zegeer, 1989). Because this research was conducted at rural intersections where traffic volume is lower and fewer conflicts may inherently result, a more liberal approach was taken in identifying conflicts. However, because this research was focused on conflicts with right-turning vehicles and other vehicles at the intersection, traffic violations and other single-vehicle conflicts were not included.

\subsection*{6.3 Conflicts Observed at Each Site}

In this section, sketches of the FRT and non-FRT intersections are presented, with the types of conflicts observed for the right-turning vehicles. The conflicts defined above are indicated by the number corresponding to the conflict. To restate those conflicts, they are identified as follows:
1. Merging Conflict
2. Right-Turn, Same Direction Conflict
3. Opposing Left-Turn Conflict
4. Through, Cross Traffic from Left Conflict

\section*{5. RTOR Conflict}

\subsection*{6.3.1 Category 1: Low AADT, 3-Leg}

The intersection to the left of Figure 6.2 is the FRT ramp located at N-4/N-103 in Gage County. For this case, the only conflict observed was the merging conflict of the right-turning vehicles using the FRT ramp and the crossing-through traffic. The intersection to the right of Figure 6.2 is a non-FRT intersection located at N-31/N-50 in Sarpy County. Because the FRT ramp is located on the major approach of the intersection, the right turn located on the non-FRT intersection that was observed is also on the major approach. The right-turning vehicles share a lane with the through traffic, therefore, the conflicts present at this intersection are the right-turn, same-direction conflict, as well as opposing left-turn conflict.


Figure 6.2 Low AADT, 3-Leg Intersections

\subsection*{6.3.2 Category 2: Low AADT, 4-leg}

The intersection to the left of Figure 6.3 is the FRT ramp located at N-74/US-281 in Adams County. For this case, the only conflict observed was the merging conflict of the right-
turning vehicles using the FRT ramp and the crossing-through traffic. The intersection to the right of Figure 6.3 is a non-FRT intersection located at N-9/N-16 in Thurston County. Because the FRT ramp is located on the major approach of the intersection, the right turn located on the non-FRT intersection that was observed is also on the major approach. The right-turning vehicles share a lane with the through traffic, therefore, the conflicts present at this intersection are the right-turn, same direction conflict, opposing left-turn conflict, and through, cross traffic from left conflict.


Figure 6.3 Low AADT, 4-Leg Intersections

\subsection*{6.3.3 Category 3: Medium AADT, 3-Leg}

The intersection to the left of Figure 6.4 is the FRT ramp located at N-15/N-65 in Butler County. For this case, the only conflict observed was the merging conflict of the right-turning vehicles using the FRT ramp and the crossing-through traffic. The intersection to the right of Figure 6.4 is a non-FRT intersection located at N-22/L-63A in Nance County. Because the FRT ramp is located on the minor approach of the intersection, the right turn located on the non-FRT
intersection that was observed is also on the minor approach. Due to this, the only conflict of interest is the RTOR conflict involving the right-turning vehicles at the minor approach and the major through traffic.


Figure 6.4 Medium AADT, 3-Leg Intersections

\subsection*{6.3.4 Category 4: Medium AADT, 4-Leg}

The intersection to the left of Figure 6.5 is the FRT ramp located at \(\mathrm{N}-15 / \mathrm{N}-92\) in Butler County. For this case, the only conflict observed was the merging conflict of the right-turning vehicles using the FRT ramp and the crossing-through traffic. The intersection to the right of Figure 6.5 is a non-FRT intersection located at \(\mathrm{N}-1 / \mathrm{N}-50\) in Cass County. Because the FRT ramp is located on the major approach of the intersection, the right turn located on the non-FRT intersection that was observed is also on the major approach. The right-turning vehicles share a lane with the through traffic, therefore, the conflicts present at this intersection are the right-turn, same direction conflict, opposing left-turn conflict, and through, cross traffic from left conflict.


Figure 6.5 Medium AADT, 4-Leg Intersections

\subsection*{6.3.5 Category 5: High AADT, 3-Leg}

The intersection to the left of Figure 6.6 is the FRT ramp located at US-77/N-109 in Saunders County. For this case, the only conflict observed was the merging conflict of the rightturning vehicles using the FRT ramp and the crossing-through traffic. The intersection to the right of Figure 6.6 is a non-FRT intersection located at \(\mathrm{N}-15 / \mathrm{N}-92\) in Butler County. Because the FRT ramp is located on the major approach of the intersection, the right turn located on the nonFRT intersection that was observed is also on the major approach. The right-turning vehicles have an exclusive right-turn lane separated from the through traffic, therefore, the only conflict present at this intersection is an opposing left-turn conflict.


Figure 6.6 High AADT, 3-Leg Intersections

\subsection*{6.3.6 Category 6: High AADT, 4-Leg}

The intersection to the left of Figure 6.7 is the FRT ramp located at US-77/N-92 in Saunders County. This intersection has two FRT ramps, but only the FRT ramp on the minor approach was studied. For this case, the only conflict observed was the merging conflict of the right-turning vehicles using the FRT ramp and the crossing-through traffic. The intersection to the right of Figure 6.7 is a non-FRT intersection located at N-1/US-34 in Cass County. Because the FRT ramp of interest is located on the minor approach, the right turn located on the non-FRT intersection that was observed is also on the minor approach. Due to this, the conflicts of interest are the RTOR conflict involving the right-turning vehicles at the minor approach and the major through traffic, as well as an opposing left-turn conflict.


Figure 6.7 High AADT, 4-Leg Intersections

\subsection*{6.4 Analysis and Results}

For each intersection, approximately 72 hours of video were reviewed and various data were recorded. This data included: right-turning vehicles on the approach of interest, crossingthrough vehicles that could conflict with the right-turning vehicles, potential traffic conflicts, and traffic conflicts. Using 15-minute increments, these variables were recorded and organized in an Excel spreadsheet. The characteristics of these sites and the conflict data are shown in detail in Appendix E. Due to this process being lengthy and spanning several months, each conflict was timestamped and revisited a second time to ensure uniformity in the traffic conflict definitions. As noted, these intersections span a range of traffic volumes from very high to very low. Using a similar reasoning when utilizing the crash rate in the crash analysis, conflicts per 1000 entering right-turning vehicles was chosen as the primary metric to study. This placed all of the intersections on an even playing field, regardless of the right-turning traffic volume.

Table 6.2 gives the results of the conflict analysis in both conflict per hour and conflict per 1000 entering right-turning vehicles. The values in bold indicate a higher value for viewing
ease. As can be seen, in most cases, the non-FRT intersections experience higher values of both conflict metrics.

Table 6.2 Conflict Analysis Results
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{4}{|c|}{RT APPROACH} \\
\hline & & \multicolumn{2}{|c|}{Conflict/Hour} & \multicolumn{2}{|l|}{Conflict/1000 entering RT vehicles} \\
\hline & \[
\begin{aligned}
& \hline \text { AADT } \\
& \text { Range }
\end{aligned}
\] & FRT Site & Non-FRT Site & FRT Site & Non-FRT Site \\
\hline 3-Leg & Low Medium High & \[
\begin{aligned}
& 0.056 \\
& \mathbf{0 . 0 4 8} \\
& \mathbf{0 . 1 8 8}
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{0 . 8 1 8} \\
& 0.000 \\
& 0.163
\end{aligned}
\] & \[
\begin{aligned}
& 3.320 \\
& \mathbf{1 . 3 5 0} \\
& 2.070
\end{aligned}
\] & \[
\begin{gathered}
39.773 \\
0.000 \\
\mathbf{2 . 5 5 8}
\end{gathered}
\] \\
\hline \multicolumn{2}{|r|}{Average:} & 0.097 & 0.327 & 1.962 & 11.778 \\
\hline 4-Leg & \begin{tabular}{l}
Low \\
Medium \\
High
\end{tabular} & \[
\begin{aligned}
& 0.000 \\
& 0.028 \\
& \mathbf{0 . 3 5 1}
\end{aligned}
\] & \[
\begin{aligned}
& 0.017 \\
& 0.167 \\
& 0.116
\end{aligned}
\] & \[
\begin{aligned}
& 0.000 \\
& 0.560 \\
& 4.637
\end{aligned}
\] & \[
\begin{gathered}
\hline 43.478 \\
36.697 \\
7.601
\end{gathered}
\] \\
\hline \multicolumn{2}{|r|}{Average:} & 0.126 & 0.100 & 3.048 & 14.342 \\
\hline \multicolumn{2}{|l|}{Overall Average:} & 0.112 & 0.214 & 2.499 & 12.275 \\
\hline
\end{tabular}

When conducting this analysis, in addition to the separation of the FRT and non-FRT intersections by traffic volume and the number of legs, three scenarios were observed that presented interesting findings:
1. FRT ramp located on the minor approach, with the non-FRT right-turn located on the stop-controlled minor approach
2. FRT ramp located on the major approach, with the non-FRT right-turn movement having no exclusive right-turn lane on the major approach
3. FRT ramp located on the major approach, with the non-FRT right-turn approach having an exclusive right-turn lane

Table 6.3 presents these findings. Again, the non-FRT intersections experienced higher conflicts per 1000 right-turning vehicles. Scenario two, which compares the FRT ramp on the major approach and the non-FRT right-turn on the major approach with no exclusive right-turn lane, had the most significant difference. This is believed to be because of the right-turn, samedirection conflict. With the right-turning vehicles and through vehicles sharing a lane, whenever a vehicle slows to turn right, following-through vehicles often traveling at a high rate of speed must suddenly slow down or swerve over the centerline to avoid a rear-end crash.

Table 6.3 Traffic Conflict Scenario Results
\begin{tabular}{|c|c|c|c|}
\hline Scenario & \begin{tabular}{c} 
\# of Int. \\
Studied
\end{tabular} & FRT Conflict/1000 RT vehicles & Non-FRT Conflict/1000 RT vehicles \\
\hline 1 & 2 & 3.440 & \(\mathbf{7 . 0 4 8}\) \\
2 & 3 & 1.146 & \(\mathbf{3 9 . 2 9 7}\) \\
3 & 1 & 2.070 & \(\mathbf{2 . 5 5 8}\) \\
\hline
\end{tabular}

\section*{Chapter 7 Traffic Operations Analysis}

\subsection*{7.1 Background}

The minor approach traffic at a stop-controlled intersection must stop at the intersection before proceeding with the desired movement. An FRT ramp can accommodate the right-turning traffic from a minor approach, thus avoiding stoppage at the intersection and reducing operational delays and queue generations on the minor approaches. However, FRT ramps requires additional right of way and construction costs compared to the non-FRT intersection. Additionally, AADT of the intersection and turning percentages in different approaches can impact the efficacy of an FRT ramp. Therefore, measurement of operational benefits of FRT ramps requires modeling of traffic operations surrounding the FRT and comparable non-FRT intersections.

McCoy et al. (1995) conducted operational studies of FRT ramps in 1994 for Nebraska conditions. The delay components of FRT and stop-controlled intersections were estimated by the Highway Capacity Manual (HCM, 1994), which is now obsolete. Additionally, the cost components used in that analyses are outdated as well. Note that the HCM delays were estimated from two-way or one-way stop-controlled intersections, and FRT delays were also estimated using the same stop-controlled intersection methodologies. However, the mechanism of rightturning vehicle movement from the stopped condition of the intersection and FRT ramps are different. These operations should be modeled as observed in the real-world. Therefore, this study utilized microsimulation models to more accurately represent traffic conditions for both non-FRT and FRT ramp intersections.

The microscopic model, if calibrated and validated properly, can produce faithful outcomes that represent field conditions (Haque, 2022). The microscopic model allows the
stochastic nature of traffic conditions and individual vehicle/driver interactions. These enable microsimulation tools to imitate real-world traffic conditions with greater accuracy and precision.

This chapter presents the development of a microsimulation model to imitate the FRT and non-FRT right-turn operations. The operational data found from this model were used to conduct the benefit cost analysis of whether an FRT ramp is warranted to improve traffic conditions.

The three major objectives of this chapter are as follows.
1. Develop microsimulation models for FRT and non-FRT intersections and calibrate and validate the models using field-observed data
2. Conduct comparative operational analysis between FRT and non-FRT intersections
3. Study the economic feasibility of providing an FRT ramp for various traffic and geometric conditions

\subsection*{7.2 Methodology}

There are two main approaches used in this chapter to achieve the objectives. The first approach is to build a microsimulation model and the second approach is to use the model outcomes and integrate them into a benefit cost analysis method.

As previously mentioned, McCoy et al. (1995) used a stop-controlled intersection methodology using the 1994 version of the HCM. The operational studies of the FRT ramp were analyzed by the delay equations developed for the two-way/one-way stop-controlled intersection. However, it is known that the HCM default assumptions may not be applicable to represent local conditions. Note that a macroscopic method like the HCM can be applied in many locations, however, this study was focused on Nebraska drivers' right-turning behaviors.

To study the economic viability of FRT ramps, intersection operational delay comparisons with and without FRT ramps were conducted under similar traffic and geometric conditions. Then the costs and benefits (if any) associated with FRT construction and maintenance incurred by FRT ramp intersections were compared. Benefit cost analysis throughout the design life of the FRT ramp using a discount rate was conducted under different traffic and geometric conditions. Finally, this study determined the feasibility of FRT ramps based on the benefit cost ratio ( \(\mathrm{B} / \mathrm{C}\) ratio).

\subsection*{7.3 Data Preparation}

\subsection*{7.3.1 Data Collection Site Characteristics}

Data from four sites were used to conduct the operational analysis for this project.
7.3.1.1 Site 1: Three-Legged One-way Stop-Controlled Intersection with an FRT Ramp

Located in Bone Creek Township in Butler County, Nebraska, the site is a three-legged one-way stop-controlled intersection as shown in Figure 7.1. The major road approaches are Hwy 64 and Hwy \(15(\operatorname{Rd} 41)\) in the eastbound and westbound directions. The minor road is on Hwy 15 (M N Rd) on the south side of the intersection and is stop-controlled. The FRT ramp starts from the minor road ( 1,000 feet from the intersection) and joins the major road ( 950 feet from the intersection).


Figure 7.1 Three-Legged One-way Stop-Controlled Intersection with FRT Ramp at Bone Creek, Nebraska (Location coordinates: 41.333405, -97.129290)

All approaches have a 65 mph speed limit. This location has an AADT of 9,975 vehicles. Both the major and minor roads are undivided two-lane highways (single lane in each direction).

In the intersection, the minor approach has a wide single lane for vehicles to turn left on the major road. There is no through movement from the minor as it is 3-legged intersection. The westbound traffic from the major approach has a left-turn bay and yields to the opposing through and right-turning traffic. On the other hand, westbound traffic from the major approach allows through movements that are free-flowing. Also, near the intersection, the westbound major approach has a dedicated lane for right-turning vehicles.
7.3.1.2 Site 2: Four-Legged Two-Way Stop-Controlled Intersection with an FRT Ramp

Located in Marietta, Saunders County, this site is a four-legged unsignalized two-way STOP-controlled intersection as shown in Figure 7.2. The major road approaches are Hwy 77 and Hwy 92 (Co Rd M) in the eastbound and westbound directions. The minor road is on Hwy

77 (Co Rd 11) in the northbound and southbound direction and has two-way STOP-control at the intersection. One FRT ramp starts at the major road from the westbound approach ( 600 feet from the intersection) and joins the minor road for the northbound approach ( 600 feet from the intersection). The other FRT ramp starts at the minor road from the southbound approach (650 feet from the intersection) and joins the major road for the westbound approach ( 700 feet from the intersection).


Figure 7.2 Four-legged Unsignalized Intersection with an FRT Ramp at Marietta, Nebraska (Location coordinates: 41.2341865, -96.502896)

All approaches have a \(65-\mathrm{mph}\) speed limit. This location has an AADT of 21,614 vehicles. Both the major and minor roads are undivided two-lane highways (single lane in each direction).

At the intersection, the minor approach from the northbound traffic has a wide single lane for vehicles for through, left-turn, and right-turn movements. On the other hand, minor approach from the southbound traffic has the following properties: i) an FRT ramp for right-turn movements, and ii) a wide single lane for left-turn movements at the intersection.

The westbound traffic from the major approach has the following lane distribution properties: i) the through and right-turn movements are shared by a single lane, and ii) a dedicated left-turn bay for left turn movements that yields to the opposing through traffic. The eastbound traffic from the major approach has the following lane distribution properties: i) an FRT ramp for right-turn movements, ii) a dedicated left-turn bay for left-turn movements that yields to the opposing through traffic, and iii) the through movement is free-flowing.

\subsection*{7.3.1.3 Site 3: Three-Legged One-way Stop-Controlled Intersection without an FRT Ramp}

The location of this site is in David City, Butler County, Nebraska. It is a three-legged unsignalized at-grade intersection as depicted in Figure 7.3. The major road approaches are Hwy \(92(32 \mathrm{Rd})\) in the eastbound and westbound directions. The minor road is on Hwy 15 (MN Rd) in the northbound and southbound direction and has STOP-control at the intersection.


Figure 7.3 Three-legged Unsignalized Regular Intersection at David City, Nebraska (Location coordinates: 41.206305, -97.129958)

All approaches have a 65 mph speed limit. This location has an AADT of 13,891
vehicles. Both the major and minor roads are undivided two-lane highways (single lane in each direction).

At the intersection, the minor approach has a wide single lane for vehicles to turn left and right onto the major road and no through movement, as it is a three-legged intersection. The eastbound traffic from major approach has a left-turn bay and yields to the opposing through and right-turning traffic. On the other hand, westbound traffic from the major approach allows through movements, which are free flowing.
7.3.1.4 Site 4: Four-Legged Two-Way Stop-Controlled Intersection without an FRT Ramp

The location of this site is in Avoca, Cass County, Nebraska. It is a four-legged unsignalized two-way STOP-controlled intersection as shown in Figure 7.4. The major road
approaches are Hwy 34 (E O St.) in the eastbound and westbound directions. The minor road is on Hwy 50 in the northbound and southbound direction and has STOP-control at the intersection (i.e., Hwy 34 traffic does not stop).


Figure 7.4 Four-legged Unsignalized Regular intersection at Avoca, Nebraska (Location coordinates: 40.813046, -96.178535)

All approaches have a \(65-\mathrm{mph}\) speed limit. This location has an AADT of 12,000 vehicles. Both the major and minor roads are undivided two-lane highways (single lane in each direction). At the intersection, the minor approach from the northbound and southbound traffic has a wide single lane for through, left-turn, and right-turn movements.

The westbound and eastbound traffic from the major approach has the following lane distribution properties: i) the through and right-turn movements are shared by a single lane, and ii) a dedicated left-turn bay for left turn movement that yields to the opposing through traffic.

\subsection*{7.3.2 Data Collection and Processing}

Multiple sets of Miovision scouts (Miovision Scout, 2023) were used to collect traffic data at the four sites. In addition to the Miovision, the research team used radar guns to collect sample data of the approach speed of vehicles entering, exiting, or turning within the intersection and FRT ramp. Figure 7.5 presents the devices used for data collection.


Figure 7.5 Data Collection Devices

Miovision cameras were set in different locations around each intersection and the FRT ramps to collect traffic operations data. Figure 7.6 shows the setup of the Miovision devices at the four sites.


Site 1: Miovision installed in 3-legged FRT


Site 3: Miovision installed in 3-legged non-FRT intersection


Site 2: Miovision installed in 4-legged FRT
intersection


Site 4: Miovision installed in 4-legged non-FRT intersection

Figure 7.6 Miovision Device Locations at the Four Test Sites

Note that the video data collected using Miovision can be used to extract traffic demand, traffic composition, and travel time from one location of Miovision to others. However, the Miovision is equipped with technology to collect media access control (MAC) addresses of devices installed or present in the vehicles. Therefore, in addition to observing video data, the research team gathered the MAC addresses from the Miovision as an "object" and these unique objects were matched using the R coding platform as shown in Figure 7.7. This method was used to find information such as travel times, volumes, and turn percentages. Note that this traffic information was available from equipped vehicles only.


Figure 7.7 Miovision Data Extraction using MAC Addresses

Note that using the unique object information, as shown in Figure 7.7, the volume pattern (not the exact number of vehicles) throughout a day could be found. This method was helpful to identify peak hour periods and relative hourly distribution of vehicles throughout the day. Figure 7.8 shows an example for Site 1 and Site 3 for multiple Miovision sets used in the field.


Figure 7.8 Vehicle Pattern Observed Using Unique Object from Miovision

Data collected from these four test sites were used to develop the microsimulation model described in the next section.
7.4 Microsimulation Modelling

A microsimulation model requires proper calibration to reflect field-observed driving behaviors and operational outcomes. There are several available traffic microsimulation tools for model development, including TransModeler \({ }^{\text {TM }}\), AIMSUN \(^{\text {TM }}\), TRANSIMS \(^{\text {TM }}\), PARAMICS \(^{\text {TM }}\), CORSIM \(^{\mathrm{TM}}\), and VISSIM \({ }^{\mathrm{TM}}\). A comparison of traffic modeling software tools is provided elsewhere (FHWA, 2016; Haque and Sangster, 2018). The research team used VISSIM (PTV VISSIM, 2020) because i) it has the capability of modeling all operational aspects of stopcontrolled intersections and ramps, and ii) it has been widely used as an aid in developing many HCM macroscopic models (such as freeway capacity, passenger car equivalence, two-lane highway work zone, etc.) (HCM, 2016).

\subsection*{7.4.1 Microsimulation Model Calibration Method}

This study applied a robust calibration technique (Haque et al., 2022) to model the microsimulation model as shown in Figure 7.9.


Figure 7.9 Microsimulation Model Calibration Algorithm (Haque et al., 2022)

A description of the three-step process is as follows.
Step 1. An important part of the model development was to obtain local data that represents the stop-controlled intersection and ramp operations. This included geometric data (e.g., horizontal curvature, segment lengths, grades, etc.), operation data (e.g., traffic control technique, signage, speed limits, etc.), and traffic data (e.g., vehicle volumes, truck percentages, etc.).

The two hours (i.e., 4 pm to 6 pm ) of empirical traffic data from Site 1 and Stie 3 (in total four hours) were used in developing the VISSIM simulation model. Data including traffic demand and the proportion of heavy trucks were used as input for the microsimulation model. In addition, geometric dimensions of the unsignalized intersection, posted speed limit, and FRT ramp dimensions were used to develop the microsimulation model. Note that performance data, such as travel time, were collected and prepared for use in Step 2.

Step 2. All commercially available microsimulation models have parameters that users can adjust to control internal driver behavior (e.g., car following, lane changing, etc.) to represent the field observed traffic conditions. While default values of these parameters may be used, better results are obtained if the parameters are calibrated to local field data (Spiegelman et al., 2010). This study used two types of parameter sets, which were the driver behavior model and the gap acceptance model.

From VISSIM microsimulation platform, seven parameters were used that are directly related to driver behaviors (Buck et al., 2017; Zhao et al., 2022; Haque et al., 2023). These were CC 0 (standstill distance), CC 1 (headway time), CC 2 (following variation), CC3 (threshold for entering "following'" mode), CC4 (negative following threshold), CC5 (positive following threshold), and CC6 (speed dependency of oscillation). A detailed description of these model parameters can be found elsewhere (PTV VISSIM, 2020).

The gap acceptance model was required to accurately model traffic behaviors in the unsignalized intersection. The gap acceptance model included critical headway of vehicle for the intersection and FRT ramp. Critical headway is defined as the minimum time interval in the major-street traffic stream that allows intersection entry for one minor-
street vehicle (HCM, 2016). Therefore, the driver's critical headway was the minimum headway that would be acceptable. A particular driver may reject headways less than the critical headway and may accept headways greater than or equal to the critical headway. From field observation, critical headway can be estimated based on observations of the largest rejected and smallest accepted headway for a given intersection. The VISSIM microsimulation model had two functionalities that could regulate the critical headway aspects (i.e., gap acceptance parameters), which were "Priority Rules" and "Conflict Area" (PTV VISSIM, 2020). In priority rules, the "minimum gap time" parameter was associated with the critical headway. Therefore, parameters from the driver behavior model (CC0, CC1, CC2, CC3, CC4, CC5 and CC6) and gap acceptance model (minimum gap time) were calibrated for passenger cars and heavy vehicles so that the VISSIM simulated performance measure (i.e., travel time) was similar to the field observed data. Note that this calibration method used statistical tests to confirm that the simulated and field observed performance measures were similar.

Step 3. Several optimization algorithms can be used to find optimal solutions for values of different parameters tested in Step 2. These include the simplex method, the genetic algorithm, and simulated annealing (Kochenderfer et al., 2019). In this study, the research team used genetic algorithm with the aid of MATLAB language platform to find suitable parameter values that may produce statistically similar simulated, and field observed results.

Note that the calibration procedure may identify a zero solution, a single solution, or multiple solutions. If the optimization algorithm found multiple sets of parameters that satisfied the statistical test, a further criterion was required to determine the "best"
parameter set. Therefore, the parameter set that resulted in the least error when the simulation results were compared to the observed data could be chosen, or the parameter set that best represented the local driver behavior could be selected, or standard guidelines such as the HCM could be used. In this project, video data were available to collect samples that represented many of the important parameters such as \(\mathrm{CC} 0, \mathrm{CC} 1\), and minimum gap time. Therefore, the research team chose the final parameter solutions based on the calibration algorithm outcomes complying with the field observed behaviors.

\subsection*{7.4.2 Calibration and Validation Results}

The calibration process used travel time data of left-turn movements from a minor road to a major road as shown in Figure 7.10. The left-turn was the most critical movement as it must consider the major and opposing minor road traffic at the intersection. The operational performance of minor traffic movement was impacted by the number of vehicles moving to the FRT ramp since they would have eventually stopped when using the intersection.


Figure 7.10 Critical Left-Turn Movement from Minor Road to Major Road

Empirical travel time data of left-turn traffic from minor movements are input to the calibration algorithm as shown in Figure 7.9. The traffic at the FRT-ramp intersection (Site 1)
was northbound left-turn (NBL) and the traffic at the non-FRT-ramp intersection (Site 3) was southbound left-turn (SBL). Table 7.1 presents the analysis results.

Table 7.1 Microsimulation Calibration Results for Intersections with and without FRT Ramp
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Calibration Results } \\
\hline Travel time (TT) Statistics & FRT Approach: NBL & Non-FRT Approach: SBL \\
\hline Empirical Mean TT & 53.06 seconds & 110.10 seconds \\
\hline Simulated Mean TT & 54.02 seconds & 108.63 seconds \\
\hline Mean Absolute Error \% & \(1.79 \%\) & \(1.20 \%\) \\
\hline \begin{tabular}{c} 
Welch t-test (P-value) \\
(alpha \(=5 \%)\)
\end{tabular} & 0.33 & 0.78 \\
\hline \begin{tabular}{c} 
Kolmogorov Smirnov (KS) test (P-value) \\
(alpha= 5\%)
\end{tabular} & 0.07 & 0.34 \\
\hline
\end{tabular}

Table 7.1 shows that the empirical mean travel times of the FRT and non-FRT intersections for the left-turn approach were 53.06 and 110.10 seconds, respectively. The calibrated simulation models produced travel times of 54.02 and 108.63 seconds, which were within \(1.79 \%\) and \(1.20 \%\) of the mean field observed values. Therefore, the simulated travel times were close to the empirical observations. However, the calibration algorithm aims to find solutions that produce results without any statistically significant difference at the \(95 \%\) confidence level. The Welch t-test and Kolmogorov-Smirnov (KS) tests showed a p-value higher than 0.05 . This implied that there was no statistical evidence of difference in the mean values. The KS test provided evidence that the distribution of the travel time of the simulated and observed were similar. Therefore, it was evident that the simulation model produced the variabilities of the traffic performance occurring in real-world scenarios. This was the major goal of the calibration process.

Furthermore, the calibrated parameters were applied in Site 2 and Site 4 (i.e., four-legged intersection with and without FRT ramp), and the simulation model produced similar field observed travel times to those discussed above. Therefore, the calibrated microsimulation models were also validated using Site 2 and Site 4 . Note that the calibration algorithm shown in Figure 7.9 can be directly applied to the Site 2 and Site 4 traffic conditions to find the optimal parameter set.

Table 7.2 shows representative values of the final parameters from the calibration algorithm. Slight variations of the parameter values were used based on different locations to fine-tune desired outcomes. In a broad sense, Table 7.2 represents the calibrated parameters for Nebraska's local conditions.

Table 7.2 Calibrated Microsimulation Parameter Values for Driver Behavior and Gap Acceptance Model
\begin{tabular}{|l|l|l|}
\hline Parameters & Passenger Car & Heavy Trucks \\
\hline CC0 (Standstill distance) & 10 feet & 10 feet \\
\hline CC1 (headway time) & 2.75 s (mean) & 3.25 s (mean) \\
\hline & 0.2 s (Standard deviation) & 0.2 s (Standard deviation) \\
\hline CC2 (following variations) & 20 feet & 20 feet \\
\hline CC4-CC6 & VISSIM default values & VISSIM default values \\
\hline Minimum gap time & \begin{tabular}{l}
5.1 s \\
(Turn from major approach)
\end{tabular} & \begin{tabular}{l}
5.6 s \\
(Left turn from minor approach)
\end{tabular} \\
\hline & \begin{tabular}{l}
6.6 s \\
(Left turn from minor approach)
\end{tabular} & \begin{tabular}{l}
7.1 s \\
(Right turn from intersection)
\end{tabular} \\
\hline & \begin{tabular}{l} 
6.5 \\
(Right turn from FRT ramp/minor \\
approach)
\end{tabular} & \begin{tabular}{l} 
7.0 s \\
(Right turn from FRT ramp/minor \\
approach)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{7.4.3 Sensitivity Analysis}

As the VISSIM microsimulation model was calibrated and validated, the models could be used to study different alternative scenarios and different performance measures such as stopped
delay, vehicle delay, travel time, and maximum queue length. To test the ability of the simulated model to respond to the variabilities of traffic demand, three example scenarios were tested where the major road volumes were kept at 400 vehicles per hour (vph) and three minor road volumes of \(100 \mathrm{vph}(\) Scenario 1), 200 vph (Scenario 2) and 300 vph (Scenario 3) were studied. It was assumed that \(40 \%\) of traffic from the major road turns on to the minor road and the right turn percentage of the minor road was \(50 \%\). Heavy trucks comprised \(7.5 \%\) of the total traffic volume. Table 7.3 lists the results of the three example scenarios.

Table 7.3 Sensitivity Analysis Results of Three Scenarios
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Volume & \multicolumn{3}{|c|}{ Delay (second/vehicle) } & \multicolumn{3}{c|}{ Maximum Queue (feet) } \\
\hline & FRT Minor & \begin{tabular}{c} 
Non-FRT \\
Minor
\end{tabular} & Difference & FRT Minor & \begin{tabular}{c} 
Non-FRT \\
Minor
\end{tabular} & Difference \\
\hline Scenario 1 & 35.8 & 40.7 & \(11.9 \%\) & 172.1 & 302.8 & \(43.1 \%\) \\
\hline Scenario 2 & 85.5 & 217.4 & \(60.1 \%\) & 349.6 & 1899.2 & \(81.5 \%\) \\
\hline Scenario 3 & 289.6 & 457.1 & \(36.6 \%\) & 1469.7 & 5180.1 & \(71.6 \%\) \\
\hline
\end{tabular}

Table 7.3 shows that the FRT ramp can help reduce vehicular delay and maximum queue length as the minor volume increased from 100 to 300 vph . The maximum queue and delay can be reduced up-to around \(60 \%\) and \(80 \%\), respectively. A \(50 \%\) right turn percentage was used, which means use of the FRT ramp contributed to the improvement. Therefore, different traffic conditions (combinations of different volume levels and turn percentages) should be studied to measure the potential impacts of FRT ramps. Section 7.5 .1 presents a comprehensive study of different traffic and FRT geometric conditions through sensitivity analysis.

\subsection*{7.5 Feasibility Studies of FRT Ramp}

It is useful to find whether an FRT ramp is economically viable, given the potential operational benefits. Compared to the right turn movement from the minor approach, an FRT ramp requires additional right of way and substantial construction costs. The financial feasibility of constructing an FRT ramp is therefore examined in this section for any prospective operational benefits.

\subsection*{7.5.1 Scenario Development}

An FRT-ramp feasibility study requires consideration of various traffic conditions and FRT geometry. This section determines different scenarios for FRT and non-FRT ramp intersections on a two-lane highway facility. Three FRT ramp dimensions with various speed limits were considered. These were FRT radii of \(650,1,200\), and 1,800 feet with respective speed limits of 45, 55, and 65 miles per hour (mph). These FRT radii and speed limits were congruent with the AASHTO Green Book and NDOT Road manual design (AASHTO, 2018; NDOT RDM, 2019). The FRT ramps under consideration directed right-turning traffic from the minor road to the major road. Therefore, traffic using these ramps did not need to stop at the stoppedcontrolled intersection. Note that an alternative scenario, where FRT ramps emerged from the major road, did not necessarily cause operational issues on either the major or the minor road other than slowing down. This is the reason the FRT ramp from the minor approach was considered for the feasibility studies.

The research team considered three traffic volume levels both for the major approach (5,000, 10,000, and 15,000 AADT) and minor approach (2,500, 5,000, and 7,500 AADT). These volume scenarios applied to both stop-controlled intersections with and without an FRT ramp. The daily traffic was distributed among two hours of peak periods (i.e., morning and evening) and 14 hours of non-peak periods. Eight hours of traffic from 10:00 pm to 6:00 am were assumed
negligible. This study assumed that \(20 \%\) of traffic turned from the major approach to the minor approach for all scenarios. However, three right turning percentages (i.e., \(10 \%, 25 \%\), and \(50 \%\) ) scenarios were assumed to move through the FRT ramp to the major street. The traffic stream was assumed to be \(15 \%\) heavy vehicles (i.e., combination of single unit truck and tractor trailer) which complied with the average value found from truck AADT records (NDOT AADT, 2023), video data observations, and the previous McCoy et al. study (1995).

Therefore, there were nine combinations of AADT (three each from the major and the minor approaches), three types of ramps (650, 1,200, and 1,800 feet radii) and three levels of right-turning FRT traffic ( \(10 \%, 25 \%\), and \(50 \%\) ). This setup resulted in 81 scenarios. Furthermore, each of the 81 scenarios required two traffic periods (peak and non-peak hour) and two types of intersections (stopped controlled with and without FRT ramps), making a total 324 scenarios. These 324 scenarios were simulated in the VISSIM microsimulation software. Onethird of these scenarios were run 10 times and the rest were run 5 times (using different seed numbers) making a total of 2,160 simulation runs.

Each simulation run generated operational outcomes such as stopped delays (i.e., vehicle stopping at stop-controlled intersections), vehicle delays (stopped delays plus delays due to acceleration and deceleration to respond to surrounding traffic), maximum queue length, and travel times of different sections along the simulated network. The research team processed these results and integrated them into the respective cost components. This procedure enabled feasibility studies for the FRT ramps.

\subsection*{7.5.2 Operational and FRT Construction Costs}

Quantification of the operational costs of vehicle movements around intersections required three major components: i) value of time, ii) idling cost, and iii) running cost. The unit
value of time was used to quantify the delay or travel time savings costs. Idling costs occurred when vehicles were completely stopped at the intersection. Furthermore, compared to the stopped controlled intersection, right-turning vehicles using the FRT ramp needed to traverse less distance, quantified as 0.429 times the radius of the FRT ramp radius (McCoy et al., 1995). This factor (i.e., distance savings due to FRT ramp) incurred running cost savings for the FRT ramp.

The FRT ramp costs included construction costs, right-of-way costs, and maintenance costs. McCoy et al. (1995) listed different cost components and their values in 1994. This study converted 1994 values to the current year (2023) and estimated the FRT ramp costs.

Based on the literature review of operational cost components for National use and Nebraska-based studies (AASHTO Redbook, 2010; Tufuor et al., 2022) and conversion of prices from the previous year, the costs categories applied are shown in Table 7.4.

Table 7.4 Cost Components and Unit Values for Operation, Construction and Maintenance
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Cost Component} & \multicolumn{3}{|c|}{Vehicle Composition} \\
\hline & & Passenger car & Single unit truck & Tractor-trailer \\
\hline \multirow[t]{3}{*}{} & Value of time & 29.18 (\$/hr) & 31.55 (\$/hr) & 33.45 (\$/hr) \\
\hline & Idling cost & 1.60 (\$/hr) & 1.24 (\$/hr) & 0.87 (\$/hr) \\
\hline & Running cost & 0.07 (\$/mile) & 0.21 (\$/mile) & 0.21 (\$/mile) \\
\hline \multirow[b]{3}{*}{} & \multirow{3}{*}{FRT ramp} & \multicolumn{3}{|c|}{FRT Dimensions (Radius in feet)} \\
\hline & & 1800 & 1200 & 650 \\
\hline & & \$ 1,161,000 & \$ 775,000 & \$ 420,000 \\
\hline
\end{tabular}

\subsection*{7.5.3 Benefit Cost Analysis}

The cost items shown in Table 7.4 were applied to the FRT and non-FRT intersections. The research team used operational costs of the non-FRT and FRT intersections under the same traffic and geometric conditions to determine benefits. In addition, vehicles using the FRT ramp aid in benefits due to the distance savings. The combined benefits were compared with the construction and maintenance costs of FRT ramps. A design life of 20 years was assumed for this study. The net benefit and costs were converted to present value using discount rates to conduct a benefit cost analysis. This study used three discount rates, which were \(4 \%, 6 \%\), and 8\%.

Table 7.5 lists the benefit/cost ratio (B/C ratio) for different traffic and geometric conditions while applying three discount rates. The table color codes the outcomes based on the \(B / C\) ratio. For no benefit or \(B / C\) ratio less than one, \(B / C\) ratio more than one but less than two, and \(\mathrm{B} / \mathrm{C}\) ratio more than two are coded as red, yellow, and green, respectively. \(\mathrm{A} B / \mathrm{C}\) ratio of more than two may be considered favorable for the FRT ramp alternative.

Table 7.5 Benefit cost ratio (B/C) for FRT Ramp under Different Traffic and Geometric Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & & & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { FRT R}=1800 \text { feet } \\
\text { SL }=65 \mathrm{mph} \\
\hline
\end{gathered}
\]} & \multicolumn{3}{|l|}{FRT R= 1200 feet SL =55 mph} & \multicolumn{3}{|l|}{FRT R=650 feet SL \(=45 \mathrm{mph}\)} \\
\hline & & & & \multicolumn{9}{|c|}{Minor Road AADT} \\
\hline & & & \[
\begin{gathered}
\hline \text { Right } \\
\text { Turn \% } \\
\hline
\end{gathered}
\] & 2500 & 5000 & 7500 & 2500 & 5000 & 7500 & 2500 & 5000 & 7500 \\
\hline \multirow{9}{*}{} & \multirow{9}{*}{\[
\text { LUVV peoy } .
\]} & \multirow{3}{*}{5000} & 10 & & & & & & & & & \\
\hline & & & 25 & & & & & & & & & \\
\hline & & & 50 & & & & & & & & & \\
\hline & & \multirow{3}{*}{10000} & 10 & & & & & & & & & \\
\hline & & & 25 & & & & & & & & & \\
\hline & & & 50 & & & & & & & & & \\
\hline & & \multirow{3}{*}{15000} & 10 & & & & & & & & & \\
\hline & & & 25 & & & & & & & & & \\
\hline & & & 50 & & & & & & & & & \\
\hline \multirow{9}{*}{} & \multirow{9}{*}{} & \multirow{3}{*}{5000} & 10 & & & & & & & & & \\
\hline & & & 25 & & & & & & & & & \\
\hline & & & 50 & & & & & & & & & \\
\hline & & \multirow{3}{*}{10000} & 10 & & & & & & & & & \\
\hline & & & 25 & & & & & & & & & \\
\hline & & & 50 & & & & & & & & & \\
\hline & & \multirow{3}{*}{15000} & 10 & & & & & & & & & \\
\hline & & & 25 & & & & & & & & & \\
\hline & & & 50 & & & & & & & & & \\
\hline \multirow{9}{*}{} & \multirow{9}{*}{} & \multirow{3}{*}{5000} & 10 & & & & & & & & & \\
\hline & & & 25 & & & & & & & & & \\
\hline & & & 50 & & & & & & & & & \\
\hline & & \multirow{3}{*}{10000} & 10 & & & & & & & & & \\
\hline & & & 25 & & & & & & & & & \\
\hline & & & 50 & & & & & & & & & \\
\hline & & \multirow{3}{*}{15000} & 10 & & & & & & & & & \\
\hline & & & 25 & & & & & & & & & \\
\hline & & & 50 & & & & & & & & & \\
\hline
\end{tabular}

Note: SL (Speed Limit), R (Radius), FRT (Free Right Turn)
B/C ratio: less than 1 or no benefit
more than 1 but less than 2
more than 2

Under each discount rate, there were 81 scenarios. It can be seen that for \(4 \%, 6 \%\), and \(8 \%\) discount rates, there were 17,18 , and 21 scenarios, respectively, that have a \(B / C\) ratio lower than two. Not surprisingly, a higher discount rate tended to reduce the economic feasibility of the FRT ramp.

The authors would like to recommend the feasibility of the FRT ramp alternative using the \(8 \%\) discount rate. It was found that when the major road had 15,000 or more AADT and the minor road had 2,500 or more AADT with a right-turning to major road volume of \(10 \%\) or higher, the FRT ramp was warranted (i.e., \(\mathrm{B} / \mathrm{C}\) ratio is higher than two). On the other hand, if the major road had 10,000 AADT and the minor road had 5,000 or more AADT, the FRT ramp was warranted for \(10 \%\) or more right-turning vehicles from the minor to the major road. Similarly, if the major road had 5,000 AADT and the minor road had 7,500 or more AADT, the FRT ramp was warranted for \(10 \%\) or more right-turning vehicle from the minor to the major road.

In case of a high right-turn percentage such as \(50 \%\) from minor to major approach, a scenario comprising of a major road with 5,000 or more AADT and a minor road with 2,500 or more AADT should be considered as a candidate of the FRT ramp alternative.

Even though a shorter FRT ramp reduces construction costs (compared to a large FRT ramp) and may be a viable option to gain benefits, the maximum queue length of peak hour period traffic may extend upstream higher than the FRT entrance location. Therefore, it can hinder traffic that intends to make a right-turn to the major road via an FRT ramp. Therefore, caution should be exercised along with \(\mathrm{B} / \mathrm{C}\) ratio results before choosing to use short FRT ramps.

\section*{Chapter 8 Summary and Conclusions}

This chapter first presents a summary of the research, including the data used and tests that were conducted, followed by their results. Then, based on the research findings, conclusions, limitations, and recommendations for future research are given.

\subsection*{8.1 Research Summary and Results}

The primary objectives of this research were to: identify rural free right-turn (FRT) ramp intersections in Nebraska and similar non-FRT-ramp intersections for comparison testing purposes, perform a safety analysis using police-reported crashes from 2010 to 2019, and perform a conflict analysis using Miovision Scout video recording equipment.

\subsection*{8.1.1 Inventory of FRT and non-FRT Intersections}

In total, 68 FRT ramp intersections were identified, with 57 intersections containing one FRT ramp and 11 intersections containing two FRT ramps. Intersection characteristics, such as intersection legs, presence of skew, and lighting were recorded for inventory purposes. Additionally, specific data relating to the FRT ramps themselves were recorded, such as signage, FRT length, FRT radius, island type, and the presence of acceleration and deceleration lanes. AADT ranges of low, medium and high were created using quartiles of the FRT intersection traffic volumes from 2018 to ensure that non-FRT intersections that were identified had a wide range of traffic volumes. The year 2018 was chosen, as it was the latest traffic volume data available before the COVID-19 pandemic, in hopes of avoiding potentially "abnormal" values thereafter. 24 non-FRT intersections were identified-12 three-legged and 12 four-legged-and further divided into the low, medium, and high AADT categories. Similar recorded intersection characteristics were obtained for both the non-FRT intersections and the FRT intersections.

\subsection*{8.1.2 Safety Analysis}

For the safety analysis, a comparison of FRT and non-FRT crash frequencies, crash rates, severity, and crash types over the ten-year period (2010-2019) was performed to identify differences. The raw data of the crashes reported during the period were first compared to search for trends. Regarding crash severity, there were no evident differences between intersections with and without FRT ramps; the most notable finding was that the FRT ramp intersections (1.41\%) experienced \(0.40 \%\) more fatal crashes from 2010 to 2019 than the non-FRT intersections (1.01\%). Regarding the crash type, the FRT-ramp intersections had 7.53\% fewer rear-end crashes than the non-FRT-ramp intersections. Also, the FRT-ramp intersections had \(9.35 \%\) more sideswipe crashes than non-FRT-ramp intersections. However, there were no large differences amongst the different crash types.

Crash frequency and crash rate were calculated for each FRT-ramp and non-FRT-ramp intersection and several comparisons were made between the two groups to see how traffic volume, intersection type, and the presence of the FRT ramp on the major or minor approach affect the values. For crash frequency, 20 comparisons were made between the FRT-ramp and non-FRT-ramp intersections, with the FRT-ramp intersections having a higher crash frequency in 14 cases. For crash rates, the same comparisons were reviewed, with FRT intersections having a higher crash rate in 19 of the 20 comparisons. A two-sample t-test was performed for these comparisons using an alpha value of 0.05 , to identify any statistically significant differences among mean crash frequencies and rates. For the crash frequency comparisons, no statistically significant findings were determined. For crash rate, there was only one statistically significant finding: For FRT-ramp intersections that have an FRT ramp on the major approach, either at
three-leg or four-leg intersections, a statistically significant higher crash rate was observed when compared to non-FRT-ramp intersections of all-leg types.

\subsection*{8.1.3 Conflict Analysis}

For the conflict analysis, Miovision Scout video recording equipment was used to record vehicle interactions at several FRT and non-FRT intersections. The intersections were chosen based on AADT and the number of intersection legs. In total, 12 intersections were chosen: six three-legged and six four-legged, with one FRT and one non-FRT per low, medium, and high AADT category. For the FRT intersections, conflicts were recorded between the vehicles using the FRT ramp and the crossing-through vehicles. For the non-FRT intersections, the observed right-turn movement was chosen based on the location of its FRT intersection counterpart. For example, for the low AADT category for three-legged intersections, the FRT ramp was located on the major approach, therefore for the non-FRT comparison, the right-turn movement of interest was also on the major approach. For the non-FRT intersections, several conflicts were observed, including right-turn, same direction, opposing left-turn, through, cross traffic from left, and right-turn-on-red (RTOR). The location of the right-turn movement on the major or minor approach, the number of intersection legs, and the presence of an exclusive right-turn lane determined what specific conflicts existed.

For the 12 intersections, with six being FRT intersections and six being non-FRT intersections, conflict per hour and conflict per 1000 entering right-turning vehicles were compared. For conflict per hour, it was split evenly with three FRT intersections having a higher value in some cases, and three non-FRT intersections having higher values in the other cases. However, across all tested intersections, the non-FRT intersections had higher conflicts per hour. For conflict per 1000 entering right-turning vehicles, five of the non-FRT intersections had
higher values than their FRT intersection counterpart, and the non-FRT intersections had a much higher value when considering all the tested sites. The choice to use conflict per 1000 entering right-turning vehicles as the primary metric was made for a similar reason the crash rate was chosen for the safety analysis-the differences in traffic volume are no longer a significant factor when using this method.

To look at these intersections in a different way besides AADT and the number of intersection legs, the intersections were categorized into three major scenarios:
1. FRT ramp located on the minor approach, with the non-FRT right-turn located on the stop-controlled minor approach
2. FRT ramp located on the major approach, with the non-FRT right-turn movement having no exclusive right-turn lane on the major approach
3. FRT ramp located on the major approach, with the non-FRT right-turn approach having an exclusive right-turn lane

Comparing these scenarios, the non-FRT intersections all had higher conflicts per 1000 entering right-turning vehicles, with the most significant difference in scenario two. When vehicles turn on the major approach of a rural highway with no exclusive right-turn lane present, the following-through vehicles, traveling at a high rate of speed, must suddenly slow down and brake or swerve across the painted centerline to avoid a rear-end collision. The FRT ramp eliminates this conflict as right-turning and through traffic are separated at the intersection. In scenario three, where there is an exclusive right-turn lane present on the major approach, there are more similarities in conflicts per 1000 entering right-turning vehicles, but the FRT intersections still produce lower values. Scenario one also has less of a difference between FRT and non-FRT intersections, where the FRT ramp is located on the minor approach and the non-

FRT right-turn is located on the minor approach which is stop-controlled. For the non-FRT intersections, it can be inferred that drivers are less likely to disobey the stop sign and impede on the major traffic's right-of-way, but other conflicts are still present even when the vehicles make their right-turn because there is still interaction with the major traffic. Because of these other conflicts, the non-FRT intersections have a higher conflict per 1000 entering right-turning vehicles.

\subsection*{8.1.4 Operational Analysis}

Four sites in Nebraska were studied to build a microsimulation model using VISSIM to model traffic operations in FRT and non-FRT stop-controlled intersections. A robust calibration algorithm was used to make sure the performance measures simulated by VISSIM were not statistically different compared to the field observed measures.

The simulation model was used to study different traffic conditions and various geometry of FRT ramps. A total of 324 scenarios were studied to conduct a comparison study between non-FRT and FRT intersections in terms of operational benefits. With a 20-year design life and \(4 \%, 6 \%\), and \(8 \%\) discount rates, the operational value in terms of cost savings and FRT construction costs were calculated. The resulting B/C ratios obtained for all traffic and geometry conditions were used to determine the economic feasibility of FRT ramp.

Based on the \(\mathrm{B} / \mathrm{C}\) ratio analysis, the FRT ramp can be justified based on the following observations.
- When the major road has 15,000 or more AADT and the minor road has 2,500 or more AADT with \(10 \%\) or higher left-turning volume from major to minor, an FRT ramp is warranted.
- If the major road has 10,000 AADT and the minor road has 5,000 or more AADT with \(10 \%\) or higher right-turning volume from major to minor, an FRT ramp is warranted.
- If the major road has 5,000 AADT and the minor road has 7,500 or more AADT with \(10 \%\) or higher right-turning volume from major to minor, an FRT ramp is warranted.
- If the major road has 5,000 or more AADT and the minor road has 2,500 or more AADT, with a high right-turn percentage (i.e., \(50 \%\) ) from minor to major approach, an FRT ramp alternative should be considered.
- Short FRT's construction costs are lower. However, during peak hour, vehicle queues may grow longer and may block the entrance of the FRT ramp. This scenario can block the right turning traffic from using the FRT ramp without being stopped. Therefore, along with \(\mathrm{B} / \mathrm{C}\) ratio outcomes, extra care should be taken before deciding in favor of a relatively shorter FRT ramp.

\subsection*{8.2 Conclusions}

After analyzing the findings of the safety and conflict analyses, the following conclusions were made:
- The presence of an FRT ramp at an intersection does not affect the crash frequency, rate, severity, or type of crash. Although the results indicated higher values for both crash frequency and crash rate, only one statistically significant finding was observed.
- Conflicts reduced between right-turning vehicles and the other traffic at the intersection when an FRT ramp was present. This was especially true when no exclusive right-turn lanes existed at non-FRT-ramp intersections.
- For \(10 \%\) or more right-turning traffic from minor to major roads, FRT ramps are justified in minor approaches in terms of operational benefit for the following three traffic
conditions: i) major road with 15,000 and minor road with 2,500 AADT, ii) major road with 10,000 and minor road with 5,000 AADT, and iii) major road with 5,000 and minor road with 7,500 AADT.

Revisiting McCoy's (1995) research study, similar findings were reported. McCoy stated that "the presence of an FRT lane does not affect the frequency, severity, or types of accidents that occur." Regarding conflict, McCoy's study focused on the need for acceleration lanes, stating that "the absence of acceleration lanes increases conflict in the merge area." For this research, scenario three of the conflict analysis represents this finding as well. All FRT-ramp intersections had an acceleration lane, while the non-FRT intersections with exclusive right-turn lanes did not have acceleration lanes. In this case, the FRT intersections had a lower conflict per 1000 entering right-turning vehicles.

\subsection*{8.3 Limitations and Future Research}

This research conducted its safety analysis assuming several factors. For example, because the construction dates of the FRT ramps were not known, the FRT intersections were assumed to have similar geometric and traffic characteristics for the ten-year period of interest (2010-2019). If a particular FRT-ramp intersection had an FRT ramp constructed within that period, the changes in that intersection's crash frequency and crash rate were not known. Additionally, with limited traffic volume data (i.e., missing odd years), assumptions were made that interpolation of the known data to find the missing data was sufficient.

Another limitation of this research was the use of the two-sample \(t\)-tests to test the statistical significance of the safety analysis. First, crashes were Poisson distributed, while the ttest was to be used for normal distributions, so typically the t-test would not be accepted. However, with the available data and testing of two populations, it was chosen as the best
method. An Empirical-Bayes before-after test would be preferred, however, due to the lack of data detailing the construction of each FRT ramp and the potential need for much older crash data for older FRT ramps, sufficient and precise data for a "before" and "after" period would be hard to obtain. For future research, if these dates and many more years of crash data could be obtained, it would presumably offer more precise results.

Also, regarding the use of t-tests in traffic studies, it has been argued that the term "not significant" can often be confused with "not important" (Hauer, 2004). Although the findings of the \(t\)-test in the case of this research, found only one statistical finding out of 40 comparisons that were tested at the \(95 \%\) confidence level, these findings are not irrelevant and do not entirely indicate that there was no change in safety observed. This paired with relatively few populations (68 FRT intersections and 24 non-FRT intersections) in the statistical sense, the results may not be fully indicative of what is true about the FRT ramp's effect on safety. Therefore, in future research, a study of FRT-ramp intersections and non-FRT-ramp intersections across several states may provide more telling results.

The conflict behaviors from the field data should be incorporated into a microsimulation platform so that more conflict data can be produced for different traffic situations using the surrogate safety assessment model (SSAM).

\section*{References}

AASHTO Green Book. 2018. A Policy on Geometric Design of Highway and Streets. Edition 2018. AASHTO Red Book. 2010. User and Non-User Benefit Analysis for Highways.
Achtemeier, J., Craig, C. M., \& Morris, N. L. (2019, November). The effects of restricted sight distances on drivers at simulated rural intersections. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 63, No. 1, pp. 2122-2123). Sage CA: Los Angeles, CA: SAGE Publications.
Ale, G. B., Varma, A., \& Gage, B. (2014). Safety impacts of right-turn lanes at unsignalized intersections and driveways on two-lane roadways: Crash analysis. Journal of Transportation Engineering, 140(2), 04013001.
Ale, G. B., Varma, A., Gage, B., \& Gyawali, S. (2014). Safety-based volume warrants for right-turn lanes at unsignalized intersections and driveways on two-lane roadways. Journal of Transportation Engineering, 140(12), 04014064.
Bared, J., Giering, G. L., \& Warren, D. L. (1999). Safety evaluation of acceleration and deceleration lane lengths. ITE journal, 69, 50-54.
Biancardo, S. A., Russo, F., Zhang, W., \& Veropalumbo, R. (2019). Design criteria for improving safety performance of rural intersections. Journal of Advanced Transportation, 2019, 1-11.
Biancardo, S. A., Russo, F., Žilionienė, D., \& Zhang, W. (2017). Rural two-lane two-way three-leg and four-leg stop-controlled intersections: predicting road safety effects. The Baltic Journal of Road and Bridge Engineering, 12(2), 117-126.
Buck, H. S., N. Mallig, and P. Vortisch. Calibrating VISSIM to analyze delay at signalized intersections. Transportation Research Record: Journal of the Transportation Research Board, 2017. 2615: 73-81.
Calvi, A., \& De Blasiis, M. R. (2011). Driver behavior on acceleration lanes: Driving simulator study. Transportation Research Record, Journal of the Transportation Research Board, 2248(1), 96-103.
Calvi, A., Benedetto, A., \& De Blasiis, M. R. (2012). A driving simulator study of driver performance on deceleration lanes. Accident Analysis \& Prevention, 45, 195-203.
Cottrell Jr, B. H. (1982). Guidelines for treatment of right-turn movements on rural roads (abridgment, No. HS-034 645).
Cottrell, B. H. (1981). The development of criteria for the treatment of right turn movements on rural roads (No. VHTRC 81-R45). Virginia Transportation Research Council.
Crowe, E. C. (1990). Traffic conflict values for three-leg, unsignalized intersections. Transportation Research Record, Journal of the Transportation Research Board,1287.
Dabbour, E., Easa, S. M., \& Dabbour, O. (2021). Minimum lengths of acceleration lanes based on actual driver behavior and vehicle capabilities. Journal of Transportation Engineering, Part A: Systems, 147(3), 04020162.
Dixon, K. K., Hibbard, J. L., \& Nyman, H. (1999, June). Right-turn treatment for signalized intersections. In Urban Street Symposium, Transportation Research Circular E-C019 (Vol. 3, No. 5556, p. 036).
Fazio, J., Holden, J., \& Rouphail, N. M. (1993). Use of freeway conflict rates as an alternative to crash rates in weaving section safety analyses. Transportation Research Record, Journal of the Transportation Research Board, 1401.
Federal Highway Administration. Office of Safety Research and Development. Surrogate safety measures from traffic simulation models. Updated March 8, 2016.
https:\www.fhwa.dot.gov\publications\research\safety\03050\04.cfm. Accessed March 30, 2023.

Fitzpatrick, K., Schneider IV, W. H., \& Park, E. S. (2006). Operation and safety of right-turn lane designs. Transportation Research Record, Journal of the Transportation Research Board, 1961(1), 55-64.
Gemar, M. D., Wafa, Z., \& Forecaster, T. D. Developing design guidelines for right-turn slip lanes. Submitted for consideration for the 2016 TexITE Technical Paper Award.
Hadi, M. A., \& Thakkar, J. (2003). Speed differential as a measure to evaluate the need for right-turn deceleration lanes at unsignalized intersections. Transportation Research Record, Journal of the Transportation Research Board, 1847(1), 58-65.
Haleem, K., \& Abdel-Aty, M. (2010). Examining traffic crash injury severity at unsignalized intersections. Journal of Safety Research, 41(4), 347-357.
Hall, D. L., Sinha, K. C., \& Michael, H. (1978). Comprehensive evaluation of nonsignalized control at low volume intersections. Transportation Research Record, Journal of the Transportation Research Board, 681, 10-12.
Haque, M. S. 2022. Improved traffic analysis methodology for lane closure on two-lane highway work zone. Doctoral Dissertation, The University of Nebraska-Lincoln.
Haque, M. S., and J. D. Sangster. 2018. Best practices for modeling light rail at intersections. University Transportation Center for Railway Safety. No. 26-1121-0018-009.
Haque, M. S., L. Rilett., L. Zhao, and E. Tufuor. 2022. Calibration and validation of a microsimulation model of lane closures on two-lane highway work zone. Transportation Research Record, Journal of the Transportation Research Board. https://doi.org/10.1177/03611981221119456
Haque, M. S., L. R. Rilett, and L. Zhao. 2023. Impact of platooning of connected and automated heavy vehicles on interstate freeway work zone operations. Journal of Transportation Engineering, Part A: Systems, 149(3). https://ascelibrary.org/doi/full/10.1061/JTEPBS.TEENG-7434
Harwood, D. W., Bauer, K. M., Potts, I. B., Torbic, D. J., Richard, K. R., Rabbani, E. R., \& Griffith, M. S. (2003). Safety effectiveness of intersection left-and right-turn lanes. Transportation Research Record, Journal of the Transportation Research Board, 1840(1), 131-139.
Hauer, E. (1997). Observational before/after studies in road safety. Estimating the effect of highway and traffic engineering measures on road safety, Elsevier Science, Tarrytown, NY.
Hauer, E. (2004). The harm done by tests of significance. Accident Analysis \& Prevention, 36(3), 495-500.
HCM. (1994). Highway Capacity Manual. Chapter 10: Unsignalized Intersection. Special Report 209, \(3{ }^{\text {rd }}\) Edition. Transportation Research Board. Washington, DC.
HCM. 2016. Highway Capacity Manual, \(6^{\text {th }}\) Edition. Transportation Research Board, Washington, D.C.

Hochstein, J. L., Maze, T. H., Preston, H., Storm, R., \& Welch, T. M. (2007). Safety effects of offset right-turn lanes at rural expressway intersections. In Mid-Continent Transportation Research Symposium, Ames, Iowa.
Khattak, A. J., \& Jovanis, P. P. (1990). Capacity and delay estimation for priority unsignalized intersections: Conceptual and empirical issues. Transportation Research Record, Journal of the Transportation Research Board, (1287).
Khattak, A., \& Kang, Y. (2018). Offset Right-Turn Lanes on State Highway Systems (No. 26-1121-0030-001), Nebraska Department of Transportation.

Kim, D. G., Washington, S., \& Oh, J. (2006). Modeling crash types: New insights into the effects of covariates on crashes at rural intersections. Journal of Transportation Engineering, 132(4), 282-292.
Kochenderfer, M. J., and T. A. 2019. Wheeler. Algorithms for Optimization. MIT Press, Cambridge, MA.
Kou, C. C., \& Machemehl, R. B. (1997). Modeling vehicle acceleration deceleration behavior during merge maneuvers. Canadian Journal of Civil Engineering, 24(3), 350-358.
Leckrone, S. J., Tarko, A. P., \& Anastasopoulos, P. C. (2011). Improving safety at high-speed rural intersections. In \(3^{\text {rd }}\) International Conference on Road Safety and Simulation, September (pp. 14-16).
Macfarlane, G. S., Saito, M., \& Schultz, G. G. (2011). Delay underestimation at free right-turn channelized intersections. Procedia-Social and Behavioral Sciences, 16, 560-567.
Macfarlane, G. S., Saito, M., \& Schultz, G. G. (2011). Driver perceptions at free right-turn channelized intersections. In Transportation and Development Institute Congress 2011: Integrated Transportation and Development for a Better Tomorrow (pp. 1128-1137).
Maze, T. H., Hawkins, N. R., \& Burchett, G. (2004). Rural expressway intersection synthesis of practice and crash analysis (No. CTRE Project 03-157). Ames: Center for Transportation Research and Education, Iowa State University.
McCoy, P. T., \& Hoppe, W. J. (1986). Traffic operations study of the turning lanes on uncontrolled approaches of rural intersections. Transportation Research Record, Journal of the Transportation Research Board, 1100, 1-9.
McCoy, P. T., \& Tobin, J. R. (1982). Use of additional through lanes at signalized intersections. Transportation Research Record, Journal of the Transportation Research Board,, 869, 1-5.
McCoy, P. T., Bishu, R. R., Bonneson, J. A., Fitts, J. W., Fowler, M. D., Gaber, S. L., \& Sicking, D. L. (1995). Guidelines for free right-turn lanes at unsignalized intersections on rural two-lane highways. Final Report (No. RES1 (0099) P603).
McCoy, P. T., Bonneson, J. A., Ataullah, S., \& Eitel, D. S. (1994). Guidelines for right-turn lanes on urban roadways. Transportation Research Record, Journal of the Transportation Research Board, 1445, 130-137.
McCoy, P. T., Hoppe, W. J., \& Dvorak, D. V. (1985). Benefit-cost evaluation of left-turn lanes on uncontrolled approaches of rural intersections. Transportation Research Record, Journal of the Transportation Research Board, 1026, 40-43.
Menon, A., \& Donath, M. (2014). Minnesota Department of Transportation Rural Intersection Conflict Warning System (RICWS) Reliability Evaluation.
Meuleners, L. B., Fraser, M. L., \& Roberts, P. (2020). Impact of the rural intersection active warning system (RIAWS) on driver speed: A driving simulator study. Accident Analysis \& Prevention, 141, 105541.
Miovision Scout. 2023. https://www2.miovision.com/get-scout. Accessed March 30, 2023.
NDOT AADT. 2023. Nebraska Department of Transportation. Annual Average Daily Traffic. https://gis.ne.gov/portal/apps/webappviewer/index.html?id=8ed4b009b0d546f19f0284e5bba 0f972. Accessed March 30, 2023.
NDOT RDM. 2019. Nebraska Road Design Manual. Nebraska Department of Transportation.
Nebraska Department of Transportation, Roadway Design Manual, Chapter 4: Intersections, Driveways, and Channelization, May 2012. https://dot.nebraska.gov/media/11484/g-chap-4-intersections-and-driveways.pdf

Oh, J., Washington, S., \& Choi, K. (2004). Development of accident prediction models for rural highway intersections. Transportation Research Record, Journal of the Transportation Research Board, 1897(1), 18-27.
Parker Jr, M. R., \& Zegeer, C. V. (1989). Traffic conflict techniques for safety and operations: Observer's manual (No. FHWA-IP-88-027, NCP 3A9C0093). Federal Highway Administration, US DOT.
Pawar, D. S., \& Patil, G. R. (2017). Minor-street vehicle dilemma while maneuvering at unsignalized intersections. Journal of Transportation Engineering, Part A: Systems, 143(8), 04017039.

Perkins, S. R., \& Harris, J. L. (1968). Traffic conflict characteristics-accident potential at intersections. Highway Research Record, (225).
Potts, I. B., Harwood, D. W., Bauer, K. M., Gilmore, D. K., Hutton, J. M., Torbic, D. J., ... \& Barlow, J. M. (2014). Design guidance for channelized right-turn lanes (NCHRP Project 0389).

Potts, I. B., Ringert, J. F., Harwood, D. W., \& Bauer, K. M. (2007). Operational and safety effects of right-turn deceleration lanes on urban and suburban arterials. Transportation Research Record, Journal of the Transportation Research Board, 2023(1), 52-62.
Preston, H., \& Storm, R. (2003, August). Reducing crashes at rural thru-stop controlled intersections. In Mid-Continent Transportation Research Symposium (pp. 21-22).
PTV VISSIM. 2020. Software. User Manual. https://www.ptvgroup.com/en/solutions/products/ptvvissim/. Accessed March 30, 2023.
Ring, J. B., \& Sadek, A. W. (2012). Predicting lane utilization and merge behavior at signalized intersections with auxiliary lanes in Buffalo, New York. Journal of Transportation Engineering, 138(9), 1143-1150.
Salman, N. K., \& Al-Maita, K. J. (1995). Safety evaluation at three-leg, unsignalized intersections by traffic conflict technique. Transportation Research Record, Journal of the Transportation Research Board, 1485(28), 177-185.
Schattler, K. L., Hanson, T., \& Maillacheruvu, K. (2016). Effectiveness evaluation of a modified right-turn lane design at intersections. Illinois Center for Transportation Series No. 16-013; Research Report No. FHWA-ICT-16-012.
Schurr, K., \& Foss Jr, T. J. (2010). Offset right-turn lanes for improved intersection sight distance. Final Report SPR-P1(06) P592. Nebraska Department of Transportation.
Spiegelman, C., E. S. Park, and L. R. Rilett. 2010. Transportation Statistics and Microsimulation. CRC Press, Boca Raton, FL, 2010.
Tufuor, E., L. Zhao, M. S. Haque, L. R. Rilett, J. E. Anderson, and E. C. Thompson. 2022. Estimating system and traveler costs due to lane closures during construction and maintenance operations. Final Report, Nebraska Department of Transportation. No. FY21008. 2022.

Wolfe, F. A., \& Lane, W. (2000, June). Effect of radius of curvature for right turning vehicles on through traffic delay. In Proceedings of Fourth International Symposium on Highway Capacity, Maui, Hawaii.
Yan, X., \& Richards, S. H. (2009). Influence of restricted sight distances on gap-acceptance and non-gap-acceptance RTOR driving behaviors. The University of Tennessee.
Yang, J. (2008). Risk-based volume warrants for free right-turn lanes on two-lane roadways. Journal of Transportation Engineering, 134(4), 155-162.

Zegeer, C. V., \& Deen, R. C. (1977). Traffic conflicts as a diagnostic tool in highway safety. Kentucky Transportation Center Research Report.
Zeidan, G. R., \& McCoy, P. T. (2000). Effects of right-turn lanes on driveway sight distance. Transportation Research Record, Journal of the Transportation Research Board, 1737(1), 78-83.
Zhao, Li., L. Rilett., M. S. Haque. 2022. Calibration and validation methodology for simulation models of intelligent work zones. Transportation Research Record, Journal of the Transportation Research Board, 2676 (5): 500-513. https://doi.org/10.1177/03611981221082591
Zhou, H., Chen, H., \& Baratian-Ghorghi, F. (2017). Prediction of intermittent sight distance obstruction at unsignalized intersections with conventional right-turn lanes. Journal of Transportation Safety \& Security, 9(1), 64-81.

Appendix A
Table A. 1 FRT Ramp Intersection Characteristics (1 of 13)
\begin{tabular}{|c|c|c|c|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline FRT_ID & FRT ramp ID & & \\
\hline INT_ID & FRT ramp intersection ID & & \\
\hline ITEM_NO & Number of ramp in order of when listed in the logbook & & \\
\hline COORDINATE & Coordinates via pathweb, based on reference post that was associated with the ramp & & Pathweb \\
\hline HWY_MAIN & Main highway, as stated & & \multirow{6}{*}{Nebraska Highway Reference Logbook} \\
\hline COUNTY & County, as stated & & \\
\hline HWY_POINT & Short description of the point on the highway where the ramp is located & & \\
\hline RAMP_DIR & Direction of the ramp from the reference post given (logbook travels from west to east or south to north) & & \\
\hline REF_POST & Reference post listed & & \\
\hline MILES & Copied directly; typically, similar to the reference post number & & \\
\hline HWY_NO & Highway number given in existing FRT inventory spreadsheet & & \multirow{6}{*}{From "IntegratedHighwayInvent ory_IHIP0108" spreadsheet provided by NDOT} \\
\hline REF_BEG & Reference post number at the beginning of the ramp & & \\
\hline REF_END & Reference post number at the end of the ramp & & \\
\hline RAMP_ID & ID number given to each ramp & & \\
\hline RAMP_LOC & Short description of the location of the ramp; typically includes intersecting roads and city & & \\
\hline INT & Intersecting roadways where the ramp exists & & \\
\hline BEG_END & Beginning or end of the ramp indicator, for highway segment: & \[
\begin{aligned}
& \text { Beginning }=1 \\
& \text { End }=0
\end{aligned}
\] & Pathweb/Google Earth \\
\hline CITY & City (or village) the ramp is located in & & Pathweb \\
\hline AREA_TYPE & Rural or urban area, based off of population (population of 5,000 or more is urban, per AASHTO) & \[
\begin{aligned}
& \text { Rural }=1 \\
& \text { Urban }=0
\end{aligned}
\] & Nebraska Census website \\
\hline
\end{tabular}

Table A. 1 FRT Ramp Intersection Characteristics (2 of 13)
\begin{tabular}{|l|l|l|c|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline LEGS & Number of Intersection legs & \begin{tabular}{l} 
4-leg intersection = 4 \\
\(3-l e g ~ i n t e r s e c t i o n=3\)
\end{tabular} & Pathweb/Google Earth \\
\hline SKEW & Presence of intersection skew & \begin{tabular}{l} 
Yes \(=1\) \\
No \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline NAME_ENTR & Highway name of the road where the ramp entrance is located & & Pathweb/Google Earth \\
\hline LN_ENTR & Number of lanes on the road approaching the ramp & \begin{tabular}{l} 
Paved \(=2\) \\
Unpaved \(=1\) \\
None \(=0\)
\end{tabular} & \begin{tabular}{l} 
Yes \(=1\) \\
No \(=0\)
\end{tabular} \\
\hline SHLDR_ENTR & Type of shoulder on the road approaching the ramp entrance & Pathweb/Google Earth \\
\hline DH_ENTR & Is the road approaching the ramp a divided highway? & \begin{tabular}{l} 
Yes \(=1\) \\
No \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline DECEL_LN & Presence of a deceleration lane approaching the ramp entrance & \\
\hline MED_ENTR & Presence of a median on the road approaching the ramp entrance & \begin{tabular}{l} 
Raised grass \(=3\) \\
Paised pavement = 2 \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline SL_ENTR & Speed limit (mph) of the road approaching the ramp entrance & & Pathweb/Google Earth \\
\hline
\end{tabular}

Table A. 1 FRT Ramp Intersection Characteristics (3 of 13)
\begin{tabular}{|l|l|l|l|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline & & & R2-1 \(=1\)
\end{tabular}

Table A.1 FRT Ramp Intersection Characteristics (4 of 13)
\begin{tabular}{|c|c|c|c|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline CNTRL_THRU & Traffic control of through traffic for road approaching FRT ramp & \begin{tabular}{l}
Traffic signals \(=3\) STOP sign \(=2\) \\
YIELD sign \(=1\) \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline NAME_EXIT & Highway name of the road where the ramp exits to & & Pathweb/Google Earth \\
\hline LN_EXT & Number of lanes on the road where the ramp exits to & & Pathweb/Google Earth \\
\hline SHLDR_EXIT & Type of shoulder on the road the ramp exits to & \[
\begin{aligned}
& \text { Paved }=2 \\
& \text { Unpaved }=1 \\
& \text { None }=0
\end{aligned}
\] & Pathweb/Google Earth \\
\hline DH_EXIT & Is the road the ramp exits to a divided highway? & \[
\begin{aligned}
& \text { Yes }=1 \\
& \text { No }=0
\end{aligned}
\] & Pathweb/Google Earth \\
\hline ACCEL_LN & Presence of an acceleration lane after the ramp exit & \[
\begin{aligned}
& \text { Yes }=1 \\
& \text { No }=0
\end{aligned}
\] & Pathweb/Google Earth \\
\hline MED_EXIT & Presence of a median on the road exiting from the ramp & \begin{tabular}{l}
Raised grass \(=3\) \\
Raised pavement \(=2\)
\[
\text { Painted }=1
\] \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline SL_EXIT & Speed limit (mph) of the road exiting from the ramp & & Pathweb/Google Earth \\
\hline SL_SIGN_EXIT & Speed limit sign type & \[
\begin{aligned}
& \mathrm{R} 2-1=1 \\
& \mathrm{~W} 13-1 \mathrm{P}=0
\end{aligned}
\] & Pathweb/Google Earth \\
\hline SL_LOC_EXIT & Speed limit sign location (coordinates) on the road exiting from the ramp & & Pathweb/Google Earth \\
\hline SURF_EXIT & Surface type of road after the ramp exit & \[
\begin{aligned}
& \text { Gravel }=2 \\
& \text { Asphalt }=1 \\
& \text { Concrete }=0
\end{aligned}
\] & Pathweb/Google Earth \\
\hline
\end{tabular}

Table A.1 FRT Ramp Intersection Characteristics (5 of 13)
\begin{tabular}{|l|l|l|c|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline LENGTH & Length of FRT ramp (ft) & & Google Earth \\
\hline RADIUS & Radius of FRT ramp (ft) & \begin{tabular}{l} 
Grass island \(=3\) \\
Raised pavement island \(=2\) \\
Painted island \(=1\) \\
None \(=0\)
\end{tabular} & Google Earth \\
\hline ISLAND & Type of island present at the ramp & \begin{tabular}{l} 
Paved \(=2\) \\
Unpaved \(=1\) \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
SHLDR_RAMP & Type of shoulder on the ramp & & Pathweb/Google Earth \\
\hline
\end{tabular}

Table A.1 FRT Ramp Intersection Characteristics (6 of 13)


Table A.1 FRT Ramp Intersection Characteristics (7 of 13)
\begin{tabular}{|c|c|c|c|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline HAW_SIGN_1 & Number of W1-8 horizontal alignment warning signs present on the ramp &  & Pathweb/Google Earth \\
\hline HAW_SIGN_2 & Presence of W1-2 horizontal alignment warning sign on ramp & Yes \(=1\)
\[
\mathrm{No}=0
\] & Pathweb/Google Earth \\
\hline SURF_RAMP & Surface type of the ramp & \[
\begin{aligned}
& \text { Gravel }=2 \\
& \text { Asphalt }=1 \\
& \text { Concrete }=0
\end{aligned}
\] & Pathweb/Google Earth \\
\hline CNTRL_RAMP & Traffic control at the exit of the ramp & \begin{tabular}{l}
STOP sign \(=2\) \\
YIELD sign \(=1\) \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline
\end{tabular}

Table A. 1 FRT Ramp Intersection Characteristics (8 of 13)
\begin{tabular}{|c|c|c|c|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline ADV_TC_1 & Presence of W3-2 advanced traffic control signing & \[
\text { Yes }=1
\]
\[
\mathrm{No}=0
\] & Pathweb/Google Earth \\
\hline ADV_TC_2 & Presence of W3-2a advanced traffic control signing & \[
\mathrm{Yes}=1
\] & Pathweb/Google Earth \\
\hline JCT_SIGN & Presence of an M2-2 combination junction sign & \[
\begin{array}{lr}
\text { Yes }=1 & \text { JUNCTION } \\
& 473 \\
\mathrm{No}=0 & 3
\end{array}
\] & Pathweb/Google Earth \\
\hline US_SIGN & Quantity of M1-4 U.S. route signs &  & Pathweb/Google Earth \\
\hline STATE_SIGN & Quantity of M1-5 state route signs &  & Pathweb/Google Earth \\
\hline
\end{tabular}

Table A. 1 FRT Ramp Intersection Characteristics (9 of 13)
\begin{tabular}{|c|c|c|c|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline DIR_SIGN_1 & Quantity of M6-1 advance turn and directional arrow auxiliary signs & Two \(=2\)
\[
\text { One }=1
\]
\[
\text { None }=0
\] & Pathweb/Google Earth \\
\hline DIR_SIGN_2 & Quantity of M6-2 advance turn and directional arrow auxiliary signs & \begin{tabular}{l}
Two \(=2\) \\
One \(=1\) \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline DIR_SIGN_3 & Quantity of M6-3 advance turn and directional arrow auxiliary signs & \begin{tabular}{l}
Two \(=2\)
\[
\text { One = } 1
\] \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline DIR_SIGN_4 & Quantity of M6-4 advance turn and directional arrow auxiliary signs & \begin{tabular}{l}
Two \(=2\) \\
One \(=1\) \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline
\end{tabular}

Table A.1 FRT Ramp Intersection Characteristics (10 of 13)
\begin{tabular}{|c|c|c|c|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline DIR_SIGN_5 & Quantity of M6-5 advance turn and directional arrow auxiliary signs & \begin{tabular}{l}
Two \(=2\)
\[
\text { One }=1
\] \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline DIR_SIGN_6 & Quantity of M6-6 advance turn and directional arrow auxiliary signs & \begin{tabular}{l}
Two \(=2\) \\
One \(=1\) \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline DIR_SIGN_7 & Quantity of M6-7 advance turn and directional arrow auxiliary signs & \begin{tabular}{l}
Two \(=2\) \\
One \(=1\) \\
None \(=0\) \\
M6-7
\end{tabular} & Pathweb/Google Earth \\
\hline DIR_SIGN_8 & Quantity of M5-1 advance turn and directional arrow auxiliary signs & \begin{tabular}{l}
Two \(=2\) \\
One \(=1\) \\
None \(=0\)
\end{tabular} & Pathweb/Google Earth \\
\hline WARN_DA & Presence of a W12-1 double arrow sign & \[
\begin{aligned}
& \mathrm{Yes}=1 \\
& \mathrm{No}=0
\end{aligned}
\] & Pathweb/Google Earth \\
\hline
\end{tabular}

Table A.1 FRT Ramp Intersection Characteristics (11 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & Description & \multicolumn{2}{|l|}{Coding (if applicable)} & Source of Information \\
\hline OBJ 1 & Presence of an OM1-3 object marker for obstruction sign & \[
\begin{aligned}
& \text { Yes }=1 \\
& \text { No }=0
\end{aligned}
\] &  & Pathweb/Google Earth \\
\hline OBJ_2 & Presence of an OM1-2 object marker for obstruction sign & \[
\begin{aligned}
& \text { Yes }=1 \\
& \text { No }=0
\end{aligned}
\] &  & Pathweb/Google Earth \\
\hline MERGE_1 & Presence of a W4-1 merge sign & \[
\begin{aligned}
& \text { Yes }=1 \\
& \text { No }=0
\end{aligned}
\] &  & Pathweb/Google Earth \\
\hline MERGE_2 & Presence of a W4-5 merge sign & \[
\begin{aligned}
& \text { Yes }=1 \\
& \mathrm{No}=0
\end{aligned}
\] &  & Pathweb/Google Earth \\
\hline EXCLSN_1 & Presence of R5-1 selective exclusion signing at the exit of the ramp, from the opposing direction & \[
\begin{aligned}
& \text { Yes }=1 \\
& \mathrm{No}=0
\end{aligned}
\] &  & Pathweb/Google Earth \\
\hline
\end{tabular}

Table A.1 FRT Ramp Intersection Characteristics (12 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & Description & \multicolumn{2}{|l|}{Coding (if applicable)} & Source of Information \\
\hline EXCLSN_2 & Presence of R5-1a selective exclusion signing at the exit of the ramp, from the opposing direction & \[
\begin{aligned}
& \mathrm{Yes}=1 \\
& \mathrm{No}=0
\end{aligned}
\] & \begin{tabular}{l}
WRONG WAY \\
R5-1a
\end{tabular} & Pathweb/Google Earth \\
\hline LIGHT & Presence of light posts in the area & \[
\begin{aligned}
& \text { Yes }=1 \\
& \mathrm{No}=0
\end{aligned}
\] & & Pathweb/Google Earth \\
\hline RAIL & Presence of a railroad crossing near the intersection & \[
\begin{aligned}
& \text { Yes }=1 \\
& \mathrm{No}=0
\end{aligned}
\] & & Pathweb/Google Earth \\
\hline BLDG & Presence of residential or commercial buildings near the intersection & \[
\begin{aligned}
& \hline \text { Yes }=1 \\
& \mathrm{No}=0
\end{aligned}
\] & & Pathweb/Google Earth \\
\hline COORD_CNTR_ID & Unique ID given for Google Earth labeling purposes & & & \multirow{10}{*}{Google Earth} \\
\hline COORD_CNTR & Coordinates of the center of the intersection & & & \\
\hline COORD_N_ID & Unique ID given for Google Earth labeling purposes & & & \\
\hline COORD_N & Coordinates of the leg north of the intersection, \(1 / 4\) quarter mile from center & & & \\
\hline COORD_E_ID & Unique ID given for Google Earth labeling purposes & & & \\
\hline COORD_E & Coordinates of the leg east of the intersection, \(1 / 4\) quarter mile from center & & & \\
\hline COORD_S_ID & Unique ID given for Google Earth labeling purposes & & & \\
\hline COORD_S & Coordinates of the leg south of the intersection, \(1 / 4\) quarter mile from center & & & \\
\hline COORD W ID & Unique ID given for Google Earth labeling purposes & & & \\
\hline COORD_W & Coordinates of the leg west of the intersection, \(1 / 4\) quarter mile from center & & & \\
\hline
\end{tabular}

Table A.1 FRT Ramp Intersection Characteristics (13 of 13)
\begin{tabular}{|l|l|l|l|}
\hline Variable & Description & Coding (if applicable) & Source of Information \\
\hline RAMP_BEG & Intersection leg where the ramp begins & \begin{tabular}{l} 
North \(=0\) \\
East \(=1\) \\
South \(=2\) \\
West \(=3\)
\end{tabular} & \\
\hline RAMP_END & Intersection leg where the ramp ends & \begin{tabular}{l} 
North \(=0\) \\
East \(=1\) \\
South \(=2\) \\
West \(=3\)
\end{tabular} & Pathweb/Google Earth \\
\hline
\end{tabular}

Table A. 2 FRT Intersection Basic Characteristics (1 of 2)
Note 1: items shaded in gray indicate two ramps of the same intersection
Note 2: FRT ramp 'FRT11' was removed, so although the last ramp is 'FRT80' there are 79 total ramps

Note 3: if an FRT radius is indicated as 'N/A' the ramp is a straight segment
Note 4: FRT length and FRT radius are rounded to the nearest 50 ft
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SITE_ID & FRT_ID & COUNTY & INTERSECTION & LEGS & SKEW & LIGHT & FRT LENGTH (ft) & FRT RADIUS (ft) \\
\hline FRT1 & FRT 1 & BOX BUTTE & N-2/L-7E & 3 & Yes & Yes & 150 & 350 \\
\hline FRT2 & FRT2 & BOX BUTTE & N-2/US-385 & 3 & No & Yes & 450 & 350 \\
\hline FRT3 & FRT3 & CUSTER & N-2/N-92 & 4 & Yes & Yes & 200 & 350 \\
\hline \multirow[t]{2}{*}{FRT4_5} & FRT4 & HAMIL TON & N-2/US-34 & 4 & Yes & Yes & 100 & 150 \\
\hline & FRT5 & HAMILTON & N-2/US-34 & 4 & Yes & Yes & 550 & 350 \\
\hline FRT6 & FRT6 & WEBSTER & N-4/US-281 & 3 & Yes & No & 550 & N/A \\
\hline FRT7 & FRT7 & GAGE & N-4/N-103 & 3 & Yes & Yes & 350 & 450 \\
\hline FRT8 & FRT8 & PAWNEE & N-4/N-99 & 4 & No & No & 100 & 150 \\
\hline FRT9 & FRT9 & PAWNEE & N-4/N-50 & 3 & No & No & 2000 & 1550 \\
\hline FRT 10 & FRT 10 & RICHARDSON & N-4/N-105 & 3 & No & Yes & 200 & 200 \\
\hline \multirow[t]{2}{*}{FRT12_13} & FRT12 & KEARNEY & US-6/34/N-44 & 4 & Yes & Yes & 800 & 600 \\
\hline & FRT13 & KEARNEY & US-6/34/N-44 & 4 & Yes & Yes & 400 & 300 \\
\hline FRT14 & FRT14 & SALINE & US-6/N-33 & 3 & No & Yes & 1300 & N/A \\
\hline FRT15 & FRT 15 & JEFFERSON & N-8/N-15 & 3 & Yes & No & 500 & 400 \\
\hline FRT16 & FRT16 & PAWNEE & N-8/N-99 & 4 & No & No & 100 & 250 \\
\hline FRT17 & FRT 17 & CUMING & N-9/US-275 & 3 & No & Yes & 600 & N/A \\
\hline FRT18 & FRT18 & THURSTON & N-9/N-16 & 3 & Yes & Yes & 350 & 450 \\
\hline FRT19 & FRT19 & LINE & N-9/N-35 & 4 & No & Yes & 300 & 300 \\
\hline FRT20 & FRT20 & DIXON & N-9/N-35 & 4 & No & Yes & 1200 & 650 \\
\hline FRT21 & FRT21 & SHERMAN & N-10¢-82A & 4 & No & Yes & 300 & 150 \\
\hline FRT22 & FRT22 & CEDAR & N-12/N-57 & 4 & No & No & 2000 & 1150 \\
\hline FRT23 & FRT23 & BOONE & N-14/N-39 & 3 & Yes & No & 850 & 1250 \\
\hline FRT24 & FRT24 & SALINE & N-14/N-41 & 4 & No & No & 300 & 250 \\
\hline FRT25 & FRT25 & BUTLER & N-15/N-92 & 4 & No & Yes & 200 & 150 \\
\hline FRT26 & FRT26 & BUTLER & N-15/N-64 & 3 & Yes & Yes & 1500 & 1100 \\
\hline FRT27 & FRT27 & STANTON & N-15/US-275 & 3 & No & Yes & 200 & 250 \\
\hline FRT28 & FRT28 & CEDAR & N-15/US-20 & 3 & Yes & Yes & 1150 & N/A \\
\hline FRT29 & FRT29 & CEDAR & N-15/N-59 & 4 & No & No & 1400 & 1150 \\
\hline FRT30 & FRT30 & DAWES & US-20/N-71 & 3 & No & Yes & 500 & 350 \\
\hline FRT31 & FRT31 & HOLT & US-20/US-281 & 4 & No & Yes & 150 & 200 \\
\hline FRT32 & FRT32 & HOLT & US-20/US-275 & 4 & Yes & Yes & 950 & 1700 \\
\hline \multirow[t]{2}{*}{FRT33_34} & FRT33 & PIERCE & US-20/US-81 & 4 & No & Yes & 750 & 600 \\
\hline & FRT34 & PIERCE & US-20/US-81 & 4 & No & Yes & 200 & 200 \\
\hline FRT35 & FRT35 & NANCE & N-22/N-39 & 4 & No & Yes & 600 & 500 \\
\hline FRT36 & FRT36 & PERKINS & N-23/N-61 & 4 & No & Yes & 950 & 550 \\
\hline FRT37 & FRT37 & FRONTIER & N-23/US-83 & 4 & Yes & Yes & 150 & 100 \\
\hline \multirow[t]{2}{*}{FRT38_39} & FRT38 & HITCHCOCK & N-25/US-34 & 4 & Yes & Yes & 250 & 150 \\
\hline & FRT39 & HITCHCOCK & N-25/US-34 & 4 & Yes & Yes & 250 & 250 \\
\hline FRT40 & FRT40 & MORRILL & US-26L-62A & 3 & Yes & Yes & 500 & 900 \\
\hline
\end{tabular}

Table A. 2 FRT Intersection Basic Characteristics (2 of 2)
Note 1: items shaded in gray indicate two ramps of the same intersection
Note 2: FRT ramp 'FRT11' was removed, so although the last ramp is 'FRT80' there are 79 total ramps

Note 3: if an FRT radius is indicated as 'N/A' the ramp is a straight segment
Note 4: FRT length and FRT radius are rounded to the nearest 50 ft
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SITE_ID & FRT_ID & COUNTY & INTERSECTION & LEGS & SKEW & LIGHT & FRT LENGTH (ft) & FRT RADIUS (ft) \\
\hline FRT41 & FRT41 & MORRILL & US-26/N-92 & 3 & No & Yes & 200 & 200 \\
\hline FRT42 & FRT 42 & CUMING & N-32/US-275 & 3 & No & Yes & 200 & 150 \\
\hline FRT43 & FRT43 & DUNDY & US-34/N-61 & 3 & No & Yes & 700 & 450 \\
\hline FRT44 & FRT44 & LANCASTER & US-34/S-55M & 3 & Yes & No & 350 & 950 \\
\hline \multirow[t]{2}{*}{FRT45_46} & FRT45 & CASS & US-34/US-75 & 4 & No & Yes & 600 & 550 \\
\hline & FRT46 & CASS & US-34/US-75 & 4 & No & Yes & 400 & 350 \\
\hline FRT47 & FRT47 & WAYNE & N-16/N-35 & 4 & No & Yes & 500 & 400 \\
\hline FRT48 & FRT48 & DOUGLAS & RD & 3 & No & Yes & 250 & 200 \\
\hline FRT49 & FRT49 & BOONE & N-39/N-56 & 3 & Yes & Yes & 700 & 1000 \\
\hline FRT50 & FRT50 & FILLMORE & N-41/S-30H & 4 & No & Yes & 200 & 200 \\
\hline FRT51 & FRT51 & FURNAS & N-46/N-89 & 3 & No & Yes & 600 & 950 \\
\hline FRT52 & FRT52 & CEDAR & N-57/N-59 & 4 & No & No & 1400 & 1200 \\
\hline \multirow[t]{2}{*}{FRT53_54} & FRT53 & KEITH & N-61/N SPRUCE ST & 4 & No & Yes & 1350 & 1100 \\
\hline & FRT54 & KEITH & N-61/N SPRUCE ST & 4 & No & Yes & 1350 & 1200 \\
\hline FRT55 & FRT55 & SAUNDERS & N-64/S-78J & 3 & No & No & 650 & 450 \\
\hline FRT56 & FRT56 & PAWNEE & N-65/S-67C & 4 & No & No & 300 & 250 \\
\hline FRT57 & FRT57 & KIMBALL & N-71/OLD N-71 & 3 & No & Yes & 1450 & 1150 \\
\hline \multirow[t]{2}{*}{FRT58_59} & FRT58 & RICHARDSON & US-73/US-75 & 4 & Yes & Yes & 1400 & 1900 \\
\hline & FRT59 & RICHARDSON & US-73/US-75 & 4 & Yes & Yes & 500 & 350 \\
\hline FRT60 & FRT60 & ADAMS & N-74/US-281 & 3 & Yes & Yes & 550 & N/A \\
\hline FRT61 & FRT61 & ADAMS & N-74/US-281 & 4 & No & No & 550 & 500 \\
\hline FRT62 & FRT62 & GAGE & US-77/W LOCUST RD & 4 & No & No & 400 & 300 \\
\hline \multirow[t]{2}{*}{FRT63_64} & FRT63 & SAUNDERS & US-77/N-92 & 4 & No & Yes & 950 & 800 \\
\hline & FRT64 & SAUNDERS & US-77/N-92 & 4 & No & Yes & 900 & 650 \\
\hline FRT65 & FRT65 & SAUNDERS & US-77N-109 & 3 & Yes & Yes & 400 & 300 \\
\hline FRT66 & FRT66 & SAUNDERS & AVE & 3 & No & Yes & 400 & 400 \\
\hline \multirow[t]{2}{*}{FRT67_68} & FRT67 & POLK & US-81/N-92 & 4 & No & Yes & 850 & 700 \\
\hline & FRT68 & POLK & US-81/N-92 & 4 & No & Yes & 850 & 700 \\
\hline \multirow[t]{2}{*}{FRT69_70} & FRT69 & POLK & US-81/N-92 & 4 & No & Yes & 1100 & 700 \\
\hline & FRT70 & POLK & US-81/N-92 & 4 & No & Yes & 950 & 700 \\
\hline \multirow[t]{2}{*}{FRT71_72} & FRT71 & DODGE & N-91/US-275 & 3 & Yes & Yes & 350 & 250 \\
\hline & FRT72 & DODGE & N-91/US-275 & 3 & Yes & Yes & 250 & 250 \\
\hline FRT73 & FRT73 & MADISON & N-121/US-275 & 4 & No & Yes & 350 & 50 \\
\hline FRT74 & FRT74 & HARLAN & N-89/US-136 & 4 & Yes & Yes & 250 & 500 \\
\hline FRT75 & FRT75 & GAGE & ROAD & 3 & Yes & Yes & 750 & 1800 \\
\hline FRT76 & FRT76 & DOUGLAS & N-92/US-275 & 4 & Yes & Yes & 1100 & 550 \\
\hline FRT77 & FRT77 & MORRILL & N-92/US-385 & 3 & Yes & Yes & 850 & 750 \\
\hline FRT78 & FRT78 & MORRILL & US-385/L-62A & 3 & No & Yes & 450 & 300 \\
\hline FRT79 & FRT79 & BUFFALO & L-10D/9TH ST & 4 & No & No & 1000 & 800 \\
\hline FRT80 & FRT80 & Clay & S-18A & 4 & No & No & 550 & 450 \\
\hline
\end{tabular}

Table A. 3 FRT Intersections and Ramps by County (1 of 2)
\begin{tabular}{|l|c|c}
\hline County & No. of FRT Ramp Intersections & No. of FRT Ramps \\
\hline Adams & 2 & 2 \\
\hline Boone & 2 & 2 \\
\hline Box Butte & 2 & 2 \\
\hline Buffalo & 1 & 1 \\
\hline Butler & 2 & 2 \\
\hline Cass & 1 & 2 \\
\hline Cedar & 4 & 4 \\
\hline Clay & 1 & 1 \\
\hline Cuming & 2 & 2 \\
\hline Custer & 1 & 1 \\
\hline Dawes & 1 & 1 \\
\hline Line & 1 & 1 \\
\hline Dixon & 1 & 1 \\
\hline Dodge & 1 & 2 \\
\hline Douglas & 2 & 2 \\
\hline Dundy & 1 & 1 \\
\hline Fillmore & 1 & 1 \\
\hline Frontier & 1 & 1 \\
\hline Furnas & 1 & 1 \\
\hline Gage & 3 & 3 \\
\hline Hamilton & 1 & 2 \\
\hline Harlan & 1 & 1 \\
\hline
\end{tabular}

Table A. 3 FRT Intersections and Ramps by County (2 of 2)
\begin{tabular}{|l|c|c}
\hline County & No. of FRT Ramp Intersections & No. of FRT Ramps \\
\hline Hitchcock & 1 & 2 \\
\hline Holt & 2 & 2 \\
\hline Jefferson & 1 & 1 \\
\hline Kearney & 1 & 2 \\
\hline Keith & 1 & 2 \\
\hline Kimball & 1 & 1 \\
\hline Lancaster & 1 & 1 \\
\hline Madison & 1 & 1 \\
\hline Morrill & 4 & 4 \\
\hline Nance & 1 & 1 \\
\hline Pawnee & 4 & 4 \\
\hline Perkins & 1 & 1 \\
\hline Pierce & 1 & 2 \\
\hline Polk & 2 & 4 \\
\hline Richardson & 2 & 3 \\
\hline Saline & 2 & 2 \\
\hline Saunders & 4 & 5 \\
\hline Sherman & 1 & 1 \\
\hline Stanton & 1 & 1 \\
\hline Thurston & 1 & 1 \\
\hline Wayne & 1 & 1 \\
\hline Webster & 1 & 1 \\
\hline Total & & \\
\hline & & 1 \\
\hline & & \\
\hline
\end{tabular}

Table A. 4 FRT Intersection AADT from 2010-2019 (1 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Site & 2010 AADT & 2011 AADT & 2012 AADT & 2013 AADT & 2014 AADT & 2015 AADT & 2016 AADT & 2017 AADT & 2018 AADT & 2019 AADT & AVERAGE 10 YR AADT \\
\hline FRT1 & 3370 & 3348 & 3325 & 3510 & 3695 & 3745 & 3795 & 3755 & 3715 & 3945 & 3620 \\
\hline FRT2 & 6665 & 6628 & 6590 & 6925 & 7260 & 7213 & 7165 & 6858 & 6550 & 6523 & 6838 \\
\hline FRT3 & 5717 & 5736 & 5755 & 6072 & 6389 & 6955 & 7520 & 7107 & 6693 & 6334 & 6428 \\
\hline FRT4_5 & 12480 & 13100 & 13720 & 13500 & 13280 & 13425 & 13570 & 15373 & 17175 & 15960 & 14158 \\
\hline FRT6 & 3860 & 4103 & 4345 & 4278 & 4210 & 4158 & 4105 & 4280 & 4455 & 4680 & 4247 \\
\hline FRT7 & 5125 & 5075 & 5025 & 5260 & 5495 & 5498 & 5500 & 5480 & 5460 & 5555 & 5347 \\
\hline FRT8 & 2080 & 2075 & 2070 & 2003 & 1935 & 2020 & 2105 & 2163 & 2220 & 2390 & 2106 \\
\hline FRT9 & 3830 & 3828 & 3825 & 3763 & 3700 & 3945 & 4190 & 4059 & 3927 & 4002 & 3907 \\
\hline FRT10 & 4790 & 4698 & 4605 & 4800 & 4995 & 4863 & 4730 & 4645 & 4560 & 4725 & 4741 \\
\hline FRT12_13 & 12189 & 12327 & 12465 & 12331 & 12196 & 12241 & 12285 & 13087 & 13888 & 14612 & 12762 \\
\hline FRT14 & 8255 & 8805 & 9355 & 8953 & 8550 & 8863 & 9175 & 7968 & 6760 & 6860 & 8354 \\
\hline FRT15 & 4151 & 4088 & 4025 & 4325 & 4624 & 4547 & 4470 & 4580 & 4689 & 4441 & 4394 \\
\hline FRT16 & 1150 & 1060 & 970 & 1025 & 1080 & 1195 & 1310 & 1308 & 1305 & 1580 & 1198 \\
\hline FRT17 & 16625 & 16263 & 15900 & 16238 & 16575 & 17268 & 17960 & 18260 & 18560 & 16910 & 17056 \\
\hline FRT18 & 5110 & 5498 & 5885 & 6008 & 6130 & 6305 & 6480 & 6580 & 6680 & 6550 & 6123 \\
\hline FRT19 & 8255 & 8585 & 8915 & 9088 & 9260 & 9788 & 10315 & 10838 & 11360 & 9328 & 9573 \\
\hline FRT20 & 8090 & 8058 & 8025 & 8850 & 9675 & 9593 & 9510 & 10058 & 10605 & 9595 & 9206 \\
\hline FRT21 & 2295 & 2318 & 2340 & 2268 & 2195 & 2293 & 2390 & 2408 & 2425 & 2370 & 2330 \\
\hline FRT22 & 5481 & 5663 & 5845 & 5737 & 5628 & 5694 & 5760 & 5372 & 4984 & 4975 & 5514 \\
\hline FRT23 & 8115 & 8235 & 8355 & 7745 & 7135 & 7505 & 7875 & 8050 & 8225 & 7923 & 7916 \\
\hline FRT24 & 3457 & 3476 & 3495 & 3499 & 3503 & 3679 & 3855 & 3674 & 3493 & 3886 & 3602 \\
\hline FRT25 & 10827 & 10866 & 10905 & 10898 & 10890 & 11090 & 11290 & 11828 & 12366 & 12267 & 11323 \\
\hline FRT26 & 9420 & 9110 & 8800 & 8848 & 8895 & 9356 & 9818 & 9896 & 9975 & 9229 & 9335 \\
\hline FRT27 & 16085 & 15815 & 15545 & 15768 & 15990 & 16633 & 17275 & 17268 & 17260 & 16450 & 16409 \\
\hline FRT28 & 6780 & 6955 & 7130 & 6953 & 6775 & 7238 & 7700 & 8647 & 9593 & 9582 & 7735 \\
\hline FRT29 & 6040 & 6648 & 7255 & 7013 & 6770 & 7085 & 7400 & 7543 & 7685 & 6645 & 7008 \\
\hline FRT30 & 3020 & 3010 & 3000 & 3023 & 3045 & 3565 & 4085 & 4420 & 4755 & 4755 & 3668 \\
\hline FRT31 & 12355 & 11295 & 10235 & 10650 & 11065 & 12625 & 14185 & 15470 & 16755 & 15869 & 13050 \\
\hline FRT32 & 5298 & 5349 & 5400 & 5441 & 5482 & 5271 & 5060 & 5694 & 6328 & 5976 & 5530 \\
\hline FRT33_34 & 13390 & 13780 & 14170 & 14705 & 15240 & 14968 & 14695 & 14795 & 14895 & 13634 & 14427 \\
\hline FRT35 & 4350 & 4983 & 5615 & 5603 & 5590 & 5593 & 5595 & 5780 & 5965 & 5661 & 5473 \\
\hline FRT36 & 4983 & 5299 & 5615 & 5505 & 5394 & 5440 & 5485 & 5596 & 5706 & 5323 & 5434 \\
\hline FRT37 & 6175 & 6060 & 5945 & 6288 & 6630 & 6505 & 6380 & 6393 & 6405 & 6195 & 6298 \\
\hline
\end{tabular}

Table A. 4 FRT Intersection AADT from 2010-2019 (2 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Site & 2010 AADT & 2011 AADT & 2012 AADT & 2013 AADT & 2014 AADT & 2015 AADT & 2016 AADT & 2017 AADT & 2018 AADT & 2019 AADT & AVERAGE 10 YR AADT \\
\hline FRT38_39 & 5830 & 5848 & 5865 & 6305 & 6745 & 6085 & 5425 & 6433 & 7440 & 7090 & 6307 \\
\hline FRT40 & 8475 & 8708 & 8940 & 8888 & 8835 & 9915 & 10995 & 10510 & 10025 & 9405 & 9470 \\
\hline FRT41 & 8035 & 7823 & 7610 & 7680 & 7750 & 8370 & 8990 & 8435 & 7880 & 7275 & 7985 \\
\hline FRT42 & 18430 & 18310 & 18190 & 18470 & 18750 & 21425 & 24100 & 25575 & 27050 & 25195 & 21550 \\
\hline FRT43 & 3175 & 3393 & 3610 & 3578 & 3545 & 3558 & 3570 & 3473 & 3375 & 3718 & 3499 \\
\hline FRT44 & 12545 & 13123 & 13700 & 13285 & 12870 & 12095 & 11320 & 12603 & 13885 & 13275 & 12870 \\
\hline FRT45_46 & 17465 & 16420 & 15375 & 16278 & 17180 & 14583 & 11985 & 11166 & 10347 & 10830 & 14163 \\
\hline FRT47 & 9580 & 9493 & 9405 & 9990 & 10575 & 10660 & 10745 & 11578 & 12411 & 11416 & 10585 \\
\hline FRT48 & 565 & 565 & 565 & 565 & 565 & 565 & 565 & 565 & 565 & 565 & 565 \\
\hline FRT49 & 4780 & 4760 & 4740 & 4643 & 4545 & 4790 & 5035 & 5129 & 5223 & 4902 & 4855 \\
\hline FRT50 & 2605 & 2438 & 2270 & 2180 & 2090 & 2235 & 2380 & 2525 & 2670 & 2885 & 2428 \\
\hline FRT51 & 2175 & 2073 & 1970 & 1973 & 1975 & 2175 & 2375 & 1923 & 1470 & 1520 & 1963 \\
\hline FRT52 & 2645 & 2735 & 2825 & 2985 & 3145 & 3390 & 3635 & 3565 & 3495 & 3450 & 3187 \\
\hline FRT53_54 & 7945 & 7918 & 7890 & 7615 & 7340 & 6443 & 5545 & 5130 & 4714 & 4815 & 6535 \\
\hline FRT55 & 2725 & 2663 & 2600 & 2810 & 3020 & 3380 & 3740 & 4143 & 4545 & 4503 & 3413 \\
\hline FRT56 & 585 & 573 & 560 & 623 & 685 & 738 & 790 & 588 & 385 & 365 & 589 \\
\hline FRT57 & 5480 & 5913 & 6345 & 6260 & 6175 & 6208 & 6240 & 6615 & 6989 & 7052 & 6328 \\
\hline FRT58_59 & 7663 & 7732 & 7800 & 7855 & 7909 & 8287 & 8665 & 8867 & 9068 & 8615 & 8246 \\
\hline FRT60 & 5770 & 6015 & 6260 & 6253 & 6245 & 6135 & 6025 & 6180 & 6335 & 6550 & 6177 \\
\hline FRT61 & 6525 & 6718 & 6910 & 6748 & 6585 & 6918 & 7250 & 7033 & 6815 & 6863 & 6836 \\
\hline FRT62 & 9780 & 9303 & 8825 & 9110 & 9395 & 9625 & 9855 & 10106 & 10357 & 9816 & 9617 \\
\hline FRT63_64 & 12322 & 12396 & 12470 & 12802 & 13133 & 15919 & 18705 & 20160 & 21614 & 21458 & 16098 \\
\hline FRT65 & 17060 & 17388 & 17715 & 17423 & 17130 & 17263 & 17395 & 18893 & 20390 & 18183 & 17884 \\
\hline FRT66 & 2845 & 2908 & 2970 & 3078 & 3185 & 3188 & 3190 & 3230 & 3270 & 3133 & 3100 \\
\hline FRT67_68 & 8865 & 9565 & 10265 & 10430 & 10595 & 11065 & 11535 & 11438 & 11340 & 11275 & 10637 \\
\hline FRT69_70 & 12530 & 12650 & 12770 & 13175 & 13580 & 14150 & 14720 & 15233 & 15745 & 15330 & 13988 \\
\hline FRT71_72 & 14730 & 15553 & 16375 & 16258 & 16140 & 16428 & 16715 & 17673 & 18630 & 17170 & 16567 \\
\hline FRT73 & 12866 & 13548 & 14230 & 14186 & 14142 & 14956 & 15770 & 15565 & 15360 & 14982 & 14560 \\
\hline FRT74 & 2660 & 2703 & 2745 & 2711 & 2676 & 2516 & 2355 & 2449 & 2543 & 2664 & 2602 \\
\hline FRT75 & 6635 & 6475 & 6315 & 6549 & 6782 & 6404 & 6025 & 6410 & 6794 & 6570 & 6496 \\
\hline FRT76 & 21385 & 22110 & 22835 & 21333 & 19830 & 20445 & 21060 & 22199 & 23338 & 22924 & 21746 \\
\hline FRT77 & 6405 & 6225 & 6045 & 6325 & 6605 & 6245 & 5885 & 5975 & 6065 & 5685 & 6146 \\
\hline FRT78 & 9020 & 9383 & 9745 & 9350 & 8954 & 9182 & 9410 & 9864 & 10317 & 9987 & 9521 \\
\hline FRT79 & 900 & 973 & 1045 & 958 & 870 & 870 & 870 & 913 & 955 & 965 & 932 \\
\hline FRT80 & 1045 & 1025 & 1005 & 950 & 895 & 950 & 1005 & 970 & 935 & 1003 & 978 \\
\hline
\end{tabular}

Table B. 1 Non-FRT Comparison Intersection Basic Characteristics
\begin{tabular}{|l|l|l|c|c|c}
\hline SITE ID & COUNTY & INTERSECTION & LEGS & SKEW & LIGHT \\
\hline COMP1 & BOX BUTTE & US-385/L-7E & 4 & No & Yes \\
\hline COMP2 & WEBSTER & N-4/US-281 & 3 & No & Yes \\
\hline COMP3 & HOWARD & N-11/N-92 & 4 & No & Yes \\
\hline COMP4 & HARLAN & N-4/US-183 & 4 & No & Yes \\
\hline COMP5 & CLAY & US-6/N-14 & 4 & No & Yes \\
\hline COMP6 & BUTLER & N-15/N-92 & 3 & No & Yes \\
\hline COMP7 & NANCE & N-22/L-63A & 3 & No & Yes \\
\hline COMP8 & THURSTON & N-9/N-16 & 4 & No & Yes \\
\hline COMP9 & NEMAHA & N-105/US-136 & 3 & No & Yes \\
\hline COMP10 & CUSTER & N-2/US-183 & 3 & Yes & Yes \\
\hline COMP11 & CUMING & N-51/US-275 & 3 & No & Yes \\
\hline COMP12 & CEDAR & N-15/N-116 & 3 & No & No \\
\hline COMP13 & CEDAR & N-12/US-81 & 4 & No & Yes \\
\hline COMP14 & SAUNDERS & N-109/S-78H & 3 & No & Yes \\
\hline COMP15 & GAGE & N-41/N-43 & 3 & No & Yes \\
\hline COMP16 & WASHINGTON & US-30/N-31 & 3 & No & Yes \\
\hline COMP17 & SARPY & N-31/N-50 & 3 & No & Yes \\
\hline COMP18 & JOHNSON & N-50/US-136 & 4 & No & Yes \\
\hline COMP19 & CASS & N-1/US-34 & 4 & No & Yes \\
\hline COMP20 & GAGE & N-4/N-136 & 3 & No & Yes \\
\hline COMP21 & SAUNDERS & N-79/N-92 & 4 & No & Yes \\
\hline COMP22 & NEMAHA & N-67/US-75 & 4 & No & Yes \\
\hline COMP23 & CASS & US-34/N-50 & 4 & No & Yes \\
\hline COMP24 & CASS & N-1/N-50 & 4 & No & Yes \\
\hline
\end{tabular}

Table B. 2 Non-FRT Comparison Intersections by County
\begin{tabular}{|l|c}
\hline County & No. of Non-FRT Ramp Intersections \\
\hline Box Butte & 1 \\
\hline Butler & 1 \\
\hline Cass & 3 \\
\hline Cedar & 2 \\
\hline Clay & 1 \\
\hline Cuming & 1 \\
\hline Custer & 1 \\
\hline Gage & 2 \\
\hline Harlan & 1 \\
\hline Howard & 1 \\
\hline Johnson & 1 \\
\hline Nance & 1 \\
\hline Nemaha & 2 \\
\hline Sarpy & 1 \\
\hline Saunders & 2 \\
\hline Thurston & 1 \\
\hline Washington & 1 \\
\hline Webster & 1 \\
\hline Total & 24 \\
\hline
\end{tabular}

Table B. 3 Non-FRT Intersection AADT from 2010-2019
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Site & 2010 AADT & 2011 AADT & 2012 AADT & 2013 AADT & 2014 AADT & 2015 AADT & 2016 AADT & 2017 AADT & 2018 AADT & 2019 AADT & AVERAGE 10 YR AADT \\
\hline COMP1 & 5360 & 5158 & 4955 & 5078 & 5200 & 4715 & 4230 & 4595 & 4960 & 4834 & 4908 \\
\hline COMP2 & 4316 & 4456 & 4595 & 4318 & 4040 & 4093 & 4145 & 4566 & 4986 & 5016 & 4453 \\
\hline COMP3 & 6610 & 6633 & 6655 & 6850 & 7045 & 7070 & 7095 & 7346 & 7596 & 7351 & 7025 \\
\hline COMP4 & 7180 & 7350 & 7520 & 7893 & 8265 & 8393 & 8520 & 8725 & 8930 & 8948 & 8172 \\
\hline COMP5 & 8255 & 8288 & 8320 & 7322 & 6324 & 7310 & 8295 & 8793 & 9290 & 9210 & 8141 \\
\hline COMP6 & 12705 & 12625 & 12545 & 12703 & 12860 & 13458 & 14055 & 13973 & 13891 & 13716 & 13253 \\
\hline COMP7 & 7385 & 7808 & 8230 & 8193 & 8155 & 7773 & 7390 & 7950 & 8510 & 8068 & 7946 \\
\hline COMP8 & 4905 & 5060 & 5215 & 5315 & 5415 & 6148 & 6880 & 6937 & 6994 & 6507 & 5938 \\
\hline COMP9 & 4765 & 4780 & 4795 & 4833 & 4870 & 5728 & 6585 & 5870 & 5155 & 5180 & 5256 \\
\hline COMP10 & 6730 & 6660 & 6590 & 6963 & 7335 & 6908 & 6480 & 6910 & 7340 & 7200 & 6912 \\
\hline COMP11 & 14640 & 14058 & 13475 & 13710 & 13945 & 13613 & 13280 & 13613 & 13945 & 13450 & 13773 \\
\hline COMP12 & 5090 & 5125 & 5160 & 5108 & 5055 & 5230 & 5405 & 5363 & 5320 & 5175 & 5203 \\
\hline COMP13 & 12580 & 13008 & 13435 & 13713 & 13990 & 13630 & 13270 & 12963 & 12655 & 13195 & 13244 \\
\hline COMP14 & 7455 & 7650 & 7845 & 7868 & 7890 & 7858 & 7825 & 7793 & 7760 & 7195 & 7714 \\
\hline COMP15 & 6385 & 6323 & 6260 & 6010 & 5760 & 6810 & 7860 & 7740 & 7620 & 7295 & 6806 \\
\hline COMP16 & 11640 & 12120 & 12600 & 12850 & 13100 & 13855 & 14610 & 13941 & 13272 & 12683 & 13067 \\
\hline COMP17 & 18425 & 18908 & 19390 & 19665 & 19940 & 20001 & 20063 & 20124 & 20185 & 20163 & 19686 \\
\hline COMP18 & 9252 & 9576 & 9900 & 10389 & 10878 & 12104 & 13329 & 14555 & 15780 & 15378 & 12114 \\
\hline COMP19 & 17465 & 16420 & 15375 & 16278 & 17180 & 17385 & 17590 & 18608 & 19625 & 18005 & 17393 \\
\hline COMP20 & 4739 & 4382 & 4025 & 3984 & 3943 & 4509 & 5075 & 5212 & 5349 & 5078 & 4630 \\
\hline COMP21 & 7370 & 7660 & 7950 & 8095 & 8240 & 8520 & 8800 & 9328 & 9855 & 9283 & 8510 \\
\hline COMP22 & 12675 & 12395 & 12115 & 12635 & 13155 & 13355 & 13555 & 13755 & 13955 & 13938 & 13153 \\
\hline COMP23 & 11795 & 11458 & 11120 & 11123 & 11125 & 11986 & 12848 & 13709 & 14570 & 13920 & 12365 \\
\hline COMP24 & 11520 & 10928 & 10335 & 11253 & 12170 & 13140 & 14110 & 13853 & 13595 & 13303 & 12421 \\
\hline
\end{tabular}

\section*{Appendix C}

Table C. 1 FRT Intersection Crashes by Year from 2010-2019
\begin{tabular}{|l|r}
\hline \multicolumn{2}{|c}{ CRASH BY YEAR } \\
\hline Year & No. of Crashes \\
\hline 2010 & 96 \\
\hline 2011 & 92 \\
\hline 2012 & 77 \\
\hline 2013 & 83 \\
\hline 2014 & 87 \\
\hline 2015 & 82 \\
\hline 2016 & 77 \\
\hline 2017 & 67 \\
\hline 2018 & 90 \\
\hline 2019 & 91 \\
\hline Total & \(\mathbf{8 4 2}\) \\
\hline
\end{tabular}

Table C. 2 Non-FRT Intersection Crashes by Year from 2010-2019
\begin{tabular}{|l|r}
\hline \multicolumn{2}{|c}{ CRASH BY YEAR } \\
\hline Year & No. of Crashes \\
\hline 2010 & 28 \\
\hline 2011 & 24 \\
\hline 2012 & 26 \\
\hline 2013 & 21 \\
\hline 2014 & 24 \\
\hline 2015 & 37 \\
\hline 2016 & 23 \\
\hline 2017 & 33 \\
\hline 2018 & 41 \\
\hline 2019 & 40 \\
\hline Total & 297 \\
\hline
\end{tabular}

Table C. 3 FRT Intersection Crashes by Site (1 of 2)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{CRASH BY SITE} \\
\hline Site & No. of Crashes \\
\hline FRT1 & 25 \\
\hline FRT2 & 7 \\
\hline FRT3 & 11 \\
\hline FRT4 5 & 34 \\
\hline FRT6 & 8 \\
\hline FRT7 & 10 \\
\hline FRT8 & 7 \\
\hline FRT9 & 18 \\
\hline FRT10 & 5 \\
\hline FRT11 & 0 \\
\hline FRT12_13 & 16 \\
\hline FRT14 & 7 \\
\hline FRT15 & 11 \\
\hline FRT16 & 1 \\
\hline FRT17 & 34 \\
\hline FRT18 & 5 \\
\hline FRT19 & 12 \\
\hline FRT20 & 14 \\
\hline FRT21 & 1 \\
\hline FRT22 & 7 \\
\hline FRT23 & 10 \\
\hline FRT24 & 18 \\
\hline FRT25 & 12 \\
\hline FRT26 & 7 \\
\hline FRT27 & 21 \\
\hline FRT28 & 7 \\
\hline FRT29 & 6 \\
\hline FRT30 & 7 \\
\hline FRT31 & 34 \\
\hline FRT32 & 11 \\
\hline FRT33_34 & 15 \\
\hline FRT35 & 5 \\
\hline FRT36 & 3 \\
\hline FRT37 & 11 \\
\hline
\end{tabular}

Table C. 3 FRT Intersection Crashes by Site (2 of 2)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{CRASH BY SITE} \\
\hline Site & No. of Crashes \\
\hline FRT38 39 & 14 \\
\hline FRT40 & 7 \\
\hline FRT41 & 13 \\
\hline FRT42 & 63 \\
\hline FRT43 & 3 \\
\hline FRT44 & 6 \\
\hline FRT45_46 & 15 \\
\hline FRT47 & 17 \\
\hline FRT48 & 18 \\
\hline FRT49 & 7 \\
\hline FRT50 & 4 \\
\hline FRT51 & 3 \\
\hline FRT52 & 1 \\
\hline FRT53 54 & 6 \\
\hline FRT55 & 3 \\
\hline FRT56 & 0 \\
\hline FRT57 & 7 \\
\hline FRT58_59 & 8 \\
\hline FRT60 & 7 \\
\hline FRT61 & 2 \\
\hline FRT62 & 18 \\
\hline FRT63_64 & 21 \\
\hline FRT65 & 42 \\
\hline FRT66 & 10 \\
\hline FRT67 68 & 9 \\
\hline FRT69_70 & 28 \\
\hline FRT71_72 & 27 \\
\hline FRT73 & 15 \\
\hline FRT74 & 7 \\
\hline FRT75 & 3 \\
\hline FRT76 & 27 \\
\hline FRT77 & 8 \\
\hline FRT78 & 18 \\
\hline FRT79 & 2 \\
\hline FRT80 & 3 \\
\hline Total & 842 \\
\hline
\end{tabular}

Table C. 4 Non-FRT Intersection Crashes by Site
\begin{tabular}{|l|r}
\hline \multicolumn{2}{|c}{ CRASH BY SITE } \\
\hline Site & No. of Crashes \\
\hline COMP1 & 6 \\
\hline COMP2 & 6 \\
\hline COMP3 & 9 \\
\hline COMP4 & 15 \\
\hline COMP5 & 13 \\
\hline COMP6 & 20 \\
\hline COMP7 & 8 \\
\hline COMP8 & 7 \\
\hline COMP9 & 5 \\
\hline COMP10 & 5 \\
\hline COMP11 & 6 \\
\hline COMP12 & 2 \\
\hline COMP13 & 13 \\
\hline COMP14 & 19 \\
\hline COMP15 & 9 \\
\hline COMP16 & 25 \\
\hline COMP17 & 26 \\
\hline COMP18 & 17 \\
\hline COMP19 & 28 \\
\hline COMP20 & 8 \\
\hline COMP21 & 3 \\
\hline COMP22 & 6 \\
\hline COMP23 & 31 \\
\hline COMP24 & 10 \\
\hline Total & 297 \\
\hline & \\
\hline
\end{tabular}

Table C. 5 FRT Intersection Crash Rates by Year (2010)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2010 Crash & 2010 AADT & 2010 Crash Rate \\
\hline FRT1 & 6 & 3370 & 4.878 \\
\hline FRT2 & 2 & 6665 & 0.822 \\
\hline FRT3 & 0 & 5717 & 0.000 \\
\hline FRT4_5 & 5 & 12480 & 1.098 \\
\hline FRT6 & 2 & 3860 & 1.420 \\
\hline FRT7 & 0 & 5125 & 0.000 \\
\hline FRT8 & 1 & 2080 & 1.317 \\
\hline FRT9 & 2 & 3830 & 1.431 \\
\hline FRT10 & 1 & 4790 & 0.572 \\
\hline FRT12_13 & 2 & 12189 & 0.450 \\
\hline FRT14 & 2 & 8255 & 0.664 \\
\hline FRT15 & 0 & 4151 & 0.000 \\
\hline FRT16 & 0 & 1150 & 0.000 \\
\hline FRT17 & 3 & 16625 & 0.494 \\
\hline FRT18 & 0 & 5110 & 0.000 \\
\hline FRT19 & 3 & 8255 & 0.996 \\
\hline FRT20 & 1 & 8090 & 0.339 \\
\hline FRT21 & 0 & 2295 & 0.000 \\
\hline FRT22 & 0 & 5481 & 0.000 \\
\hline FRT23 & 1 & 8115 & 0.338 \\
\hline FRT24 & 3 & 3457 & 2.378 \\
\hline FRT25 & 3 & 10827 & 0.759 \\
\hline FRT26 & 1 & 9420 & 0.291 \\
\hline FRT27 & 3 & 16085 & 0.511 \\
\hline FRT28 & 0 & 6780 & 0.000 \\
\hline FRT29 & 2 & 6040 & 0.907 \\
\hline FRT30 & 0 & 3020 & 0.000 \\
\hline FRT31 & 4 & 12355 & 0.887 \\
\hline FRT32 & 1 & 5298 & 0.517 \\
\hline FRT33 34 & 1 & 13390 & 0.205 \\
\hline FRT35 & 0 & 4350 & 0.000 \\
\hline FRT36 & 1 & 4983 & 0.550 \\
\hline FRT37 & 0 & 6175 & 0.000 \\
\hline FRT38 39 & 0 & 5830 & 0.000 \\
\hline FRT40 & 0 & 8475 & 0.000 \\
\hline FRT41 & 1 & 8035 & 0.341 \\
\hline FRT42 & 6 & 18430 & 0.892 \\
\hline FRT43 & 1 & 3175 & 0.863 \\
\hline FRT44 & 1 & 12545 & 0.218 \\
\hline FRT45_46 & 5 & 17465 & 0.784 \\
\hline FRT47 & 1 & 9580 & 0.286 \\
\hline FRT48 & 0 & 565 & 0.000 \\
\hline FRT49 & 1 & 4780 & 0.573 \\
\hline FRT50 & 0 & 2605 & 0.000 \\
\hline FRT51 & 0 & 2175 & 0.000 \\
\hline FRT52 & 0 & 2645 & 0.000 \\
\hline FRT53_54 & 1 & 7945 & 0.345 \\
\hline FRT55 & 1 & 2725 & 1.005 \\
\hline FRT56 & 0 & 585 & 0.000 \\
\hline FRT57 & 0 & 5480 & 0.000 \\
\hline FRT58_59 & 1 & 7663 & 0.358 \\
\hline FRT60 & 1 & 5770 & 0.475 \\
\hline FRT61 & 0 & 6525 & 0.000 \\
\hline FRT62 & 3 & 9780 & 0.840 \\
\hline FRT63_64 & 1 & 12322 & 0.222 \\
\hline FRT65 & 4 & 17060 & 0.642 \\
\hline FRT66 & 1 & 2845 & 0.963 \\
\hline FRT67_68 & 1 & 8865 & 0.309 \\
\hline FRT69_70 & 5 & 12530 & 1.093 \\
\hline FRT71_72 & 2 & 14730 & 0.372 \\
\hline FRT73 & 3 & 12866 & 0.639 \\
\hline FRT74 & 1 & 2660 & 1.030 \\
\hline FRT75 & 0 & 6635 & 0.000 \\
\hline FRT76 & 3 & 21385 & 0.384 \\
\hline FRT77 & 0 & 6405 & 0.000 \\
\hline FRT78 & 2 & 9020 & 0.607 \\
\hline FRT79 & 0 & 900 & 0.000 \\
\hline FRT80 & 0 & 1045 & 0.000 \\
\hline Total & 96 & 501859 & 0.524 \\
\hline
\end{tabular}

Table C. 6 FRT Intersection Crash Rates by Year (2011)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2011 Crash & 2011 AADT & 2011 Crash Rate \\
\hline FRT1 & 2 & 3348 & 1.637 \\
\hline FRT2 & 0 & 6628 & 0.000 \\
\hline FRT3 & 2 & 5736 & 0.955 \\
\hline FRT4 5 & 7 & 13100 & 1.464 \\
\hline FRT6 & 0 & 4103 & 0.000 \\
\hline FRT7 & 1 & 5075 & 0.540 \\
\hline FRT8 & 1 & 2075 & 1320 \\
\hline FRT9 & 1 & 3828 & 0.716 \\
\hline FRT10 & 0 & 4698 & 0.000 \\
\hline FRT12_13 & 6 & 12327 & 1334 \\
\hline FRT14 & 0 & 8805 & 0.000 \\
\hline FRT15 & 2 & 4088 & 1340 \\
\hline FRT16 & 1 & 1060 & 2.585 \\
\hline FRT17 & 5 & 16263 & 0.842 \\
\hline FRT18 & 0 & 5498 & 0.000 \\
\hline FRT19 & 2 & 8585 & 0.638 \\
\hline FRT20 & 1 & 8058 & 0340 \\
\hline FRT21 & 0 & 2318 & 0.000 \\
\hline FRT22 & 0 & 5663 & 0.000 \\
\hline FRT23 & 2 & 8235 & 0.665 \\
\hline FRT24 & 0 & 3476 & 0.000 \\
\hline FRT25 & 0 & 10866 & 0.000 \\
\hline FRT26 & 0 & 9110 & 0.000 \\
\hline FRT27 & 2 & 15815 & 0346 \\
\hline FRT28 & 0 & 6955 & 0.000 \\
\hline FRT29 & 1 & 6648 & 0.412 \\
\hline FRT30 & 0 & 3010 & 0.000 \\
\hline FRT31 & 3 & 11295 & 0.728 \\
\hline FRT32 & 0 & 5349 & 0.000 \\
\hline FRT33_34 & 3 & 13780 & 0.596 \\
\hline FRT35 & 1 & 4983 & 0.550 \\
\hline FRT36 & 0 & 5299 & 0.000 \\
\hline FRT37 & 1 & 6060 & 0.452 \\
\hline FRT38_39 & 2 & 5848 & 0.937 \\
\hline FRT40 & 0 & 8708 & 0.000 \\
\hline FRT41 & 2 & 7823 & 0.700 \\
\hline FRT42 & 8 & 18310 & 1.197 \\
\hline FRT43 & 0 & 3393 & 0.000 \\
\hline FRT44 & 0 & 13123 & 0.000 \\
\hline FRT45_46 & 2 & 16420 & 0334 \\
\hline FRT47 & 0 & 9493 & 0.000 \\
\hline FRT48 & 5 & 565 & 24.245 \\
\hline FRT49 & 1 & 4760 & 0.576 \\
\hline FRT50 & 0 & 2438 & 0.000 \\
\hline FRTS1 & 0 & 2073 & 0.000 \\
\hline FRTS2 & 0 & 2735 & 0.000 \\
\hline FRT53_54 & 0 & 7918 & 0.000 \\
\hline FRT55 & 0 & 2663 & 0.000 \\
\hline FRT56 & 0 & 573 & 0.000 \\
\hline FRT57 & 0 & 5913 & 0.000 \\
\hline FRT58_59 & 1 & 7732 & 0354 \\
\hline FRT60 & 1 & 6015 & 0.455 \\
\hline FRT61 & 0 & 6718 & 0.000 \\
\hline FRT62 & 0 & 9303 & 0.000 \\
\hline FRT63_64 & 6 & 12396 & 1326 \\
\hline FRT65 & 6 & 17388 & 0.945 \\
\hline FRT66 & 0 & 2908 & 0.000 \\
\hline FRT67_68 & 2 & 9565 & 0.573 \\
\hline FRT69_70 & 3 & 12650 & 0.650 \\
\hline FRT71_72 & 3 & 15553 & 0.528 \\
\hline FRT73 & 1 & 13548 & 0.202 \\
\hline FRT74 & 1 & 2703 & 1.014 \\
\hline FRT75 & 0 & 6475 & 0.000 \\
\hline FRT76 & 2 & 22110 & 0.248 \\
\hline FRT77 & 0 & 6225 & 0.000 \\
\hline FRT78 & 1 & 9383 & 0.292 \\
\hline FRT79 & 1 & 973 & 2.817 \\
\hline FRT80 & 0 & 1025 & 0.000 \\
\hline Total & 92 & 507547 & 0.497 \\
\hline
\end{tabular}

Table C. 7 FRT Intersection Crash Rates by Year (2012)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2012 Crash & 2012 AADT & 2012 Crash Rate \\
\hline FRT1 & 3 & 3325 & 2.472 \\
\hline FRT2 & 0 & 6590 & 0.000 \\
\hline FRT3 & 0 & 5755 & 0.000 \\
\hline FRT4 5 & 1 & 13720 & 0.200 \\
\hline FRT6 & 1 & 4345 & 0.631 \\
\hline FRT7 & 0 & 5025 & 0.000 \\
\hline FRT8 & 0 & 2070 & 0.000 \\
\hline FRT9 & 6 & 3825 & 4.298 \\
\hline FRT10 & 0 & 4605 & 0.000 \\
\hline FRT12_13 & 2 & 12465 & 0.440 \\
\hline FRT14 & 0 & 9355 & 0.000 \\
\hline FRT15 & 1 & 4025 & 0.681 \\
\hline FRT16 & 0 & 970 & 0.000 \\
\hline FRT17 & 3 & 15900 & 0.517 \\
\hline FRT18 & 0 & 5885 & 0.000 \\
\hline FRT19 & 1 & 8915 & 0307 \\
\hline FRT20 & 1 & 8025 & 0341 \\
\hline FRT21 & 1 & 2340 & 1.171 \\
\hline FRT22 & 0 & 5845 & 0.000 \\
\hline FRT23 & 1 & 8355 & 0328 \\
\hline FRT24 & 3 & 3495 & 2352 \\
\hline FRT25 & 1 & 10905 & 0.251 \\
\hline FRT26 & 0 & 8800 & 0.000 \\
\hline FRT27 & 1 & 15545 & 0.176 \\
\hline FRT28 & 0 & 7130 & 0.000 \\
\hline FRT29 & 0 & 7255 & 0.000 \\
\hline FRT30 & 0 & 3000 & 0.000 \\
\hline FRT31 & 5 & 10235 & 1338 \\
\hline FRT32 & 2 & 5400 & 1.015 \\
\hline FRT33_34 & 0 & 14170 & 0.000 \\
\hline FRT35 & 1 & 5615 & 0.488 \\
\hline FRT36 & 1 & 5615 & 0.488 \\
\hline FRT37 & 2 & 5945 & 0.922 \\
\hline FRT38_39 & 3 & 5865 & 1.401 \\
\hline FRT40 & 0 & 8940 & 0.000 \\
\hline FRT41 & 1 & 7610 & 0360 \\
\hline FRT42 & 3 & 18190 & 0.452 \\
\hline FRT43 & 0 & 3610 & 0.000 \\
\hline FRT44 & 1 & 13700 & 0.200 \\
\hline FRT45_46 & 2 & 15375 & 0356 \\
\hline FRT47 & 3 & 9405 & 0.874 \\
\hline FRT48 & 3 & 565 & 14.547 \\
\hline FRT49 & 0 & 4740 & 0.000 \\
\hline FRT50 & 0 & 2270 & 0.000 \\
\hline FRTS1 & 0 & 1970 & 0.000 \\
\hline FRTS2 & 0 & 2825 & 0.000 \\
\hline FRT53_54 & 2 & 7890 & 0.694 \\
\hline FRT55 & 0 & 2600 & 0.000 \\
\hline FRT56 & 0 & 560 & 0.000 \\
\hline FRT57 & 2 & 6345 & 0.864 \\
\hline FRT58_59 & 1 & 7800 & 0351 \\
\hline FRT60 & 0 & 6260 & 0.000 \\
\hline FRT61 & 0 & 6910 & 0.000 \\
\hline FRT62 & 3 & 8825 & 0.931 \\
\hline FRT63_64 & 1 & 12470 & 0.220 \\
\hline FRT65 & 3 & 17715 & 0.464 \\
\hline FRT66 & 0 & 2970 & 0.000 \\
\hline FRT67_68 & 2 & 10265 & 0.534 \\
\hline FRT69_70 & 1 & 12770 & 0.215 \\
\hline FRT71_72 & 4 & 16375 & 0.669 \\
\hline FRT73 & 0 & 14230 & 0.000 \\
\hline FRT74 & 1 & 2745 & 0.998 \\
\hline FRT75 & 0 & 6315 & 0.000 \\
\hline FRT76 & 0 & 22835 & 0.000 \\
\hline FRT77 & 2 & 6045 & 0.906 \\
\hline FRT78 & 2 & 9745 & 0.562 \\
\hline FRT79 & 0 & 1045 & 0.000 \\
\hline FRT80 & 0 & 1005 & 0.000 \\
\hline Total & 77 & 513235 & 0.411 \\
\hline
\end{tabular}

Table C. 8 FRT Intersection Crash Rates by Year (2013)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2013 Crash & 2013 AADT & 2013 Crash Rate \\
\hline FRT1 & 0 & 3510 & 0.000 \\
\hline FRT2 & 0 & 6925 & 0.000 \\
\hline FRT3 & 1 & 6072 & 0.451 \\
\hline FRT4_5 & 6 & 13500 & 1.218 \\
\hline FRT6 & 1 & 4278 & 0.640 \\
\hline FRT7 & 2 & 5260 & 1.042 \\
\hline FRT8 & 0 & 2003 & 0.000 \\
\hline FRT9 & 1 & 3763 & 0.728 \\
\hline FRT10 & 0 & 4800 & 0.000 \\
\hline FRT12_13 & 0 & 12331 & 0.000 \\
\hline FRT14 & 0 & 8953 & 0.000 \\
\hline FRT15 & 1 & 4325 & 0.634 \\
\hline FRT16 & 0 & 1025 & 0.000 \\
\hline FRT17 & 2 & 16238 & 0.337 \\
\hline FRT18 & 0 & 6008 & 0.000 \\
\hline FRT19 & 0 & 9088 & 0.000 \\
\hline FRT20 & 2 & 8850 & 0.619 \\
\hline FRT21 & 0 & 2268 & 0.000 \\
\hline FRT22 & 1 & 5737 & 0.478 \\
\hline FRT23 & 1 & 7745 & 0.354 \\
\hline FRT24 & 1 & 3499 & 0.783 \\
\hline FRT25 & 0 & 10898 & 0.000 \\
\hline FRT26 & 0 & 8848 & 0.000 \\
\hline FRT27 & 3 & 15768 & 0.521 \\
\hline FRT28 & 0 & 6953 & 0.000 \\
\hline FRT29 & 0 & 7013 & 0.000 \\
\hline FRT30 & 1 & 3023 & 0.906 \\
\hline FRT31 & 4 & 10650 & 1.029 \\
\hline FRT32 & 1 & 5441 & 0.504 \\
\hline FRT33_34 & 1 & 14705 & 0.186 \\
\hline FRT35 & 0 & 5603 & 0.000 \\
\hline FRT36 & 0 & 5505 & 0.000 \\
\hline FRT37 & 1 & 6288 & 0.436 \\
\hline FRT38_39 & 2 & 6305 & 0.869 \\
\hline FRT40 & 0 & 8888 & 0.000 \\
\hline FRT41 & 2 & 7680 & 0.713 \\
\hline FRT42 & 10 & 18470 & 1.483 \\
\hline FRT43 & 0 & 3578 & 0.000 \\
\hline FRT44 & 1 & 13285 & 0.206 \\
\hline FRT45_46 & 1 & 16278 & 0.168 \\
\hline FRT47 & 1 & 9990 & 0.274 \\
\hline FRT48 & 3 & 565 & 14.547 \\
\hline FRT49 & 0 & 4643 & 0.000 \\
\hline FRT50 & 0 & 2180 & 0.000 \\
\hline FRT51 & 1 & 1973 & 1.389 \\
\hline FRT52 & 1 & 2985 & 0.918 \\
\hline FRT53_54 & 0 & 7615 & 0.000 \\
\hline FRT55 & 0 & 2810 & 0.000 \\
\hline FRT56 & 0 & 623 & 0.000 \\
\hline FRT57 & 1 & 6260 & 0.438 \\
\hline FRT58_59 & 1 & 7855 & 0.349 \\
\hline FRT60 & 0 & 6253 & 0.000 \\
\hline FRT61 & 0 & 6748 & 0.000 \\
\hline FRT62 & 1 & 9110 & 0.301 \\
\hline FRT63_64 & 4 & 12802 & 0.856 \\
\hline FRT65 & 3 & 17423 & 0.472 \\
\hline FRT66 & 2 & 3078 & 1.780 \\
\hline FRT67_68 & 0 & 10430 & 0.000 \\
\hline FRT69_70 & 2 & 13175 & 0.416 \\
\hline FRT71_72 & 6 & 16258 & 1.011 \\
\hline FRT73 & 2 & 14186 & 0.386 \\
\hline FRT74 & 0 & 2711 & 0.000 \\
\hline FRT75 & 1 & 6549 & 0.418 \\
\hline FRT76 & 4 & 21333 & 0.514 \\
\hline FRT77 & 0 & 6325 & 0.000 \\
\hline FRT78 & 2 & 9350 & 0.586 \\
\hline FRT79 & 0 & 958 & 0.000 \\
\hline FRT80 & 2 & 950 & 5.768 \\
\hline Total & 83 & 516476 & 0.440 \\
\hline
\end{tabular}

Table C. 9 FRT Intersection Crash Rates by Year (2014)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2014 Crash & 2014 AADT & 2014 Crash Rate \\
\hline FRT1 & 4 & 3695 & 2.966 \\
\hline FRT2 & 2 & 7260 & 0.755 \\
\hline FRT3 & 2 & 6389 & 0.858 \\
\hline FRT4_5 & 2 & 13280 & 0.413 \\
\hline FRT6 & 0 & 4210 & 0.000 \\
\hline FRT7 & 0 & 5495 & 0.000 \\
\hline FRT8 & 0 & 1935 & 0.000 \\
\hline FRT9 & 3 & 3700 & 2.221 \\
\hline FRT10 & 1 & 4995 & 0.548 \\
\hline FRT12_13 & 0 & 12196 & 0.000 \\
\hline FRT14 & 2 & 8550 & 0.641 \\
\hline FRT15 & 2 & 4624 & 1.185 \\
\hline FRT16 & 0 & 1080 & 0.000 \\
\hline FRT17 & 2 & 16575 & 0.331 \\
\hline FRT18 & 1 & 6130 & 0.447 \\
\hline FRT19 & 1 & 9260 & 0.296 \\
\hline FRT20 & 2 & 9675 & 0.566 \\
\hline FRT21 & 0 & 2195 & 0.000 \\
\hline FRT22 & 0 & 5628 & 0.000 \\
\hline FRT23 & 0 & 7135 & 0.000 \\
\hline FRT24 & 3 & 3503 & 2.346 \\
\hline FRT25 & 3 & 10890 & 0.755 \\
\hline FRT26 & 1 & 8895 & 0.308 \\
\hline FRT27 & 2 & 15990 & 0.343 \\
\hline FRT28 & 3 & 6775 & 1.213 \\
\hline FRT29 & 1 & 6770 & 0.405 \\
\hline FRT30 & 2 & 3045 & 1.799 \\
\hline FRT31 & 3 & 11065 & 0.743 \\
\hline FRT32 & 1 & 5482 & 0.500 \\
\hline FRT33_34 & 3 & 15240 & 0.539 \\
\hline FRT35 & 1 & 5590 & 0.490 \\
\hline FRT36 & 0 & 5394 & 0.000 \\
\hline FRT37 & 3 & 6630 & 1.240 \\
\hline FRT38 39 & 0 & 6745 & 0.000 \\
\hline FRT40 & 1 & 8835 & 0.310 \\
\hline FRT41 & 1 & 7750 & 0.354 \\
\hline FRT42 & 3 & 18750 & 0.438 \\
\hline FRT43 & 0 & 3545 & 0.000 \\
\hline FRT44 & 0 & 12870 & 0.000 \\
\hline FRT45_46 & 1 & 17180 & 0.159 \\
\hline FRT47 & 1 & 10575 & 0.259 \\
\hline FRT48 & 0 & 565 & 0.000 \\
\hline FRT49 & 1 & 4545 & 0.603 \\
\hline FRT50 & 0 & 2090 & 0.000 \\
\hline FRT51 & 0 & 1975 & 0.000 \\
\hline FRT52 & 0 & 3145 & 0.000 \\
\hline FRT53_54 & 1 & 7340 & 0.373 \\
\hline FRT55 & 0 & 3020 & 0.000 \\
\hline FRT56 & 0 & 685 & 0.000 \\
\hline FRT57 & 2 & 6175 & 0.887 \\
\hline FRT58_59 & 0 & 7909 & 0.000 \\
\hline FRT60 & 1 & 6245 & 0.439 \\
\hline FRT61 & 0 & 6585 & 0.000 \\
\hline FRT62 & 1 & 9395 & 0.292 \\
\hline FRT63_64 & 1 & 13133 & 0.209 \\
\hline FRT65 & 4 & 17130 & 0.640 \\
\hline FRT66 & 2 & 3185 & 1.720 \\
\hline FRT67_68 & 0 & 10595 & 0.000 \\
\hline FRT69_70 & 3 & 13580 & 0.605 \\
\hline FRT71_72 & 1 & 16140 & 0.170 \\
\hline FRT73 & 2 & 14142 & 0.387 \\
\hline FRT74 & 0 & 2676 & 0.000 \\
\hline FRT75 & 0 & 6782 & 0.000 \\
\hline FRT76 & 8 & 19830 & 1.105 \\
\hline FRT77 & 0 & 6605 & 0.000 \\
\hline FRT78 & 3 & 8954 & 0.918 \\
\hline FRT79 & 0 & 870 & 0.000 \\
\hline FRT80 & 0 & 895 & 0.000 \\
\hline Total & 87 & 519717 & 0.459 \\
\hline
\end{tabular}

Table C. 10 FRT Intersection Crash Rates by Year (2015)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2015 Crash & 2015 AADT & 2015 Crash Rate \\
\hline FRT1 & 0 & 3745 & 0.000 \\
\hline FRT2 & 0 & 7213 & 0.000 \\
\hline FRT3 & 3 & 6955 & 1.182 \\
\hline FRT4_5 & 4 & 13425 & 0.816 \\
\hline FRT6 & 0 & 4158 & 0.000 \\
\hline FRT7 & 4 & 5498 & 1.993 \\
\hline FRT8 & 1 & 2020 & 1.356 \\
\hline FRT9 & 1 & 3945 & 0.694 \\
\hline FRT10 & 1 & 4863 & 0.563 \\
\hline FRT12_13 & 2 & 12241 & 0.448 \\
\hline FRT14 & 0 & 8863 & 0.000 \\
\hline FRT15 & 1 & 4547 & 0.603 \\
\hline FRT16 & 0 & 1195 & 0.000 \\
\hline FRT17 & 0 & 17268 & 0.000 \\
\hline FRT18 & 1 & 6305 & 0.435 \\
\hline FRT19 & 2 & 9788 & 0.560 \\
\hline FRT20 & 0 & 9593 & 0.000 \\
\hline FRT21 & 0 & 2293 & 0.000 \\
\hline FRT22 & 0 & 5694 & 0.000 \\
\hline FRT23 & 0 & 7505 & 0.000 \\
\hline FRT24 & 3 & 3679 & 2.234 \\
\hline FRT25 & 1 & 11090 & 0.247 \\
\hline FRT26 & 1 & 9356 & 0.293 \\
\hline FRT27 & 4 & 16633 & 0.659 \\
\hline FRT28 & 0 & 7238 & 0.000 \\
\hline FRT29 & 0 & 7085 & 0.000 \\
\hline FRT30 & 2 & 3565 & 1.537 \\
\hline FRT31 & 6 & 12625 & 1.302 \\
\hline FRT32 & 1 & 5271 & 0.520 \\
\hline FRT33_34 & 2 & 14968 & 0.366 \\
\hline FRT35 & 0 & 5593 & 0.000 \\
\hline FRT36 & 0 & 5440 & 0.000 \\
\hline FRT37 & 2 & 6505 & 0.842 \\
\hline FRT38_39 & 0 & 6085 & 0.000 \\
\hline FRT40 & 1 & 9915 & 0.276 \\
\hline FRT41 & 1 & 8370 & 0.327 \\
\hline FRT42 & 6 & 21425 & 0.767 \\
\hline FRT43 & 0 & 3558 & 0.000 \\
\hline FRT44 & 1 & 12095 & 0.227 \\
\hline FRT45_46 & 0 & 14583 & 0.000 \\
\hline FRT47 & 0 & 10660 & 0.000 \\
\hline FRT48 & 1 & 565 & 4.849 \\
\hline FRT49 & 1 & 4790 & 0.572 \\
\hline FRT50 & 1 & 2235 & 1.226 \\
\hline FRT51 & 0 & 2175 & 0.000 \\
\hline FRT52 & 0 & 3390 & 0.000 \\
\hline FRT53_54 & 0 & 6443 & 0.000 \\
\hline FRT55 & 0 & 3380 & 0.000 \\
\hline FRT56 & 0 & 738 & 0.000 \\
\hline FRT57 & 0 & 6208 & 0.000 \\
\hline FRT58_59 & 0 & 8287 & 0.000 \\
\hline FRT60 & 0 & 6135 & 0.000 \\
\hline FRT61 & 1 & 6918 & 0.396 \\
\hline FRT62 & 2 & 9625 & 0.569 \\
\hline FRT63_64 & 2 & 15919 & 0.344 \\
\hline FRT65 & 3 & 17263 & 0.476 \\
\hline FRT66 & 1 & 3188 & 0.860 \\
\hline FRT67_68 & 3 & 11065 & 0.743 \\
\hline FRT69_70 & 5 & 14150 & 0.968 \\
\hline FRT71_72 & 3 & 16428 & 0.500 \\
\hline FRT73 & 1 & 14956 & 0.183 \\
\hline FRT74 & 0 & 2516 & 0.000 \\
\hline FRT75 & 1 & 6404 & 0.428 \\
\hline FRT76 & 1 & 20445 & 0.134 \\
\hline FRT77 & 2 & 6245 & 0.877 \\
\hline FRT78 & 2 & 9182 & 0.597 \\
\hline FRT79 & 0 & 870 & 0.000 \\
\hline FRT80 & 1 & 950 & 2.884 \\
\hline Total & 82 & 533310 & 0.421 \\
\hline
\end{tabular}

Table C. 11 FRT Intersection Crash Rates by Year (2016)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2016 Crash & 2016 AADT & 2016 Crash Rate \\
\hline FRT1 & 2 & 3795 & 1.444 \\
\hline FRT2 & 2 & 7165 & 0.765 \\
\hline FRT3 & 1 & 7520 & 0.364 \\
\hline FRT4_5 & 3 & 13570 & 0.606 \\
\hline FRT6 & 0 & 4105 & 0.000 \\
\hline FRT7 & 0 & 5500 & 0.000 \\
\hline FRT8 & 0 & 2105 & 0.000 \\
\hline FRT9 & 1 & 4190 & 0.654 \\
\hline FRT10 & 1 & 4730 & 0.579 \\
\hline FRT12_13 & 1 & 12285 & 0.223 \\
\hline FRT14 & 0 & 9175 & 0.000 \\
\hline FRT15 & 3 & 4470 & 1.839 \\
\hline FRT16 & 0 & 1310 & 0.000 \\
\hline FRT17 & 8 & 17960 & 1.220 \\
\hline FRT18 & 0 & 6480 & 0.000 \\
\hline FRT19 & 0 & 10315 & 0.000 \\
\hline FRT20 & 2 & 9510 & 0.576 \\
\hline FRT21 & 0 & 2390 & 0.000 \\
\hline FRT22 & 1 & 5760 & 0.476 \\
\hline FRT23 & 2 & 7875 & 0.696 \\
\hline FRT24 & 1 & 3855 & 0.711 \\
\hline FRT25 & 0 & 11290 & 0.000 \\
\hline FRT26 & 0 & 9817.5 & 0.000 \\
\hline FRT27 & 3 & 17275 & 0.476 \\
\hline FRT28 & 0 & 7700 & 0.000 \\
\hline FRT29 & 0 & 7400 & 0.000 \\
\hline FRT30 & 0 & 4085 & 0.000 \\
\hline FRT31 & 3 & 14185 & 0.579 \\
\hline FRT32 & 0 & 5060 & 0.000 \\
\hline FRT33 34 & 0 & 14695 & 0.000 \\
\hline FRT35 & 1 & 5595 & 0.490 \\
\hline FRT36 & 0 & 5485 & 0.000 \\
\hline FRT37 & 1 & 6380 & 0.429 \\
\hline FRT38_39 & 0 & 5425 & 0.000 \\
\hline FRT40 & 1 & 10995 & 0.249 \\
\hline FRT41 & 2 & 8990 & 0.610 \\
\hline FRT42 & 9 & 24100 & 1.023 \\
\hline FRT43 & 2 & 3570 & 1.535 \\
\hline FRT44 & 0 & 11320 & 0.000 \\
\hline FRT45_46 & 0 & 11985 & 0.000 \\
\hline FRT47 & 1 & 10745 & 0.255 \\
\hline FRT48 & 1 & 565 & 4.849 \\
\hline FRT49 & 1 & 5035 & 0.544 \\
\hline FRT50 & 1 & 2380 & 1.151 \\
\hline FRT51 & 0 & 2375 & 0.000 \\
\hline FRT52 & 0 & 3635 & 0.000 \\
\hline FRT53_54 & 1 & 5545 & 0.494 \\
\hline FRT55 & 0 & 3740 & 0.000 \\
\hline FRT56 & 0 & 790 & 0.000 \\
\hline FRT57 & 1 & 6240 & 0.439 \\
\hline FRT58_59 & 3 & 8665 & 0.949 \\
\hline FRT60 & 0 & 6025 & 0.000 \\
\hline FRT61 & 0 & 7250 & 0.000 \\
\hline FRT62 & 1 & 9855 & 0.278 \\
\hline FRT63_64 & 4 & 18705 & 0.586 \\
\hline FRT65 & 5 & 17395 & 0.788 \\
\hline FRT66 & 1 & 3190 & 0.859 \\
\hline FRT67_68 & 1 & 11535 & 0.238 \\
\hline FRT69_70 & 0 & 14720 & 0.000 \\
\hline FRT71_72 & 0 & 16715 & 0.000 \\
\hline FRT73 & 1 & 15770 & 0.174 \\
\hline FRT74 & 1 & 2355 & 1.163 \\
\hline FRT75 & 0 & 6025 & 0.000 \\
\hline FRT76 & 3 & 21060 & 0.390 \\
\hline FRT77 & 1 & 5885 & 0.466 \\
\hline FRT78 & 0 & 9410 & 0.000 \\
\hline FRT79 & 0 & 870 & 0.000 \\
\hline FRT80 & 0 & 1005 & 0.000 \\
\hline Total & 77 & 546902.5 & 0.386 \\
\hline
\end{tabular}

Table C. 12 FRT Intersection Crash Rates by Year (2017)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2017 Crash & 2017 AADT & 2017 Crash Rate \\
\hline FRT1 & 5 & 3755 & 3.648 \\
\hline FRT2 & 0 & 6858 & 0.000 \\
\hline FRT3 & 1 & 7107 & 0.386 \\
\hline FRT4_5 & 2 & 15373 & 0.356 \\
\hline FRT6 & 0 & 4280 & 0.000 \\
\hline FRT7 & 2 & 5480 & 1.000 \\
\hline FRT8 & 1 & 2163 & 1.267 \\
\hline FRT9 & 0 & 4059 & 0.000 \\
\hline FRT10 & 0 & 4645 & 0.000 \\
\hline FRT12_13 & 0 & 13087 & 0.000 \\
\hline FRT14 & 0 & 7968 & 0.000 \\
\hline FRT15 & 0 & 4580 & 0.000 \\
\hline FRT16 & 0 & 1308 & 0.000 \\
\hline FRT17 & 3 & 18260 & 0.450 \\
\hline FRT18 & 1 & 6580 & 0.416 \\
\hline FRT19 & 0 & 10838 & 0.000 \\
\hline FRT20 & 3 & 10058 & 0.817 \\
\hline FRT21 & 0 & 2408 & 0.000 \\
\hline FRT22 & 0 & 5372 & 0.000 \\
\hline FRT23 & 0 & 8050 & 0.000 \\
\hline FRT24 & 2 & 3674 & 1.491 \\
\hline FRT25 & 2 & 11828 & 0.463 \\
\hline FRT26 & 3 & 9896 & 0.831 \\
\hline FRT27 & 1 & 17268 & 0.159 \\
\hline FRT28 & 1 & 8647 & 0.317 \\
\hline FRT29 & 1 & 7543 & 0.363 \\
\hline FRT30 & 0 & 4420 & 0.000 \\
\hline FRT31 & 2 & 15470 & 0.354 \\
\hline FRT32 & 1 & 5694 & 0.481 \\
\hline FRT33_34 & 1 & 14795 & 0.185 \\
\hline FRT35 & 0 & 5780 & 0.000 \\
\hline FRT36 & 0 & 5596 & 0.000 \\
\hline FRT37 & 0 & 6393 & 0.000 \\
\hline FRT38 39 & 1 & 6433 & 0.426 \\
\hline FRT40 & 0 & 10510 & 0.000 \\
\hline FRT41 & 0 & 8435 & 0.000 \\
\hline FRT42 & 4 & 25575 & 0.429 \\
\hline FRT43 & 0 & 3473 & 0.000 \\
\hline FRT44 & 0 & 12603 & 0.000 \\
\hline FRT45_46 & 1 & 11166 & 0.245 \\
\hline FRT47 & 4 & 11578 & 0.947 \\
\hline FRT48 & 2 & 565 & 9.698 \\
\hline FRT49 & 0 & 5129 & 0.000 \\
\hline FRT50 & 2 & 2525 & 2.170 \\
\hline FRT51 & 0 & 1923 & 0.000 \\
\hline FRT52 & 0 & 3565 & 0.000 \\
\hline FRT53_54 & 1 & 5130 & 0.534 \\
\hline FRT55 & 2 & 4143 & 1.323 \\
\hline FRT56 & 0 & 588 & 0.000 \\
\hline FRT57 & 0 & 6615 & 0.000 \\
\hline FRT58_59 & 0 & 8867 & 0.000 \\
\hline FRT60 & 2 & 6180 & 0.887 \\
\hline FRT61 & 0 & 7033 & 0.000 \\
\hline FRT62 & 2 & 10106 & 0.542 \\
\hline FRT63_64 & 0 & 20160 & 0.000 \\
\hline FRT65 & 0 & 18893 & 0.000 \\
\hline FRT66 & 1 & 3230 & 0.848 \\
\hline FRT67_68 & 0 & 11438 & 0.000 \\
\hline FRT69_70 & 6 & 15233 & 1.079 \\
\hline FRT71_72 & 2 & 17673 & 0.310 \\
\hline FRT73 & 0 & 15565 & 0.000 \\
\hline FRT74 & 2 & 2449 & 2.237 \\
\hline FRT75 & 0 & 6410 & 0.000 \\
\hline FRT76 & 0 & 22199 & 0.000 \\
\hline FRT77 & 0 & 5975 & 0.000 \\
\hline FRT78 & 3 & 9864 & 0.833 \\
\hline FRT79 & 0 & 913 & 0.000 \\
\hline FRT80 & 0 & 970 & 0.000 \\
\hline Total & 67 & 562330 & 0.326 \\
\hline
\end{tabular}

Table C. 13 FRT Intersection Crash Rates by Year (2018)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2018 Crash & 2018 AADT & 2018 Crash Rate \\
\hline FRT1 & 0 & 3715 & 0.000 \\
\hline FRT2 & 0 & 6550 & 0.000 \\
\hline FRT3 & 1 & 6693 & 0.409 \\
\hline FRT4_5 & 3 & 17175 & 0.479 \\
\hline FRT6 & 0 & 4455 & 0.000 \\
\hline FRT7 & 0 & 5460 & 0.000 \\
\hline FRT8 & 1 & 2220 & 1.234 \\
\hline FRT9 & 1 & 3927 & 0.698 \\
\hline FRT10 & 1 & 4560 & 0.601 \\
\hline FRT12_13 & 2 & 13888 & 0.395 \\
\hline FRT14 & 0 & 6760 & 0.000 \\
\hline FRT15 & 0 & 4689 & 0.000 \\
\hline FRT16 & 0 & 1305 & 0.000 \\
\hline FRT17 & 3 & 18560 & 0.443 \\
\hline FRT18 & 1 & 6680 & 0.410 \\
\hline FRT19 & 1 & 11360 & 0.241 \\
\hline FRT20 & 2 & 10605 & 0.517 \\
\hline FRT21 & 0 & 2425 & 0.000 \\
\hline FRT22 & 3 & 4984 & 1.649 \\
\hline FRT23 & 3 & 8225 & 0.999 \\
\hline FRT24 & 2 & 3493 & 1.569 \\
\hline FRT25 & 0 & 12366 & 0.000 \\
\hline FRT26 & 1 & 9975 & 0.275 \\
\hline FRT27 & 2 & 17260 & 0.317 \\
\hline FRT28 & 0 & 9593 & 0.000 \\
\hline FRT29 & 1 & 7685 & 0.357 \\
\hline FRT30 & 1 & 4755 & 0.576 \\
\hline FRT31 & 1 & 16755 & 0.164 \\
\hline FRT32 & 4 & 6328 & 1.732 \\
\hline FRT33 34 & 2 & 14895 & 0.368 \\
\hline FRT35 & 1 & 5965 & 0.459 \\
\hline FRT36 & 1 & 5706 & 0.480 \\
\hline FRT37 & 0 & 6405 & 0.000 \\
\hline FRT38 39 & 5 & 7440 & 1.841 \\
\hline FRT40 & 2 & 10025 & 0.547 \\
\hline FRT41 & 2 & 7880 & 0.695 \\
\hline FRT42 & 10 & 27050 & 1.013 \\
\hline FRT43 & 0 & 3375 & 0.000 \\
\hline FRT44 & 0 & 13885 & 0.000 \\
\hline FRT45_46 & 0 & 10347 & 0.000 \\
\hline FRT47 & 4 & 12411 & 0.883 \\
\hline FRT48 & 1 & 565 & 4.849 \\
\hline FRT49 & 1 & 5223 & 0.525 \\
\hline FRT50 & 0 & 2670 & 0.000 \\
\hline FRT51 & 2 & 1470 & 3.728 \\
\hline FRT52 & 0 & 3495 & 0.000 \\
\hline FRT53_54 & 0 & 4714 & 0.000 \\
\hline FRT55 & 0 & 4545 & 0.000 \\
\hline FRT56 & 0 & 385 & 0.000 \\
\hline FRT57 & 0 & 6989 & 0.000 \\
\hline FRT58_59 & 1 & 9068 & 0.302 \\
\hline FRT60 & 0 & 6335 & 0.000 \\
\hline FRT61 & 1 & 6815 & 0.402 \\
\hline FRT62 & 2 & 10357 & 0.529 \\
\hline FRT63_64 & 1 & 21614 & 0.127 \\
\hline FRT65 & 6 & 20390 & 0.806 \\
\hline FRT66 & 1 & 3270 & 0.838 \\
\hline FRT67_68 & 0 & 11340 & 0.000 \\
\hline FRT69_70 & 2 & 15745 & 0.348 \\
\hline FRT71_72 & 1 & 18630 & 0.147 \\
\hline FRT73 & 1 & 15360 & 0.178 \\
\hline FRT74 & 1 & 2543 & 1.077 \\
\hline FRT75 & 1 & 6794 & 0.403 \\
\hline FRT76 & 2 & 23338 & 0.235 \\
\hline FRT77 & 2 & 6065 & 0.903 \\
\hline FRT78 & 3 & 10317 & 0.797 \\
\hline FRT79 & 0 & 955 & 0.000 \\
\hline FRT80 & 0 & 935 & 0.000 \\
\hline Total & 90 & 577757 & 0.427 \\
\hline
\end{tabular}

Table C. 14 FRT Intersection Crash Rates by Year (2019)
\begin{tabular}{|c|c|c|c|}
\hline Site & 2019 Crash & 2019 AADT & 2019 Crash Rate \\
\hline FRT1 & 3 & 3945 & 2.083 \\
\hline FRT2 & 1 & 6523 & 0.420 \\
\hline FRT3 & 0 & 6334 & 0.000 \\
\hline FRT4_5 & 1 & 15960 & 0.172 \\
\hline FRT6 & 4 & 4680 & 2.342 \\
\hline FRT7 & 1 & 5555 & 0.493 \\
\hline FRT8 & 2 & 2390 & 2.293 \\
\hline FRT9 & 2 & 4002 & 1.369 \\
\hline FRT10 & 0 & 4725 & 0.000 \\
\hline FRT12_13 & 1 & 14612 & 0.188 \\
\hline FRT14 & 3 & 6860 & 1.198 \\
\hline FRT15 & 1 & 4441 & 0.617 \\
\hline FRT16 & 0 & 1580 & 0.000 \\
\hline FRT17 & 5 & 16910 & 0.810 \\
\hline FRT18 & 1 & 6550 & 0.418 \\
\hline FRT19 & 2 & 9328 & 0.587 \\
\hline FRT20 & 0 & 9595 & 0.000 \\
\hline FRT21 & 0 & 2370 & 0.000 \\
\hline FRT22 & 2 & 4975 & 1.102 \\
\hline FRT23 & 0 & 7923 & 0.000 \\
\hline FRT24 & 0 & 3886 & 0.000 \\
\hline FRT25 & 2 & 12267 & 0.447 \\
\hline FRT26 & 0 & 9229 & 0.000 \\
\hline FRT27 & 0 & 16450 & 0.000 \\
\hline FRT28 & 3 & 9582 & 0.858 \\
\hline FRT29 & 0 & 6645 & 0.000 \\
\hline FRT30 & 1 & 4755 & 0.576 \\
\hline FRT31 & 3 & 15869 & 0.518 \\
\hline FRT32 & 0 & 5976 & 0.000 \\
\hline FRT33_34 & 2 & 13634 & 0.402 \\
\hline FRT35 & 0 & 5661 & 0.000 \\
\hline FRT36 & 0 & 5323 & 0.000 \\
\hline FRT37 & 1 & 6195 & 0.442 \\
\hline FRT38_39 & 1 & 7090 & 0.386 \\
\hline FRT40 & 2 & 9405 & 0.583 \\
\hline FRT41 & 1 & 7275 & 0.377 \\
\hline FRT42 & 4 & 25195 & 0.435 \\
\hline FRT43 & 0 & 3718 & 0.000 \\
\hline FRT44 & 2 & 13275 & 0.413 \\
\hline FRT45_46 & 3 & 10830 & 0.759 \\
\hline FRT47 & 2 & 11416 & 0.480 \\
\hline FRT48 & 2 & 565 & 9.698 \\
\hline FRT49 & 1 & 4902 & 0.559 \\
\hline FRT50 & 0 & 2885 & 0.000 \\
\hline FRT51 & 0 & 1520 & 0.000 \\
\hline FRT52 & 0 & 3450 & 0.000 \\
\hline FRT53_54 & 0 & 4815 & 0.000 \\
\hline FRT55 & 0 & 4503 & 0.000 \\
\hline FRT56 & 0 & 365 & 0.000 \\
\hline FRT57 & 1 & 7052 & 0.389 \\
\hline FRT58_59 & 0 & 8615 & 0.000 \\
\hline FRT60 & 2 & 6550 & 0.837 \\
\hline FRT61 & 0 & 6863 & 0.000 \\
\hline FRT62 & 3 & 9816 & 0.837 \\
\hline FRT63_64 & 1 & 21458 & 0.128 \\
\hline FRT65 & 8 & 18183 & 1.205 \\
\hline FRT66 & 1 & 3133 & 0.875 \\
\hline FRT67_68 & 0 & 11275 & 0.000 \\
\hline FRT69_70 & 1 & 15330 & 0.179 \\
\hline FRT71_72 & 5 & 17170 & 0.798 \\
\hline FRT73 & 4 & 14982 & 0.731 \\
\hline FRT74 & 0 & 2664 & 0.000 \\
\hline FRT75 & 0 & 6570 & 0.000 \\
\hline FRT76 & 4 & 22924 & 0.478 \\
\hline FRT77 & 1 & 5685 & 0.482 \\
\hline FRT78 & 0 & 9987 & 0.000 \\
\hline FRT79 & 1 & 965 & 2.839 \\
\hline FRT80 & 0 & 1003 & 0.000 \\
\hline Total & 91 & 556153 & 0.448 \\
\hline
\end{tabular}

Table C. 15 FRT Intersection Crash Rates by Year (Ten-Year Total)
\begin{tabular}{|c|c|c|c|}
\hline Site & TOTAL CRASH & TOTALAADT & TOTAL CRASH RATE \\
\hline FRT1 & 25 & 36203 & 1.892 \\
\hline FRT2 & 7 & 68375 & 0.280 \\
\hline FRT3 & 11 & 64277 & 0.469 \\
\hline FRT4 5 & 34 & 141583 & 0.658 \\
\hline FRT6 & 8 & 42473 & 0.516 \\
\hline FRT7 & 10 & 53473 & 0.512 \\
\hline FRT8 & 7 & 21060 & 0.911 \\
\hline FRT9 & 18 & 39068 & 1.262 \\
\hline FRT10 & 5 & 47410 & 0.289 \\
\hline FRT12_13 & 16 & 127619 & 0.343 \\
\hline FRT14 & 7 & 83543 & 0.230 \\
\hline FRT15 & 11 & 43939 & 0.686 \\
\hline FRT16 & 1 & 11983 & 0.229 \\
\hline FRT17 & 34 & 170558 & 0.546 \\
\hline FRT18 & 5 & 61225 & 0.224 \\
\hline FRT19 & 12 & 95731 & 0.343 \\
\hline FRT20 & 14 & 92058 & 0.417 \\
\hline FRT21 & 1 & 23300 & 0.118 \\
\hline FRT22 & 7 & 55138 & 0.348 \\
\hline FRT23 & 10 & 79163 & 0.346 \\
\hline FRT24 & 18 & 36017 & 1.369 \\
\hline FRT25 & 12 & 113226 & 0.290 \\
\hline FRT26 & 7 & 93346 & 0.205 \\
\hline FRT27 & 21 & 164088 & 0.351 \\
\hline FRT28 & 7 & 77351 & 0.248 \\
\hline FRT29 & 6 & 70083 & 0.235 \\
\hline FRT30 & 7 & 36678 & 0.523 \\
\hline FRT31 & 34 & 130504 & 0.714 \\
\hline FRT32 & 11 & 55299 & 0.545 \\
\hline FRT33_34 & 15 & 144271 & 0.285 \\
\hline FRT35 & 5 & 54734 & 0.250 \\
\hline FRT36 & 3 & 54345 & 0.151 \\
\hline FRT37 & 11 & 62975 & 0.479 \\
\hline FRT38_39 & 14 & 63065 & 0.608 \\
\hline FRT40 & 7 & 94695 & 0.203 \\
\hline FRT41 & 13 & 79848 & 0.446 \\
\hline FRT42 & 63 & 215495 & 0.801 \\
\hline FRT43 & 3 & 34993 & 0.235 \\
\hline FRT44 & 6 & 128700 & 0.128 \\
\hline FRT45_46 & 15 & 141628 & 0.290 \\
\hline FRT47 & 17 & 105852 & 0.440 \\
\hline FRT48 & 18 & 5650 & 8.728 \\
\hline FRT49 & 7 & 48546 & 0.395 \\
\hline FRT50 & 4 & 24278 & 0.451 \\
\hline FRT51 & 3 & 19628 & 0.419 \\
\hline FRT52 & 1 & 31870 & 0.086 \\
\hline FRT53 54 & 6 & 65354 & 0.252 \\
\hline FRT55 & 3 & 34128 & 0.241 \\
\hline FRT56 & 0 & 5890 & 0.000 \\
\hline FRT57 & 7 & 63276 & 0.303 \\
\hline FRT58_59 & 8 & 82460 & 0.266 \\
\hline FRT60 & 7 & 61768 & 0.310 \\
\hline FRT61 & 2 & 68363 & 0.080 \\
\hline FRT62 & 18 & 96171 & 0.513 \\
\hline FRT63_64 & 21 & 160978 & 0.357 \\
\hline FRT65 & 42 & 178838 & 0.643 \\
\hline FRT66 & 10 & 30995 & 0.884 \\
\hline FRT67_68 & 9 & 106373 & 0.232 \\
\hline FRT69_70 & 28 & 139883 & 0.548 \\
\hline FRT71_72 & 27 & 165670 & 0.447 \\
\hline FRT73 & 15 & 145605 & 0.282 \\
\hline FRT74 & 7 & 26021 & 0.737 \\
\hline FRT75 & 3 & 64958 & 0.127 \\
\hline FRT76 & 27 & 217459 & 0.340 \\
\hline FRT77 & 8 & 61460 & 0.357 \\
\hline FRT78 & 18 & 95210 & 0.518 \\
\hline FRT79 & 2 & 9318 & 0.588 \\
\hline FRT80 & 3 & 9783 & 0.840 \\
\hline Total & 842 & 5335286 & 0.432 \\
\hline
\end{tabular}

Table C. 16 Non-FRT Intersection Crash Rates by Year (2010)
\begin{tabular}{|l|c|c|c}
\hline Site & 2010 Crash & 2010 AADT & 2010 Crash Rate \\
\hline COMP1 & 0 & 5360 & 0.000 \\
\hline COMP2 & 1 & 4316 & 0.635 \\
\hline COMP3 & 1 & 6610 & 0.414 \\
\hline COMP4 & 0 & 7180 & 0.000 \\
\hline COMP5 & 0 & 8255 & 0.000 \\
\hline COMP6 & 0 & 12705 & 0.000 \\
\hline COMP7 & 2 & 7385 & 0.742 \\
\hline COMP8 & 0 & 4905 & 0.000 \\
\hline COMP9 & 0 & 4765 & 0.000 \\
\hline COMP10 & 2 & 6730 & 0.814 \\
\hline COMP11 & 0 & 14640 & 0.000 \\
\hline COMP12 & 0 & 5090 & 0.000 \\
\hline COMP13 & 3 & 12580 & 0.653 \\
\hline COMP14 & 2 & 7455 & 0.735 \\
\hline COMP15 & 1 & 6385 & 0.429 \\
\hline COMP16 & 5 & 11640 & 1.177 \\
\hline COMP17 & 3 & 18425 & 0.446 \\
\hline COMP18 & 0 & 9252 & 0.000 \\
\hline COMP19 & 2 & 17465 & 0.314 \\
\hline COMP20 & 0 & 4739 & 0.000 \\
\hline COMP21 & 0 & 7370 & 0.000 \\
\hline COMP22 & 0 & 12675 & 0.000 \\
\hline COMP23 & 1 & 11795 & 0.232 \\
\hline COMP24 & 5 & 11520 & 1.189 \\
\hline Total & 28 & 219242 & 0.350 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 17 Non-FRT Intersection Crash Rates by Year (2011)
\begin{tabular}{|l|c|c|c}
\hline Site & 2011 Crash & 2011 AADT & 2011 Crash Rate \\
\hline COMP1 & 0 & 5158 & 0.000 \\
\hline COMP2 & 1 & 4456 & 0.615 \\
\hline COMP3 & 1 & 6633 & 0.413 \\
\hline COMP4 & 4 & 7350 & 1.491 \\
\hline COMP5 & 0 & 8288 & 0.000 \\
\hline COMP6 & 2 & 12625 & 0.434 \\
\hline COMP7 & 1 & 7808 & 0.351 \\
\hline COMP8 & 1 & 5060 & 0.541 \\
\hline COMP9 & 0 & 4780 & 0.000 \\
\hline COMP10 & 0 & 6660 & 0.000 \\
\hline COMP11 & 0 & 14058 & 0.000 \\
\hline COMP12 & 0 & 5125 & 0.000 \\
\hline COMP13 & 0 & 13008 & 0.000 \\
\hline COMP14 & 1 & 7650 & 0.358 \\
\hline COMP15 & 0 & 6323 & 0.000 \\
\hline COMP16 & 1 & 12120 & 0.226 \\
\hline COMP17 & 1 & 18908 & 0.145 \\
\hline COMP18 & 2 & 9576 & 0.572 \\
\hline COMP19 & 3 & 16420 & 0.501 \\
\hline COMP20 & 1 & 4382 & 0.625 \\
\hline COMP21 & 0 & 7660 & 0.000 \\
\hline COMP22 & 1 & 12395 & 0.221 \\
\hline COMP23 & 3 & 11458 & 0.717 \\
\hline COMP24 & 1 & 10928 & 0.251 \\
\hline Total & 24 & 218824 & 0.300 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 18 Non-FRT Intersection Crash Rates by Year (2012)
\begin{tabular}{|l|c|c|c}
\hline Site & 2012 Crash & 2012 AADT & 2012 Crash Rate \\
\hline COMP1 & 1 & 4955 & 0.553 \\
\hline COMP2 & 1 & 4595 & 0.596 \\
\hline COMP3 & 1 & 6655 & 0.412 \\
\hline COMP4 & 1 & 7520 & 0.364 \\
\hline COMP5 & 1 & 8320 & 0.329 \\
\hline COMP6 & 4 & 12545 & 0.874 \\
\hline COMP7 & 1 & 8230 & 0.333 \\
\hline COMP8 & 1 & 5215 & 0.525 \\
\hline COMP9 & 0 & 4795 & 0.000 \\
\hline COMP10 & 1 & 6590 & 0.416 \\
\hline COMP11 & 0 & 13475 & 0.000 \\
\hline COMP12 & 0 & 5160 & 0.000 \\
\hline COMP13 & 3 & 13435 & 0.612 \\
\hline COMP14 & 4 & 7845 & 1.397 \\
\hline COMP15 & 1 & 6260 & 0.438 \\
\hline COMP16 & 1 & 12600 & 0.217 \\
\hline COMP17 & 3 & 19390 & 0.424 \\
\hline COMP18 & 0 & 9900 & 0.000 \\
\hline COMP19 & 1 & 15375 & 0.178 \\
\hline COMP20 & 0 & 4025 & 0.000 \\
\hline COMP21 & 0 & 7950 & 0.000 \\
\hline COMP22 & 0 & 12115 & 0.000 \\
\hline COMP23 & 1 & 11120 & 0.246 \\
\hline COMP24 & 0 & 10335 & 0.000 \\
\hline Total & 26 & 218405 & 0.326 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 19 Non-FRT Intersection Crash Rates by Year (2013)
\begin{tabular}{|l|c|c|c}
\hline Site & 2013 Crash & 2013 AADT & 2013 Crash Rate \\
\hline COMP1 & 0 & 5078 & 0.000 \\
\hline COMP2 & 0 & 4318 & 0.000 \\
\hline COMP3 & 1 & 6850 & 0.400 \\
\hline COMP4 & 1 & 7893 & 0.347 \\
\hline COMP5 & 2 & 7322 & 0.748 \\
\hline COMP6 & 2 & 12703 & 0.431 \\
\hline COMP7 & 1 & 8193 & 0.334 \\
\hline COMP8 & 0 & 5315 & 0.000 \\
\hline COMP9 & 0 & 4833 & 0.000 \\
\hline COMP10 & 0 & 6963 & 0.000 \\
\hline COMP11 & 3 & 13710 & 0.600 \\
\hline COMP12 & 1 & 5108 & 0.536 \\
\hline COMP13 & 0 & 13713 & 0.000 \\
\hline COMP14 & 1 & 7868 & 0.348 \\
\hline COMP15 & 1 & 6010 & 0.456 \\
\hline COMP16 & 1 & 12850 & 0.213 \\
\hline COMP17 & 3 & 19665 & 0.418 \\
\hline COMP18 & 2 & 10389 & 0.527 \\
\hline COMP19 & 1 & 16278 & 0.168 \\
\hline COMP20 & 0 & 3984 & 0.000 \\
\hline COMP21 & 0 & 8095 & 0.000 \\
\hline COMP22 & 0 & 12635 & 0.000 \\
\hline COMP23 & 1 & 11123 & 0.246 \\
\hline COMP24 & 0 & 11253 & 0.000 \\
\hline Total & 21 & 222143 & 0.259 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 20 Non-FRT Intersection Crash Rates by Year (2014)
\begin{tabular}{|l|c|c|c}
\hline Site & 2014 Crash & 2014 AADT & 2014 Crash Rate \\
\hline COMP1 & 0 & 5200 & 0.000 \\
\hline COMP2 & 0 & 4040 & 0.000 \\
\hline COMP3 & 0 & 7045 & 0.000 \\
\hline COMP4 & 0 & 8265 & 0.000 \\
\hline COMP5 & 4 & 6324 & 1.733 \\
\hline COMP6 & 3 & 12860 & 0.639 \\
\hline COMP7 & 0 & 8155 & 0.000 \\
\hline COMP8 & 1 & 5415 & 0.506 \\
\hline COMP9 & 1 & 4870 & 0.563 \\
\hline COMP10 & 1 & 7335 & 0.374 \\
\hline COMP11 & 1 & 13945 & 0.196 \\
\hline COMP12 & 0 & 5055 & 0.000 \\
\hline COMP13 & 0 & 13990 & 0.000 \\
\hline COMP14 & 2 & 7890 & 0.694 \\
\hline COMP15 & 0 & 5760 & 0.000 \\
\hline COMP16 & 2 & 13100 & 0.418 \\
\hline COMP17 & 3 & 19940 & 0.412 \\
\hline COMP18 & 0 & 10878 & 0.000 \\
\hline COMP19 & 1 & 17180 & 0.159 \\
\hline COMP20 & 0 & 3943 & 0.000 \\
\hline COMP21 & 0 & 8240 & 0.000 \\
\hline COMP22 & 1 & 13155 & 0.208 \\
\hline COMP23 & 2 & 11125 & 0.493 \\
\hline COMP24 & 2 & 12170 & 0.450 \\
\hline Total & 24 & 225880 & 0.291 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 21 Non-FRT Intersection Crash Rates by Year (2015)
\begin{tabular}{|l|c|c|c}
\hline Site & 2015 Crash & 2015 AADT & 2015 Crash Rate \\
\hline COMP1 & 1 & 4715 & 0.581 \\
\hline COMP2 & 1 & 4093 & 0.669 \\
\hline COMP3 & 0 & 7070 & 0.000 \\
\hline COMP4 & 0 & 8393 & 0.000 \\
\hline COMP5 & 1 & 7310 & 0.375 \\
\hline COMP6 & 1 & 13458 & 0.204 \\
\hline COMP7 & 2 & 7773 & 0.705 \\
\hline COMP8 & 1 & 6148 & 0.446 \\
\hline COMP9 & 1 & 5728 & 0.478 \\
\hline COMP10 & 0 & 6908 & 0.000 \\
\hline COMP11 & 1 & 13613 & 0.201 \\
\hline COMP12 & 1 & 5230 & 0.524 \\
\hline COMP13 & 0 & 13630 & 0.000 \\
\hline COMP14 & 0 & 7858 & 0.000 \\
\hline COMP15 & 3 & 6810 & 1.207 \\
\hline COMP16 & 3 & 13855 & 0.593 \\
\hline COMP17 & 3 & 20001 & 0.411 \\
\hline COMP18 & 2 & 12104 & 0.453 \\
\hline COMP19 & 6 & 17385 & 0.946 \\
\hline COMP20 & 4 & 4509 & 2.430 \\
\hline COMP21 & 0 & 8520 & 0.000 \\
\hline COMP22 & 1 & 13355 & 0.205 \\
\hline COMP23 & 5 & 11986 & 1.143 \\
\hline COMP24 & 0 & 13140 & 0.000 \\
\hline Total & 37 & 233587 & 0.434 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 22 Non-FRT Intersection Crash Rates by Year (2016)
\begin{tabular}{|l|c|c|c}
\hline Site & 2016 Crash & 2016 AADT & 2016 Crash Rate \\
\hline COMP1 & 1 & 4230 & 0.648 \\
\hline COMP2 & 0 & 4145 & 0.000 \\
\hline COMP3 & 2 & 7095 & 0.772 \\
\hline COMP4 & 3 & 8520 & 0.965 \\
\hline COMP5 & 1 & 8295 & 0.330 \\
\hline COMP6 & 0 & 14055 & 0.000 \\
\hline COMP7 & 1 & 7390 & 0.371 \\
\hline COMP8 & 0 & 6880 & 0.000 \\
\hline COMP9 & 0 & 6585 & 0.000 \\
\hline COMP10 & 0 & 6480 & 0.000 \\
\hline COMP11 & 0 & 13280 & 0.000 \\
\hline COMP12 & 0 & 5405 & 0.000 \\
\hline COMP13 & 1 & 13270 & 0.206 \\
\hline COMP14 & 1 & 7825 & 0.350 \\
\hline COMP15 & 1 & 7860 & 0.349 \\
\hline COMP16 & 1 & 14610 & 0.188 \\
\hline COMP17 & 0 & 20063 & 0.000 \\
\hline COMP18 & 2 & 13329 & 0.411 \\
\hline COMP19 & 5 & 17590 & 0.779 \\
\hline COMP20 & 0 & 5075 & 0.000 \\
\hline COMP21 & 0 & 8800 & 0.000 \\
\hline COMP22 & 1 & 13555 & 0.202 \\
\hline COMP23 & 2 & 12848 & 0.426 \\
\hline COMP24 & 1 & 14110 & 0.194 \\
\hline Total & 23 & 241294 & 0.261 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 23 Non-FRT Intersection Crash Rates by Year (2017)
\begin{tabular}{|l|c|c|c}
\hline Site & 2017 Crash & 2017 AADT & 2017 Crash Rate \\
\hline COMP1 & 2 & 4595 & 1.192 \\
\hline COMP2 & 0 & 4566 & 0.000 \\
\hline COMP3 & 2 & 7346 & 0.746 \\
\hline COMP4 & 2 & 8725 & 0.628 \\
\hline COMP5 & 3 & 8793 & 0.935 \\
\hline COMP6 & 2 & 13973 & 0.392 \\
\hline COMP7 & 0 & 7950 & 0.000 \\
\hline COMP8 & 1 & 6937 & 0.395 \\
\hline COMP9 & 0 & 5870 & 0.000 \\
\hline COMP10 & 1 & 6910 & 0.396 \\
\hline COMP11 & 0 & 13613 & 0.000 \\
\hline COMP12 & 0 & 5363 & 0.000 \\
\hline COMP13 & 2 & 12963 & 0.423 \\
\hline COMP14 & 4 & 7793 & 1.406 \\
\hline COMP15 & 0 & 7740 & 0.000 \\
\hline COMP16 & 4 & 13941 & 0.786 \\
\hline COMP17 & 1 & 20124 & 0.136 \\
\hline COMP18 & 1 & 14555 & 0.188 \\
\hline COMP19 & 2 & 18608 & 0.294 \\
\hline COMP20 & 0 & 5212 & 0.000 \\
\hline COMP21 & 2 & 9328 & 0.587 \\
\hline COMP22 & 0 & 13755 & 0.000 \\
\hline COMP23 & 4 & 13709 & 0.799 \\
\hline COMP24 & 0 & 13853 & 0.000 \\
\hline Total & 33 & 246216 & 0.367 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 24 Non-FRT Intersection Crash Rates by Year (2018)
\begin{tabular}{|l|c|c|c}
\hline Site & 2018 Crash & 2018 AADT & 2018 Crash Rate \\
\hline COMP1 & 0 & 4960 & 0.000 \\
\hline COMP2 & 2 & 4986 & 1.099 \\
\hline COMP3 & 1 & 7596 & 0.361 \\
\hline COMP4 & 0 & 8930 & 0.000 \\
\hline COMP5 & 1 & 9290 & 0.295 \\
\hline COMP6 & 4 & 13891 & 0.789 \\
\hline COMP7 & 0 & 8510 & 0.000 \\
\hline COMP8 & 0 & 6994 & 0.000 \\
\hline COMP9 & 2 & 5155 & 1.063 \\
\hline COMP10 & 0 & 7340 & 0.000 \\
\hline COMP11 & 0 & 13945 & 0.000 \\
\hline COMP12 & 0 & 5320 & 0.000 \\
\hline COMP13 & 1 & 12655 & 0.216 \\
\hline COMP14 & 3 & 7760 & 1.059 \\
\hline COMP15 & 0 & 7620 & 0.000 \\
\hline COMP16 & 1 & 13272 & 0.206 \\
\hline COMP17 & 7 & 20185 & 0.950 \\
\hline COMP18 & 5 & 15780 & 0.868 \\
\hline COMP19 & 4 & 19625 & 0.558 \\
\hline COMP20 & 2 & 5349 & 1.024 \\
\hline COMP21 & 0 & 9855 & 0.000 \\
\hline COMP22 & 0 & 13955 & 0.000 \\
\hline COMP23 & 8 & 14570 & 1.504 \\
\hline COMP24 & 0 & 13595 & 0.000 \\
\hline Total & 41 & 251138 & 0.447 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 25 Non-FRT Intersection Crash Rates by Year (2019)
\begin{tabular}{|l|c|c|c}
\hline Site & 2019 Crash & 2019 AADT & 2019 Crash Rate \\
\hline COMP1 & 1 & 4834 & 0.567 \\
\hline COMP2 & 0 & 5016 & 0.000 \\
\hline COMP3 & 0 & 7351 & 0.000 \\
\hline COMP4 & 4 & 8948 & 1.225 \\
\hline COMP5 & 0 & 9210 & 0.000 \\
\hline COMP6 & 2 & 13716 & 0.400 \\
\hline COMP7 & 0 & 8068 & 0.000 \\
\hline COMP8 & 2 & 6507 & 0.842 \\
\hline COMP9 & 1 & 5180 & 0.529 \\
\hline COMP10 & 0 & 7200 & 0.000 \\
\hline COMP11 & 1 & 13450 & 0.204 \\
\hline COMP12 & 0 & 5175 & 0.000 \\
\hline COMP13 & 3 & 13195 & 0.623 \\
\hline COMP14 & 1 & 7195 & 0.381 \\
\hline COMP15 & 2 & 7295 & 0.751 \\
\hline COMP16 & 6 & 12683 & 1.296 \\
\hline COMP17 & 2 & 20163 & 0.272 \\
\hline COMP18 & 3 & 15378 & 0.534 \\
\hline COMP19 & 3 & 18005 & 0.456 \\
\hline COMP20 & 1 & 5078 & 0.540 \\
\hline COMP21 & 1 & 9283 & 0.295 \\
\hline COMP22 & 2 & 13938 & 0.393 \\
\hline COMP23 & 4 & 13920 & 0.787 \\
\hline COMP24 & 1 & 13303 & 0.206 \\
\hline Total & 40 & 244085 & 0.449 \\
\hline & & & \\
\hline
\end{tabular}

Table C. 26 Non-FRT Intersection Crash Rates by Year (Ten-Year Total)
\begin{tabular}{|l|c|c|c}
\hline Site & TOTAL CRASH & TOTAL AADT & TOTAL CRASH RATE \\
\hline COMP1 & 6 & 49084 & 0.335 \\
\hline COMP2 & 6 & 44529 & 0.369 \\
\hline COMP3 & 9 & 70250 & 0.351 \\
\hline COMP4 & 15 & 81723 & 0.503 \\
\hline COMP5 & 13 & 81406 & 0.438 \\
\hline COMP6 & 20 & 132530 & 0.413 \\
\hline COMP7 & 8 & 79460 & 0.276 \\
\hline COMP8 & 7 & 59376 & 0.323 \\
\hline COMP9 & 5 & 52560 & 0.261 \\
\hline COMP10 & 5 & 69115 & 0.198 \\
\hline COMP11 & 6 & 137728 & 0.119 \\
\hline COMP12 & 2 & 52030 & 0.105 \\
\hline COMP13 & 13 & 132438 & 0.269 \\
\hline COMP14 & 19 & 77138 & 0.675 \\
\hline COMP15 & 9 & 68063 & 0.362 \\
\hline COMP16 & 25 & 130671 & 0.524 \\
\hline COMP17 & 26 & 196863 & 0.362 \\
\hline COMP18 & 17 & 121140 & 0.384 \\
\hline COMP19 & 28 & 173930 & 0.441 \\
\hline COMP20 & 8 & 46296 & 0.473 \\
\hline COMP21 & 3 & 85100 & 0.097 \\
\hline COMP22 & 6 & 131533 & 0.125 \\
\hline COMP23 & 31 & 123653 & 0.687 \\
\hline COMP24 & 10 & 124205 & 0.221 \\
\hline Total & 297 & 2320813 & 0.351 \\
\hline & & & \\
\hline
\end{tabular}

\section*{Appendix D}

Table D. 1 T Table
\(t\) Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { cum. prob } \\
\text { one-tail } \\
\text { two-tails }
\end{array}
\] & \[
\begin{array}{r}
t_{50} \\
0.50 \\
1.00
\end{array}
\] & \[
\begin{array}{r}
t_{.75} \\
0.25 \\
0.50
\end{array}
\] & \[
\begin{array}{r}
t_{\boldsymbol{s p}} \\
0.20 \\
0.40
\end{array}
\] & \[
\begin{array}{r}
t_{.85} \\
0.15 \\
0.30
\end{array}
\] & \[
\begin{array}{r}
\boldsymbol{t}_{\mathbf{9 0}} \\
0.10 \\
0.20
\end{array}
\] & \[
\begin{array}{r}
t_{.95} \\
0.05 \\
0.10
\end{array}
\] & \[
\begin{array}{r}
t_{.975} \\
0.025 \\
0.05
\end{array}
\] & \[
\begin{array}{r}
t_{s g} \\
0.01 \\
0.02
\end{array}
\] & \[
\begin{array}{r}
t_{.055} \\
0.005 \\
0.01
\end{array}
\] & \[
\begin{array}{r}
t .90 s \\
0.001 \\
0.002
\end{array}
\] & \[
\begin{gathered}
t \text { gose } \\
0.0005 \\
0.001
\end{gathered}
\] \\
\hline df & & & & & & & & & & & \\
\hline 1 & 0.000 & 1.000 & 1.376 & 1.963 & 3.078 & 6.314 & 12.71 & 31.82 & 63.66 & 318.31 & 636.62 \\
\hline 2 & 0.000 & 0.816 & 1.061 & 1.386 & 1.886 & 2.920 & 4.303 & 6.965 & 9.925 & 22.327 & 31.599 \\
\hline 3 & 0.000 & 0.765 & 0.978 & 1250 & 1.638 & 2.353 & 3.182 & 4.541 & 5.841 & 10.215 & 12924 \\
\hline 4 & 0.000 & 0.741 & 0.941 & 1.190 & 1.533 & 2.132 & 2.776 & 3.747 & 4.604 & 7.173 & 8.610 \\
\hline 5 & 0.000 & 0.727 & 0.920 & 1.156 & 1.476 & 2.015 & 2.571 & 3.365 & 4.032 & 5.893 & 6.869 \\
\hline 6 & 0.000 & 0.718 & 0.906 & 1.134 & 1.440 & 1.943 & 2.447 & 3.143 & 3.707 & 5.208 & 5.959 \\
\hline 7 & 0.000 & 0.711 & 0.896 & 1.119 & 1.415 & 1.895 & 2.365 & 2.998 & 3.499 & 4.785 & 5.408 \\
\hline 8 & 0.000 & 0.706 & 0.889 & 1.108 & 1.397 & 1.860 & 2.306 & 2.896 & 3.355 & 4.501 & 5.041 \\
\hline 9 & 0.000 & 0.703 & 0.883 & 1.100 & 1.383 & 1.833 & 2.262 & 2.821 & 3.250 & 4.297 & 4.781 \\
\hline 10 & 0.000 & 0.700 & 0.879 & 1.093 & 1.372 & 1.812 & 2.228 & 2.764 & 3.169 & 4.144 & 4.587 \\
\hline 11 & 0.000 & 0.697 & 0.876 & 1.088 & 1.363 & 1.796 & 2.201 & 2.718 & 3.106 & 4.025 & 4.437 \\
\hline 12 & 0.000 & 0.695 & 0.873 & 1.083 & 1.356 & 1.782 & 2.179 & 2.681 & 3.055 & 3.930 & 4.318 \\
\hline 13 & 0.000 & 0.694 & 0.870 & 1.079 & 1.350 & 1.771 & 2.160 & 2.650 & 3.012 & 3.852 & 4.221 \\
\hline 14 & 0.000 & 0.692 & 0.868 & 1.076 & 1.345 & 1.761 & 2.145 & 2.624 & 2.977 & 3.787 & 4.140 \\
\hline 15 & 0.000 & 0.691 & 0.866 & 1.074 & 1.341 & 1.753 & 2.131 & 2.602 & 2.947 & 3.733 & 4.073 \\
\hline 16 & 0.000 & 0.690 & 0.865 & 1.071 & 1.337 & 1.746 & 2.120 & 2.583 & 2.921 & 3.686 & 4.015 \\
\hline 17 & 0.000 & 0.689 & 0.863 & 1.069 & 1.333 & 1.740 & 2.110 & 2.567 & 2.898 & 3.646 & 3.965 \\
\hline 18 & 0.000 & 0.688 & 0.862 & 1.067 & 1.330 & 1.734 & 2.101 & 2.552 & 2.878 & 3.610 & 3.922 \\
\hline 19 & 0.000 & 0.688 & 0.861 & 1.066 & 1.328 & 1.729 & 2.093 & 2.539 & 2.861 & 3.579 & 3.883 \\
\hline 20 & 0.000 & 0.687 & 0.860 & 1.064 & 1.325 & 1.725 & 2.086 & 2.528 & 2.845 & 3.552 & 3.850 \\
\hline 21 & 0.000 & 0.686 & 0.859 & 1.063 & 1.323 & 1.721 & 2.080 & 2.518 & 2.831 & 3.527 & 3.819 \\
\hline 22 & 0.000 & 0.686 & 0.858 & 1.061 & 1.321 & 1.717 & 2.074 & 2.508 & 2.819 & 3.505 & 3.792 \\
\hline 23 & 0.000 & 0.685 & 0.858 & 1.060 & 1.319 & 1.714 & 2.069 & 2.500 & 2.807 & 3.485 & 3.768 \\
\hline 24 & 0.000 & 0.685 & 0.857 & 1.059 & 1.318 & 1.711 & 2.064 & 2.492 & 2.797 & 3.467 & 3.745 \\
\hline 25 & 0.000 & 0.684 & 0.856 & 1.058 & 1.316 & 1.708 & 2.060 & 2.485 & 2.787 & 3.450 & 3.725 \\
\hline 26 & 0.000 & 0.684 & 0.856 & 1.058 & 1.315 & 1.706 & 2.056 & 2.479 & 2.779 & 3.435 & 3.707 \\
\hline 27 & 0.000 & 0.684 & 0.855 & 1.057 & 1.314 & 1.703 & 2.052 & 2.473 & 2.771 & 3.421 & 3.690 \\
\hline 28 & 0.000 & 0.683 & 0.855 & 1.056 & 1.313 & 1.701 & 2.048 & 2.467 & 2.763 & 3.408 & 3.674 \\
\hline 29 & 0.000 & 0.683 & 0.854 & 1.055 & 1.311 & 1.699 & 2.045 & 2.462 & 2.756 & 3.396 & 3.659 \\
\hline 30 & 0.000 & 0.683 & 0.854 & 1.055 & 1.310 & 1.697 & 2.042 & 2.457 & 2.750 & 3.385 & 3.646 \\
\hline 40 & 0.000 & 0.681 & 0.851 & 1.050 & 1.303 & 1.684 & 2.021 & 2.423 & 2.704 & 3.307 & 3.551 \\
\hline 60 & 0.000 & 0.679 & 0.848 & 1.045 & 1.296 & 1.671 & 2.000 & 2.390 & 2.660 & 3.232 & 3.460 \\
\hline 80 & 0.000 & 0.678 & 0.846 & 1.043 & 1.292 & 1.664 & 1.990 & 2.374 & 2.639 & 3.195 & 3.416 \\
\hline 100 & 0.000 & 0.677 & 0.845 & 1.042 & 1.290 & 1.660 & 1.984 & 2.364 & 2.626 & 3.174 & 3.390 \\
\hline 1000 & 0.000 & 0.675 & 0.842 & 1.037 & 1.282 & 1.646 & 1.962 & 2.330 & 2.581 & 3.098 & 3.300 \\
\hline Z & 0.000 & 0.674 & 0.842 & 1.036 & 1.282 & 1.645 & 1.960 & 2.326 & 2.576 & 3.090 & 3.291 \\
\hline & 0\% & 50\% & 60\% & 70\% & 80\% & 90\% & 95\% & 98\% & 99\% & 99.8\% & 99.9\% \\
\hline & \multicolumn{11}{|c|}{Confidence Level} \\
\hline
\end{tabular}

Table D. 2 Crash Frequency Comparison \((\) alpha \(=0.05)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Comparison1 & Comparison2 & n1 & n2 & CrashFreq1 & CrashFreq2 & Critical F-Value & F-Statistic & Variance & df & T-Statistic & Critical T-Value (alpha \(=0.05\) ) & Significance? \\
\hline Low AADT, 3-Leg FRT & Low AADt, 3-Leg Non-FRT & 16 & 4 & 0.856 & 0.525 & 5.20 & 531 & unequal & 18 & 1.74 & 2101 & NO \\
\hline Low AADT, 4-Leg FRT & Low AADT, 4-Leg Non-FRT & 22 & 4 & 0.664 & 0.925 & 5.18 & 173 & exual & 24 & 093 & 2064 & No \\
\hline Low AADT, All Legs FRT & Low AADT, All Legs Non-FRT & 38 & 8 & 0.760 & 0725 & 256 & 214 & equal & 44 & 0.10 & 1960 & NO \\
\hline Medium AADT, 3-Leg FRT & Medium AADT, 3-Leg Non-FRT & 8 & 4 & 0763 & 1.025 & 3.07 & 4.47 & unequal & 10 & 0.82 & 2228 & NO \\
\hline Medium AADT, 4-Leg FRT & Medinm AADT, 4-Leg Non-FRT & 8 & 4 & 1.413 & 0975 & 3.07 & 248 & expal & 10 & 198 & 2228 & NO \\
\hline Medium AADT, All Legs FRT & Medium AADT, All Legs Non-FRT & 16 & 8 & 1.088 & 1000 & 2.16 & 132 & exual & 22 & 0.44 & 2074 & NO \\
\hline High AADT, 3-Leg FRT & High AADT, 3-Leg Non-FRT & 7 & 4 & 3.014 & 1925 & 529 & 4.04 & equal & 9 & 1.08 & 2262 & NO \\
\hline High AADT, 4-Leg FRT & High AADT, 4-Leg Non-FRT & 7 & 4 & 2486 & 2050 & 329 & 199 & equal & 9 & 0.75 & 2262 & No \\
\hline High AADT, All Legs FRT & High AADT, All Legs Non-FRT & 14 & 8 & 2750 & 1988 & 2.66 & 212 & epual & 20 & 136 & 2066 & No \\
\hline All 3-Leg FRT & Allatid, 3-Leg Non-FRT & 31 & 12 & 1.319 & 1158 & 2.08 & 243 & umequal & 41 & 0.47 & 1960 & NO \\
\hline All 4-Leg FRT & All Aadt, 4-Leg Non-FRT & 37 & 12 & 1170 & 1.317 & 2.06 & 106 & equal & 47 & 0.50 & 1960 & No \\
\hline All FRT & AllaAdt, AllLegs Non-FRT & 68 & 24 & 1.245 & 1238 & 1.62 & 171 & umequal & 90 & 0.00 & 1960 & No \\
\hline FRT on Major Road, 3-Leg & All3Leg Non-FRT & 26 & 12 & 1112 & 1.188 & 2.10 & 129 & equal & 36 & 0.14 & 1960 & NO \\
\hline FRT on Minor Road, 3-Leg & All3Leg Non-FRT & 4 & 12 & 2625 & 1158 & 2.66 & 10.19 & umequal & 14 & 1.07 & 2145 & NO \\
\hline FRT on Major Road, 4-Leg & All 4 Leg Non-FRT & 19 & 12 & 1095 & 1.317 & 2.14 & 113 & equal & 29 & 0.67 & 2045 & NO \\
\hline FRT on Minor Road, 4-Leg & All 4 Leg Non-FRT & 8 & 12 & 0738 & 1.317 & 2.68 & 231 & exual & 18 & 1.66 & 2101 & NO \\
\hline FRT on Both Major and Minor Road, 4-Leg & All 4 Leg Non-FRT & 10 & 12 & 1660 & 1317 & 228 & 105 & equal & 20 & 0.91 & 2086 & No \\
\hline FRT on Major Road, All Legs & All Non-FRT & 45 & 24 & 1104 & 1238 & 1.65 & 123 & equal & 67 & 058 & 1960 & NO \\
\hline FRT on Mimor Road, All Legs & All \({ }^{\text {Non-FRT }}\) & 12 & 24 & 1.367 & 1238 & 1.87 & 432 & umequal & 34 & 024 & 1960 & No \\
\hline FRT on Both Major and Minor Road, All Leq & All Non-FRT & 11 & 24 & 1.755 & 1238 & 1.89 & 114 & exual & 33 & 1.65 & 1960 & No \\
\hline
\end{tabular}

Table D. 3 Crash Frequency Comparison (alpha \(=0.10\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Comparison1 & Comparison2 & n1 & n2 & CrashFreq1 & CrashFreq2 & Critical F-Value & F-Statistic & Variance & df & T-Statistic & Critical T-Value (alpha \(=0.10\) ) & Significance? \\
\hline Low AADT, 3-Leg FRT & Low AADT, 3-Leg Non-FRT & 16 & 4 & 0.856 & 0.525 & 520 & 531 & umeyual & 18 & 1.74 & 1734 & YES \\
\hline Low AADT, 4-Leg FRT & Low AADT, 4-Leg Non-FrT & 22 & 4 & 0.664 & 0.925 & 5.18 & 173 & equal & 24 & 093 & 1711 & No \\
\hline Low AADT, All Legs FRT & Low AADT, All Legs Non-FRT & 38 & 8 & 0.760 & 0725 & 256 & 214 & equal & 44 & 0.10 & 1645 & No \\
\hline Medium AADT, 3-Leg FRT & Medimm AADT, 3-Leg Non-FRT & 8 & 4 & 0763 & 1025 & 3.07 & 4.47 & umequal & 10 & 0.82 & 1812 & NO \\
\hline Medium AADT, 4-Leg FRT & Medium Aadt, 4-Leg Non-FRT & 8 & 4 & 1.413 & 0.975 & 3.07 & 248 & equal & 10 & 198 & 1812 & YES \\
\hline Medium AADT, AllLegs FRT & Medium AADT, All Legs Non-FRT & 16 & 8 & 1.088 & 1000 & 2.16 & 132 & exual & 22 & 0.44 & 1717 & NO \\
\hline High AADT, 3-Leg FRT & High AADT, 3-Leg Non-FRT & 7 & 4 & 3.014 & 1925 & 529 & 4.04 & equal & 9 & 1.08 & 1833 & NO \\
\hline High AADT, 4Leg FRT & High AADT, 4-Leg Non-FRT & 7 & 4 & 2486 & 2050 & 329 & 199 & equal & 9 & 0.75 & 1833 & No \\
\hline High AADT, All Legs FRT & High AADT, All Legs Non FRT & 14 & 8 & 2750 & 1988 & 2.66 & 212 & expal & 20 & 136 & 1725 & NO \\
\hline All 3-Leg FRT & All Aadt, 3-Leg Non-FRT & 31 & 12 & 1319 & 1158 & 2.08 & 243 & umequal & 41 & 0.47 & 1645 & NO \\
\hline All 4-Leg FRT & All Aadt, 4-Leg Non-FRT & 37 & 12 & 1170 & 1.317 & 206 & 106 & equal & 47 & 0.50 & 1645 & No \\
\hline All FRT & AllaADt, AllLegs Non-FRT & 68 & 24 & 1.245 & 1238 & 1.62 & 171 & umequal & 90 & 0.00 & 1645 & NO \\
\hline FRT on Major Road, 3-Leg & All3Leg Non-FRT & 26 & 12 & 1112 & 1.158 & 2.10 & 129 & equal & 36 & 0.14 & 1645 & NO \\
\hline FRT on Minor Road, 3-Leg & All3Leg Non-FRT & 4 & 12 & 2625 & 1158 & 2.66 & 10.19 & umequal & 14 & 1.07 & 1761 & NO \\
\hline FRT on Major Road, 4-Leg & All 4 Leg Non-FRT & 19 & 12 & 1095 & 1.317 & 2.14 & 113 & equal & 29 & 0.67 & 1699 & NO \\
\hline FRT on Minor Road, 4-Leg & All 4 Leg Non-FRT & 8 & 12 & 0738 & 1.317 & 2.68 & 231 & equal & 18 & 1.66 & 1734 & NO \\
\hline FRT on Both Major and Minor Road, 4-Leg & All 4 Leg Non-FRT & 10 & 12 & 1.660 & 1317 & 228 & 105 & equal & 20 & 0.91 & 1725 & NO \\
\hline FRT on Major Road, All Legs & All Non-FRT & 45 & 24 & 1.104 & 1238 & 1.65 & 123 & equal & 67 & 0.58 & 1645 & NO \\
\hline FRT on Minor Road, All Legs & All Non-FRT & 12 & 24 & 1.367 & 1238 & 1.87 & 432 & umequal & 34 & 024 & 1645 & No \\
\hline FRT on Both Major and Minor Road, All Leet & All Non-FRT & 11 & 24 & 1.755 & 1238 & 1.89 & 114 & equal & 33 & 1.65 & 1645 & YES \\
\hline
\end{tabular}

Table D. 4 Crash Rate Comparison \((\) alpha \(=0.05)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Comparison1 & Comparison 2 & n1 & n2 & CrashRate1 & CrashRate2 & Critical F-Value & F-Statistic & Variance & df & T-Statistic & Critical T-Value (alpha \(=0.05\) ) & Significance? \\
\hline Low AADT, 3-Leg FRT & Low AADT, 3-Leg Non-FRT & 16 & 4 & 0546 & 0.294 & 5.20 & 177.03 & umequal & 18 & 138 & 2101 & NO \\
\hline Low AADT, 4-Leg FRT & Low AADT, 4-Leg Non-FRT & 22 & 4 & 0.428 & 0389 & 5.18 & 19.44 & umequal & 24 & 099 & 2064 & NO \\
\hline Low AADT, All Legs FRT & Low AADT, AllLegs Non-FRT & 38 & 8 & 0.478 & 0349 & 254 & 126.47 & umequal & 44 & 159 & 1960 & NO \\
\hline Medium AADT, 3-Leg Frt & Medium AADT, 3-Leg Non-FRT & 8 & 4 & 0263 & 0.382 & 3.05 & 4.46 & umequal & 10 & 1.04 & 2228 & NO \\
\hline Medium AADT, 4-Leg FRT & Medinm Aadt, 4-Ieg Non-FRT & 8 & 4 & 0352 & 0253 & 3.05 & 233 & equal & 10 & 153 & 2228 & NO \\
\hline Medium AADT, All Legs FRT & Medium AADT, All Legs Non.FRT & 16 & 8 & 0.315 & 0306 & 216 & 287 & umequal & 22 & 0.09 & 2074 & NO \\
\hline High AADT, 3-Leg FRT & High AADT, 3-Leg Non-FRT & 7 & 4 & 0517 & 0.353 & 529 & 158 & equal & 9 & 1.08 & 2262 & NO \\
\hline High AADT, 4-Leg FRT & High AADT, 4-Leg Non-FRT & 7 & 4 & 0.441 & 0.408 & 329 & 161 & equal & 9 & 036 & 2262 & No \\
\hline High Aadt, All Legs FRT & High Aadt, All Legs Non Frt & 14 & 8 & 0.480 & 0379 & 2.65 & 102 & equal & 20 & 1.07 & 2066 & NO \\
\hline All 3-Leg FRT & All AADT, 3-Leg Non-FRT & 31 & 12 & 0.459 & 0350 & 2.08 & 83.64 & umequal & 41 & 132 & 1960 & NO \\
\hline All 4-Leg FRT & All AADT, 4-Leg Non-FRT & 37 & 12 & 0.410 & 0351 & 2.06 & 336 & umequal & 47 & 137 & 1960 & NO \\
\hline All FRT & AllaAdt, AllLegs Non-FRT & 68 & 24 & 0.432 & 0351 & 1.62 & 4250 & umequal & 90 & 1.65 & 1960 & NO \\
\hline FRT on Major Road, 3-Leg & All3Leg Non-FRT & 26 & 12 & 0.417 & 0.350 & 2.10 & 427 & umequal & 36 & 124 & 1960 & NO \\
\hline FRT on Minor Road, 3-Leg & All3Leg Non-FRT & 4 & 12 & 0547 & 0350 & 2.66 & 62618 & umequal & 14 & 1.03 & 2145 & NO \\
\hline FRT on Major Road, 4-Leg & All 4 Leg Non-FRT & 19 & 12 & 0.448 & 0351 & 2.14 & 490 & umequal & 29 & 1.60 & 2045 & NO \\
\hline FRT on Minor Road, 4-Leg & All 4 Leg Non-FRT & 8 & 12 & 0.360 & 0351 & 234 & 271 & umejual & 18 & 024 & 2101 & NO \\
\hline FRT on Both Major and Minor Road, 4-Leg & All 4 Leg Non-FRT & 10 & 12 & 0.388 & 0.351 & 2.43 & 105 & equal & 20 & 0.52 & 2086 & NO \\
\hline FRT on Major Road, All Legs & All Non-FRT & 45 & 24 & 0.429 & 0.351 & 1.65 & 4.67 & umequal & 67 & 2.00 & 1960 & YES \\
\hline FRT on Minor Road, AllLegs & All Non-FRT & 12 & 24 & 0.448 & 0351 & 1.87 & 225.72 & umequal & 34 & 1.05 & 1960 & NO \\
\hline FRT on Both Major and Minor Road, All Leet & All Non-FRT & 11 & 24 & 0.395 & 0351 & 2.18 & 112 & exual & 33 & 075 & 1960 & NO \\
\hline
\end{tabular}

Table D. 5 Crash Rate Comparison \((\) alpha \(=0.10)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Comparison1 & Comparison2 & n1 & n2 & CrashRate1 & CrashRate2 & Critical F-Value & F-Statistic & Variance & df & T-Statistic & Critical T-Value (alpha \(=0.10\) ) & Significance? \\
\hline Low AADT, 3-Leg FRT & Low AADt, 3-Leg Non-FRT & 16 & 4 & 0546 & 0.294 & 5.20 & 177.03 & unequal & 18 & 138 & 1734 & NO \\
\hline Low AADT, 4-Leg FRT & Low AADt, 4-Leg Non-FRT & 22 & 4 & 0.428 & 0389 & 5.18 & 19.44 & unequal & 24 & 099 & 1711 & NO \\
\hline Low AADT, All Legs FRT & Low AADT, All Legs Non-FRT & 38 & 8 & 0.478 & 0349 & 254 & 126.47 & umequal & 44 & 159 & 1645 & NO \\
\hline Medium AADT, 3-Leg FRT & Medium AADT, 3-Leg Non-FRT & 8 & 4 & 0263 & 0.382 & 3.05 & 4.46 & unequal & 10 & 1.04 & 1812 & NO \\
\hline Medium AADT, 4-Leg FRT & Medinm AADT, 4-Leg Non-FRT & 8 & 4 & 0.352 & 0253 & 3.05 & 233 & equal & 10 & 153 & 1812 & No \\
\hline Medium AADT, All Legs FRT & Medinm AADT, All Legs Non-FRT & 16 & 8 & 0.315 & 0306 & 2.16 & 287 & umequal & 22 & 0.09 & 1717 & No \\
\hline High AADT, 3-Leg FRT & High AADT, 3-Leg Non-FRT & 7 & 4 & 0517 & 0353 & 529 & 158 & equal & 9 & 1.08 & 1833 & NO \\
\hline High AADT, 4Leg FRT & High AADT, 4-Leg Non-FRT & 7 & 4 & 0.441 & 0.408 & 329 & 161 & equal & 9 & 036 & 1833 & NO \\
\hline High AADT, All Legs FRT & High AADT, All Legss Non FRT & 14 & 8 & 0.480 & 0379 & 2.65 & 102 & equal & 20 & 1.07 & 1725 & NO \\
\hline All 3-Leg FRT & Allandt, 3-Leg Non-FRT & 31 & 12 & 0.459 & 0350 & 2.08 & 83.64 & umequal & 41 & 132 & 1645 & NO \\
\hline All 4-Leg FRT & Allandt, 4-Leg Non-FRT & 37 & 12 & 0.410 & 0351 & 206 & 336 & umequal & 47 & 137 & 1645 & No \\
\hline All FRT & AllaAdt, AllLegs Non-FRT & 68 & 24 & 0.432 & 0351 & 1.62 & 4250 & umequal & 90 & 1.65 & 1645 & YES \\
\hline FRT on Major Road, 3-Leg & All3Leg Non-FRT & 26 & 12 & 0.417 & 0.350 & 2.10 & 427 & unequal & 36 & 124 & 1645 & NO \\
\hline FRT on Minor Road, 3-Leg & All3Leg Non-FRT & 4 & 12 & 0547 & 0350 & 2.66 & 62618 & unequal & 14 & 1.03 & 1761 & No \\
\hline FRT on Major Road, 4-Leg & All 4 Leg Non-FRT & 19 & 12 & 0.448 & 0351 & 2.14 & 490 & umequal & 29 & 1.60 & 1699 & NO \\
\hline FRT on Minor Road, 4-Leg & All 4 Leg Non-FRT & 8 & 12 & 0.360 & 0351 & 234 & 271 & umequal & 18 & 024 & 1734 & NO \\
\hline FRT on Both Major and Minor Road , 4-Leg & All 4 Leg Non-FRT & 10 & 12 & 0.388 & 0351 & 2.43 & 105 & equal & 20 & 0.52 & 1725 & No \\
\hline FRT on Major Road, All Legs & All Non-FRT & 45 & 24 & 0.429 & 0351 & 1.65 & 4.67 & umequal & 67 & 2.00 & 1645 & YES \\
\hline FRT on Minor Road, AllLegs & All \({ }^{\text {Non-FRT }}\) & 12 & 24 & 0.448 & 0351 & 1.87 & 225.72 & umequal & 34 & 1.05 & 1645 & NO \\
\hline FRT on Both Major and Minor Road, All Leet & All Non-FRT & 11 & 24 & 0.395 & 0351 & 2.18 & 112 & equal & 33 & 0.75 & 1645 & NO \\
\hline
\end{tabular}

Table E. 1 FRT Intersection Test Site Summary Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SITE & FRT7 & FRT61 & FRT26 & FRT25 & FRT65 & FRT63 \\
\hline AADT RANGE & LOW & LOW & MEDIUM & MEDIUM & HIGH & HIGH \\
\hline 2018 AADT & 5,460 & 6,815 & 9,975 & 12,366 & 20,390 & 21,614 \\
\hline INTERSECTION LEGS & 3 & 4 & 3 & 4 & 3 & 4 \\
\hline RT APPROACH THRU CONTROL & UNCONTROLLED & UNCONTROLLED & STOP-CONTROLLED & UNCONTROLLED & UNCONTROLLED & STOP-CONTROLLED \\
\hline VIDEO HRS & 72 & 69 & 104 & 72 & 64 & 85.5 \\
\hline TOTAL THRU & 588 & 89 & 1282 & 472 & 660 & 10432 \\
\hline THRU/HR & 8.17 & 1.29 & 12.33 & 6.56 & 10.31 & 122.01 \\
\hline TOTAL RT & 1205 & 460 & 3704 & 3569 & 5797 & 6470 \\
\hline RT/HR & 16.74 & 6.67 & 35.62 & 49.57 & 90.58 & 75.67 \\
\hline TOTAL CONFLICT & 4 & 0 & 5 & 2 & 12 & 30 \\
\hline TOTAL POT CONFLICT & 8 & 1 & 64 & 12 & 49 & 632 \\
\hline
\end{tabular}

Table E. 2 Non-FRT Intersection Test Site Summary Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SITE & COMP20 & COMP8 & COMP7 & COMP24 & COMP6 & COMP23 \\
\hline AADT RANGE & LOW & LOW & MEDIUM & MEDIUM & HIGH & HIGH \\
\hline 2018 AADT & 5,349 & 6,994 & 8,510 & 13,595 & 13,891 & 14,570 \\
\hline INTERSECTION LEGS & 3 & 4 & 3 & 4 & 3 & 4 \\
\hline RT APPROACH THRU CONTROL & UNCONTROLLED & UNCONTROLLED & STOP-CONTROLLED & UNCONTROLLED & UNCONTROLLED & STOP-CONTROLLED \\
\hline VIDEO HRS & 77 & 59.5 & 69 & 71.75 & 73.75 & 77.75 \\
\hline TOTAL THRU & 256 & 889 & 3306 & 690 & 1398 & 2454 \\
\hline THRU/HR & 3.32 & 14.94 & 47.91 & 9.62 & 18.96 & 31.56 \\
\hline TOTAL RT & 1584 & 23 & 93 & 327 & 4691 & 1184 \\
\hline RT/HR & 20.57 & 0.39 & 1.35 & 4.56 & 63.61 & 15.23 \\
\hline TOTAL CONFLICT & 63 & 1 & 0 & 12 & 12 & 9 \\
\hline TOTAL POT CONFLICT & 44 & 4 & 3 & 17 & 192 & 135 \\
\hline CONFLICT/HR & 0.82 & 0.02 & 0.00 & 0.17 & 0.16 & 0.12 \\
\hline
\end{tabular}

Table E. 3 Low AADT, 3-Leg Sites
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{LOW AADT, 3-LEG} \\
\hline & & FRT SITE (FRT & & & -FRT SITE (CO & MP20) \\
\hline Time Period & Conflicts & Hours of Data & RT Vehicles & Conflicts & Hours of Data & RT Vehicles \\
\hline 12AM-1AM & 0 & 3 & 3 & 0 & 3 & 2 \\
\hline 1AM-2AM & 0 & 3 & 3 & 0 & 3 & 4 \\
\hline 2AM-3AM & 0 & 3 & 2 & 0 & 3 & 2 \\
\hline 3AM-4AM & 0 & 3 & 3 & 0 & 3 & 3 \\
\hline 4AM-5AM & 0 & 3 & 17 & 0 & 3 & 5 \\
\hline 5AM-6AM & 0 & 3 & 54 & 0 & 3 & 10 \\
\hline 6AM-7AM & 1 & 3 & 97 & 1 & 3 & 51 \\
\hline 7AM-8AM & 0 & 3 & 80 & 5 & 3 & 128 \\
\hline 8АМ-9AM & 1 & 3 & 51 & 3 & 3 & 77 \\
\hline 9AM-10AM & 0 & 3 & 63 & 5 & 3 & 75 \\
\hline 10AM-11AM & 1 & 3 & 62 & 1 & 3 & 84 \\
\hline 11AM-12PM & 0 & 3 & 50 & 2 & 3 & 87 \\
\hline 12PM-1PM & 0 & 3 & 68 & 1 & 3 & 91 \\
\hline 1PM-2PM & 0 & 3 & 66 & 2 & 3 & 93 \\
\hline 2PM-3PM & 0 & 3 & 80 & 1 & 3 & 95 \\
\hline 3PM-4PM & 1 & 3 & 96 & 8 & 3 & 107 \\
\hline 4PM-5PM & 0 & 3 & 105 & 14 & 3 & 160 \\
\hline 5PM-6PM & 0 & 3 & 77 & 17 & 3 & 166 \\
\hline 6PM-7PM & 0 & 3 & 60 & 0 & 3 & 91 \\
\hline 7PM-8PM & 0 & 3 & 55 & 2 & 4 & 99 \\
\hline 8PM-9PM & 0 & 3 & 36 & 0 & 4 & 64 \\
\hline 9PM-10PM & 0 & 3 & 37 & 1 & 4 & 45 \\
\hline 10PM-11PM & 0 & 3 & 20 & 0 & 4 & 32 \\
\hline 11PM-12AM & 0 & 3 & 20 & 0 & 4 & 13 \\
\hline Total & 4 & 72 & 1205 & 63 & 77 & 1584 \\
\hline Conflicthr & & 0.056 & & & 0.818 & \\
\hline Conflict/1000 RT vehicles & & 3.320 & & & 39.773 & \\
\hline
\end{tabular}

Table E. 4 Low AADT, 4-Leg Sites
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{6}{|c|}{LOW AADT, 4-LEG} \\
\hline & \multicolumn{3}{|c|}{FRT SITE (FRT61)} & \multicolumn{3}{|c|}{NON-FRT SITE (COMP8)} \\
\hline Time Period & Conflicts & Hours of Data & RT Vehicles & Conflicts & Hours of Data & RT Vehicles \\
\hline 12AM-1AM & 0 & 3 & 0 & 0 & 2 & 0 \\
\hline 1AM-2AM & 0 & 3 & 0 & 0 & 2 & 0 \\
\hline 2AM-3AM & 0 & 3 & 1 & 0 & 2 & 0 \\
\hline 3AM-4AM & 0 & 3 & 2 & 0 & 2 & 0 \\
\hline 4AM-5AM & 0 & 3 & 3 & 0 & 2 & 0 \\
\hline 5AM-6AM & 0 & 3 & 19 & 0 & 2 & 0 \\
\hline 6АМ-7AM & 0 & 3 & 18 & 0 & 3 & 0 \\
\hline 7AM-8АМ & 0 & 3 & 69 & 0 & 3 & 0 \\
\hline 8AM-9AM & 0 & 3 & 29 & 0 & 3 & 2 \\
\hline 9AM-10AM & 0 & 3 & 23 & 0 & 3 & 2 \\
\hline 10AM-11AM & 0 & 3 & 24 & 0 & 3 & 3 \\
\hline 11AM-12PM & 0 & 3 & 32 & 0 & 3 & 2 \\
\hline 12PM-1PM & 0 & 2 & 13 & 0 & 3 & 2 \\
\hline 1PM-2PM & 0 & 2 & 17 & 0 & 3 & 1 \\
\hline 2PM-3PM & 0 & 2 & 18 & 1 & 3 & 3 \\
\hline 3PM-4PM & 0 & 3 & 34 & 0 & 3 & 1 \\
\hline 4PM-5PM & 0 & 3 & 30 & 0 & 3 & 3 \\
\hline 5PM-6PM & 0 & 3 & 41 & 0 & 2.5 & 2 \\
\hline 6PM-7PM & 0 & 3 & 35 & 0 & 2 & 1 \\
\hline 7PM-8PM & 0 & 3 & 13 & 0 & 2 & 1 \\
\hline 8PM-9PM & 0 & 3 & 18 & 0 & 2 & 0 \\
\hline 9PM-10PM & 0 & 3 & 11 & 0 & 2 & 0 \\
\hline 10PM-11PM & 0 & 3 & 7 & 0 & 2 & 0 \\
\hline 11PM-12AM & 0 & 3 & 3 & 0 & 2 & 0 \\
\hline Total & 0 & 69 & 460 & 1 & 59.5 & 23 \\
\hline Conflicthr & & 0.000 & & & 0.017 & \\
\hline Conflict/1000 RT vehicles & & 0.000 & & & 43.478 & \\
\hline
\end{tabular}

Table E. 5 Medium AADT, 3-Leg Sites
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{6}{|c|}{MEDIUM AADT, 3-LEG} \\
\hline & \multicolumn{3}{|c|}{FRT SITE (FRT26)} & \multicolumn{3}{|c|}{NON-FRT SITE (COMP7)} \\
\hline Time Period & Conflicts & Hours of Data & RT Vehicles & Conflicts & Hours of Data & RT Vehicles \\
\hline 12AM-1AM & 0 & 4 & 7 & 0 & 3 & 0 \\
\hline 1AM-2AM & 0 & 4 & 3 & 0 & 3 & 0 \\
\hline 2AM-3AM & 0 & 4 & 22 & 0 & 3 & 0 \\
\hline 3AM-4AM & 0 & 4 & 37 & 0 & 3 & 0 \\
\hline 4AM-5AM & 0 & 4 & 80 & 0 & 3 & 0 \\
\hline 5AM-6AM & 0 & 4 & 78 & 0 & 3 & 0 \\
\hline 6АМ-7AM & 0 & 4 & 148 & 0 & 2.25 & 3 \\
\hline 7AM-8АМ & 0 & 4 & 175 & 0 & 2.75 & 18 \\
\hline 8AM-9AM & 0 & 4 & 165 & 0 & 3 & 6 \\
\hline 9AM-10AM & 0 & 4 & 202 & 0 & 3 & 5 \\
\hline 10AM-11AM & 1 & 4 & 200 & 0 & 3 & 4 \\
\hline 11AM-12PM & 0 & 4 & 211 & 0 & 3 & 6 \\
\hline 12PM-1PM & 0 & 4 & 175 & 0 & 3 & 3 \\
\hline 1PM-2PM & 0 & 4 & 202 & 0 & 2.25 & 7 \\
\hline 2PM-3PM & 0 & 4 & 207 & 0 & 2.75 & 8 \\
\hline 3PM-4PM & 0 & 4.75 & 241 & 0 & 3 & 2 \\
\hline 4PM-5PM & 2 & 5 & 634 & 0 & 3 & 8 \\
\hline 5PM-6PM & 1 & 5 & 345 & 0 & 3 & 8 \\
\hline 6PM-7PM & 1 & 5 & 197 & 0 & 3 & 6 \\
\hline 7PM-8PM & 0 & 5 & 127 & 0 & 3 & 4 \\
\hline 8PM-9PM & 0 & 5 & 95 & 0 & 2.25 & 1 \\
\hline 9PM-10PM & 0 & 5 & 87 & 0 & 2.75 & 4 \\
\hline 10PM-11PM & 0 & 5 & 49 & 0 & 3 & 0 \\
\hline 11PM-12AM & 0 & 4.25 & 17 & 0 & 3 & 0 \\
\hline Total & 5 & 104 & 3704 & 0 & 69 & 93 \\
\hline Conflicthr & & 0.048 & & & 0.000 & \\
\hline Conflict/1000 RT vehicles & & 1.350 & & & 0.000 & \\
\hline
\end{tabular}

Table E. 6 Medium AADT, 4-Leg Sites
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{6}{|c|}{MEDIUM AADT, 4-LEG} \\
\hline & \multicolumn{3}{|c|}{FRT SITE (FRT25)} & \multicolumn{3}{|c|}{NON-FRT SITE (COMP24)} \\
\hline Time Period & Conflicts & Hours of Data & RT Vehicles & Conflicts & Hours of Data & RT Vehicles \\
\hline 12AM-1AM & 0 & 3 & 6 & 0 & 3 & 2 \\
\hline 1AM-2AM & 0 & 3 & 5 & 0 & 3 & 1 \\
\hline 2AM-3AM & 0 & 3 & 5 & 0 & 3 & 0 \\
\hline 3AM-4AM & 0 & 3 & 10 & 0 & 3 & 0 \\
\hline 4AM-5AM & 0 & 3 & 30 & 0 & 3 & 0 \\
\hline 5AM-6AM & 0 & 3 & 84 & 0 & 3 & 3 \\
\hline 6АМ-7AM & 0 & 3 & 91 & 0 & 3 & 6 \\
\hline 7AM-8АМ & 1 & 3 & 130 & 0 & 3 & 17 \\
\hline 8AM-9AM & 1 & 3 & 190 & 1 & 3 & 17 \\
\hline 9AM-10AM & 0 & 3 & 209 & 0 & 3 & 25 \\
\hline 10AM-11AM & 0 & 3 & 237 & 0 & 3 & 17 \\
\hline 11AM-12PM & 0 & 3 & 268 & 0 & 3 & 13 \\
\hline 12PM-1PM & 0 & 3 & 285 & 0 & 3 & 15 \\
\hline 1PM-2PM & 0 & 3 & 246 & 0 & 3 & 12 \\
\hline 2PM-3PM & 0 & 3 & 219 & 3 & 2.75 & 30 \\
\hline 3PM-4PM & 0 & 3 & 288 & 0 & 3 & 38 \\
\hline 4PM-5PM & 0 & 3 & 313 & 0 & 3 & 38 \\
\hline 5PM-6PM & 0 & 3 & 245 & 7 & 3 & 35 \\
\hline 6PM-7PM & 0 & 3 & 211 & 1 & 3 & 27 \\
\hline 7PM-8PM & 0 & 3 & 155 & 0 & 3 & 8 \\
\hline 8PM-9PM & 0 & 3 & 121 & 0 & 3 & 12 \\
\hline 9PM-10PM & 0 & 3 & 92 & 0 & 3 & 5 \\
\hline 10PM-11PM & 0 & 3 & 85 & 0 & 3 & 5 \\
\hline 11PM-12AM & 0 & 3 & 44 & 0 & 3 & 1 \\
\hline Total & 2 & 72 & 3569 & 12 & 71.75 & 327 \\
\hline Conflicthr & & 0.028 & & & 0.167 & \\
\hline Conflict/1000 RT vehicles & & 0.560 & & & 36.697 & \\
\hline
\end{tabular}

Table E. 7 High AADT, 3-Leg Sites
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{6}{|c|}{HIGH AADT, 3-LEG} \\
\hline & \multicolumn{3}{|c|}{FRT SITE (FRT65)} & \multicolumn{3}{|c|}{NON-FRT SITE (COMP6)} \\
\hline Time Period & Conflicts & Hours of Data & RT Vehicles & Conflicts & Hours of Data & RT Vehicles \\
\hline 12AM-1AM & 0 & 2 & 5 & 0 & 3 & 122 \\
\hline 1AM-2AM & 0 & 2 & 6 & 0 & 3 & 25 \\
\hline 2AM-3AM & 0 & 2 & 1 & 0 & 3 & 13 \\
\hline 3AM-4AM & 0 & 2 & 6 & 0 & 3 & 11 \\
\hline 4AM-5AM & 0 & 2 & 11 & 0 & 3 & 27 \\
\hline 5AM-6AM & 0 & 2 & 52 & 0 & 3 & 69 \\
\hline 6АМ-7AM & 0 & 3 & 162 & 1 & 3 & 115 \\
\hline 7AM-8АМ & 3 & 3 & 387 & 3 & 3 & 249 \\
\hline 8AM-9AM & 0 & 3 & 245 & 0 & 3 & 248 \\
\hline 9AM-10AM & 0 & 3 & 254 & 0 & 3 & 227 \\
\hline 10AM-11AM & 0 & 3 & 290 & 0 & 3 & 239 \\
\hline 11AM-12PM & 1 & 3 & 307 & 0 & 3 & 275 \\
\hline 12PM-1PM & 1 & 3 & 329 & 0 & 3 & 271 \\
\hline 1PM-2PM & 0 & 3 & 341 & 0 & 3 & 292 \\
\hline 2PM-3PM & 1 & 3 & 385 & 0 & 3 & 314 \\
\hline 3PM-4PM & 1 & 3 & 540 & 3 & 3 & 343 \\
\hline 4PM-5PM & 3 & 3 & 634 & 2 & 4 & 553 \\
\hline 5PM-6PM & 1 & 3 & 624 & 2 & 3.75 & 453 \\
\hline 6PM-7PM & 0 & 3 & 427 & 0 & 3 & 305 \\
\hline 7PM-8PM & 0 & 3 & 297 & 0 & 3 & 198 \\
\hline 8PM-9PM & 1 & 3 & 259 & 0 & 3 & 134 \\
\hline 9PM-10PM & 0 & 3 & 148 & 0 & 3 & 103 \\
\hline 10PM-11PM & 0 & 2 & 56 & 0 & 3 & 64 \\
\hline 11PM-12AM & 0 & 2 & 31 & 1 & 3 & 41 \\
\hline Total & 12 & 64 & 5797 & 12 & 73.75 & 4691 \\
\hline Conflict/hr & & 0.188 & & & 0.163 & \\
\hline Conflict/1000 RT vehicles & & 2.070 & & & 2.558 & \\
\hline
\end{tabular}

Table E. 8 High AADT, 4-Leg Sites
```

