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ABSTRACT 
 

Burying beetles are carrion beetles and utilize dead animal carcasses for feeding 

and reproductive efforts. They assist with decomposition, prevent the spread of disease, 

and reduce the number of pest species. The largest species of carrion beetle, the 

American burying beetle, is a federally endangered insect and its distribution has been 

reduced by 90%. The conservation of this species is important in maintaining a healthy 

ecosystem. Overwintering biology and trap and relocation were studied to determine how 

this beetle survives freezing temperatures and to find whether trap and relocation could 

be a suitable conservation management measure. 

Trap and relocation is a technique often used to relocate organisms from an area 

where human and animal habitats overlap. In this study, we test the efficacy of a trap- 

relocate technique with a surrogate species of burying beetle, Nicrophorus marginatus, to 

determine the implications of this technique on the conservation management of the 

federally endangered American burying beetle, Nicrophorus americanus. Baited pitfall 

traps were used for capture, and the comparison of percent recaptures at different trap 

sites (control, source, and destination) was used to determine the effects of relocating 



    

 
 
 

beetles. The results showed that percent recaptures were lower for the beetles relocated to 

the new location; however, there was no statistical difference between trap sites. Trap and 

relocation, in circumstances where there is substantial threat to the American burying 

beetle’s habitat, should be considered for conserving this species. 

Insects are poikilotherms and have evolved strategies to survive freezing 

temperatures through changes in behavior and physiology. Overwintering insects either 

utilize a freeze tolerant or freeze avoidant strategy. Freeze avoidant insects cannot 

withstand their cellular fluids freezing solid, while freeze tolerant insects can survive this. 

Burying beetles from their northern range in Nebraska were put in a simulated, natural 

environment to determine whether they are freeze avoidant or freeze tolerant. The results 

showed that there was a strong relationship between beetle depth and temperature. 

Beetles from the northern range buried at or below the frost line to survive freezing 

temperatures. This could have further implications in the conservation of the American 

burying beetle if there are differences between the overwintering behavior of northern 

and southern range beetles. 
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CHAPTER 1.  NORTHERN OVERWINTERING STRATEGY AND SURVIVAL 
OF BURYING BEETLES (NICROPHORUS ORBICOLLIS) 

 
 
 
 
1.1  BACKGROUND 
 

Insects are poikilotherms and must adapt to avoid tissue damage in sub-zero 

temperatures (Block et al. 1990). Invertebrates that overwinter in northern climates have 

both physical and behavioral changes to survive freezing temperatures (Denlinger and 

Lee 2010). Cold temperatures may inhibit normal development in invertebrates, and the 

line between normal development and halted development is not entirely temperature 

based, such as freezing point but based on supercooling points and physiological 

capabilities (Salt 1961). Overwintering also involves metabolic depression to overcome 

metabolic functions that decline with decreasing temperatures during winter months 

(Mansingh 1971, Leather 1995). There are three basic ways which insects employ to 

survive cold temperatures: freeze avoidance, freeze tolerance, and migration (Sinclair 

2003). However, freeze tolerant insects can be further divided according to supercooling 

point and lower lethal temperature (Sinclair 1999). Factors affecting survival and 

mortality are dependent upon the cold hardiness of the insect, temperature, periods of 

exposure experienced by the insect, presence of chill injury, and specific developmental 

stage (Bale 1987, Lee 1989, Bale 1993). 

Freeze avoidant insects must avoid having their extracellular and intracellular 

fluids freeze in order to survive, while freeze tolerant insects can allow this ice formation 

within their cellular fluids (Somme 1999, Denlinger & Lee 2010). Freeze avoidant insects 

survive through migration, burying vertically in the soil or withstanding freezing 

temperatures by using supercooling methods, such as ice-nucleating proteins (Sinclair 



 
 

2003). Water content and desiccation can influence the supercooling point of an insect 

(Cannon et al. 1985, Lee 1989). This is because supercooling capabilities are inversely 

related to fluid volume, and insects have relatively high water content for their small size 

(Angell 1982). Insect strategies are usually correlated with climate, with insects from the 

Northern hemisphere often exhibiting freeze tolerance, and those from the Southern 

hemisphere exhibiting freeze avoidance (Sinclair 2003). 

Insects found in temperate climates often spend a majority of their lifecycle in the 

overwintering phase (Leather 1995). During the overwintering period, predation and 

starvation risks are greatly reduced, since these insects are not active during winter 

months (Mansingh 1971, Leather 1995). However, the insects’ immobility can be a 

disadvantage if the conditions become unfavorable, such as during drought or too much 

precipitation (Tauber et al. 1986, Leather 1995). 

For many overwintering insects the soil substrate is an important aspect of 

survivability (Leather 1995). Soil offers warmth and more stable temperatures than the 

surface of the soil. Factors that can influence this buffer include depth, composition, 

moisture content, and snow covering (Leather 1995, Bennett et al. 2003). While insects 

often bury far enough into the soil to obtain warmth and stable temperatures, it is likely 

that they do not bury to unnecessary depths because such activity would waste needed 

energy reserves (Leather 1995). 

This study examines burying beetles, Nicrophorus orbicollis, in Nebraska. 
 

Burying beetles are an important part of an ecosystem because they act as decomposers 

utilizing dead animals for food and reproduction and they aid in the prevention of disease 

(Gibbs and Stanton 2001, USFWS 2008). Understanding life history traits are important 

in the conservation of the federally endangered American burying beetle, Nicrophorus 

americanus. The reasons for its decline have not been fully elucidated (Lomolino et al. 

1995, Sikes and Raithel 2002, USFWS 2008). 
 



 
 

Schnell et al. (2008) found that American burying beetles from Arkansas have an 

overall survival rate of 59.6% in a simulated field experiment testing overwintering 

survival. They also tested survival rates between beetles in provisioned (77.1%) and non- 

provisioned buckets (44.6%) and found that beetles that buried in the soil buried at 

shallow depths (averaged 6 cm) (Schnell et al. 2008). The study was completed in 

Arkansas, part of the ABB’s southern range, and temperatures never reached below 

freezing throughout the duration of the experiment. 

Our study experimented with beetles from Nebraska, part of the ABB’s northern 

range, and temperatures reach below freezing with a frost line present throughout most of 

winter. The objective was to determine the overwintering strategy of northern range 

American burying beetles by using a surrogate species, N. orbicollis. In addition to 

implications for reintroduction, learning how burying beetles overwinter in climates 

where freezing occurs also impacts construction activities in these areas. Temperature, 

water content, and beetle burial depth (in relation to the frost line) is the focus to 

determine overwintering patterns of these beetles, although many factors, including 

habitat, respiration, and other cold adaptations, may influence this behavior (Danks 1978, 

Danks 1991, Kukal 1991, Block 1994b, Danks et al. 1994). 

 
1.2  METHODS 

 
1.2.1 Experimental Pipes 

 
Polyvinyl chloride (PVC) pipes were used to house beetles in the field for the 

duration of the experiment. Two halves of PVC pipes were put together and wrapped 

with duct tape. Tubes of varying sizes were used – long, medium, and short. These tubes 

all had a diameter of 10.16 cm (4 inches), and the length of the long tubes was 1.22 m (4 

feet). The medium tubes had a length of 1.07 m (3.5 feet), while the short tubes were 0.61 



 
 

 
 
 

m (2 feet) long. Small slits were made around all sides of the tube to allow water 

exchange with the surrounding soil. A square piece of screen, 20.32 cm (8 inches), was 

placed on the top and bottom of the tube, and a PVC cap was placed on both the top and 

bottom to prevent beetles from escaping. 

Holes on each side of the tube were drilled through the top and bottom caps. A 

rope was threaded through the top holes to provide a hoist for tube extraction. Once the 

tubes were placed in the ground, a sand/dirt mixture from Broadfoot Sand and Gravel of 

Kearney was placed inside, filling the tube to the top. Two Nicrophorus orbicollis 

beetles, one male and one female, were placed at the top of each tube, except in 2013 

when most tubes only had one beetle. A lid was then placed on the PVC cap for the 

entirety of the experiment. This prevented beetles from escaping and prevented 

precipitation and debris from accumulating inside the tube and injuring the beetles. 

In 2013 some of the tubes were modified to test whether low soil moisture had an 

impact on the survivability of beetles. Tubes were modified by wrapping them in 47.32 L 

(50 quart) plastic trash bags so that water could not infiltrate the tube. Rain shields were 

added above the tubes to prevent precipitation from entering the tops of the tubes. The 

rain shields consisted of small Tupperware containers placed over the cap with a stone 

weight. 

1.2.2 Tube Arrangement 
 

Testing occurred at Fort Kearny State Park, Kearney County, Nebraska. An area 

was cleared of vegetation and mowed. A Bobcat with an auger attachment was used to 

dig 1.52 meter-deep holes. Tubes were placed about half a meter apart and placed into 

rows. Tubes were buried to the bottom of the top cap, so that the cap was above ground 

and the rest of the tube was underground. A wooden stake was placed next to each tube 

to identify it. A total of 60 tubes were installed in 2011, 140 tubes total were installed in 



 
 

2012, and 135 tubes total were installed in 2013. 

1.2.3 Weather 
 

Weather conditions were recorded using a HOBO weather station placed next to 

the tubes. This station recorded the ground temperature and humidity, and a PVC pipe 

buried in the ground was used to measure depth to the water table. A long, measured 

wooden stick was placed inside the PVC pipe until the stick hit the bottom. The stick was 

removed and the line where the water reached was where the water table occurred. The 

thermocouples from the HOBO weather station were placed on the surface, 10 cm, 20 

cm, 30 cm, and 60 cm beneath the soil around the HOBO weather station. The 

temperature was recorded once per hour of each day. 

 
1.2.4  Data Collection 

 
The tubes were set in the ground during late September, and the beetles were 

added in October each year. Beetles were collected using baited pitfall traps in Garfield 

and Buffalo counties of Nebraska. Beetle status, whether they were alive or dead, and 

beetle activity, whether they were active or buried in the soil, was checked each once a 

week between October and April. The depth to water table, surface activity of beetles, 

and dead beetles at the surface were noted. If beetle mortality had occurred before 

November, N. orbicollis were replaced if available with beetles, N. marginatus, housed in 

the laboratory. 



 

 
 
 
 

1.2.5  Removal of Tubes 
 

Tubes were randomly chosen for removal. Beetles were added in October each 

year, and removed the following winter/spring months. Refer to Table 1 for the removal 

dates. 

An engine hoist was used to extract the tubes by attaching rope at the top of the 

tubes and slowly lifting the tubes from the ground. Once removed, the tube was laid on 

its side, the duct tape surrounding the tubes was cut, and the upper half of the tube 

removed. The measurement from the top of the tube to the top of the soil was taken, and 

dirt was carefully sifted by hand until a beetle was found. Beetles found dead on the top 

of the soil were not counted, while beetles found dead at any depth were recorded. Beetle 

depth was measured from the top of the soil to where the first body part was found. All 

dirt was completely sifted until none remained in each tube. 

1.3 RESULTS 
 
1.3.1 Totals for 2011-2014 
 

Three trials were completed for this experiment, showing an overall similar trend 

of beetles burying deeper in the soil during the colder months, such as January and 

February, and shallower by later in the spring, such as May (Figure 2). The data from 

year to year started with the peak of the bell curve at 10-20 cm and 20-30 cm in 2011- 

2012, then did not peak as much with a wider spread of data across beetle burial depths in 

2012-2013, and finally ended with a more defined bell curve with the peak at 40-50 cm in 

2013-2014 (Figure 3, 4, 5). This trend and movement of the bell curve towards deeper 

burial depths each year seemed to be associated with differing temperature each year, with 

the frost line staying present for a longer duration each year with the longest frost line 

presence occurring in 2013-2014. 



 

While the temperature and frost line was different each year a trial was conducted, 

it seemed as though the trend for beetle burial depth related to month was similar 

regardless of this (Table 3). The average depth by month peaked in February, with 

January and March slightly lower, and May the lowest bar on the graph (Figure 2). Tubes 

were only exhumed January-May (Table 1), so it is unknown if the bell curve would 

follow the trend for the months of October, November, and December. Also, the results 

of the average depth of beetle burial by month supported the idea that burial depth and 

month follow a bell-curve distribution (Figure 2). Every year the average beetle burial 

depths for the first pull and third pull was shallower than the second pull. 

Measuring burial depth of beetles that survived the winter showed that deepest, 

shallowest, and average depths increased each year and trial (Table 2). Burial depth 

measurements of beetles that did not survive the winter showed that deepest, shallowest, 

and average depths decreased each year and trial. For every year and trial beetle survival 

was much higher for beetles that buried compared to those that did not (Table 4). 

1.3.2  2011-2012 
 

In the fall and winter of 2011-2012, sixty-five beetles buried in the soil, with 53 

alive and 12 dead. Four were found dead on the surface. The survival rate for beetles 

once buried was 81.54%, and 44.17% for beetles overall (Table 4). The deepest burial 

depths were observed in January and March, and very shallow burial depths, with some 

beetles already on the surface, were observed in May (Figure 3). The deepest depth a 

beetle buried and survived was between 70 to 80 cm, and the shallowest depth a beetle 

buried and survived was 2.5 cm (Table 2). One dead beetle was found at 25 cm and the 

shallowest buried beetle was found at 1 cm. 

Twenty-eight beetles were removed from tubes during the first pull of tubes on 

January 4, 2012. Twenty-seven beetles were alive, while 1 beetle was dead. Thirty-one 

beetles were removed from tubes during the second pull of tubes on March 3, 2012. 



 

Twenty beetles were alive, while 11 beetles were dead. Six beetles were removed from 

tubes during May 2012. All six were found alive. Beetles stayed close to the surface, with 

most beetles (30) found from 10-30 cm below the surface (Figure 3). Fourteen beetles 

buried deeper than 30 cm and 5 beetles buried shallower than 10 cm. 

While there were no data for air and 10 cm temperatures for the months of 

October, November, and December, the 30 cm temperature was shown to stay above 0°C 

for the majority of the winter (Figure 6). Air temperature and 10 cm temperature was 

more variable and reached below 0°C more often than 30 cm below the surface. The frost 

line seemed to be around 20-30 cm and was present through the months of January, 

February, and March. The frost line depth for October-December was unknown. 

1.3.3  2012-2013 
 

In the fall and winter of 2012-2013, fifty-two beetles buried in the soil. Forty- 

eight survived, 4 died, while 188 died on the surface. The survival rate of buried beetles 

was 92.31% and 17.14% for beetles overall (Table 4). The deepest burial depth was 82 

cm, and the shallowest burial depth with the beetle still alive was 8 cm (Table 2). 

Thirty beetles were found total on the first date of removal. Seventeen out of 

thirty beetles were found alive, while thirteen were found dead either on top of the soil or 

buried at a shallow depth (<7.5 cm). The range of data then is 74 cm, and the average 

being 19.6. Thirteen beetles were found total on the second date of removal (March 15, 

2013). Seven out of the thirteen beetles were found alive, while six were found dead at a 

shallow depth (<7.5 cm). Twenty-nine beetles were found total on the third and final date 

of removal (April 26, 2013). Twenty-five beetles were found buried alive, while four 

beetles were found dead at shallow depths (<5.0 cm). 

Beetle activity observably decreased as the experiment progressed. Beetles were 

active on the surface in December and even in January. Forty-four beetles buried at or 

deeper than the 10-20 cm frost line, and only 3 were found closer to the surface at 0-10 



 

cm (Figure 4). Buried beetles died in many tubes when burial did not exceed 10 cm. 

Temperature was very variable for air temperatures (0 cm) (Figure 7). 
 

Temperature became less variable as depth increased with 0 cm depth being most 

variable and 30 cm being the least variable. Air temperature and 10 cm thermocouples 

showed that temperatures reached below freezing multiple times throughout the duration 

of the overwintering experiment. The frost line seemed to stay between 10-20 cm during 

the months of December, January, and February. 

1.3.4 2013-2014 
 

In the fall and winter of 2013-2014, there were seventy-six beetles that buried in 

the soil. Seventy-one of the beetles that buried survived, 5 died, and 36 died on the 

surface before burying. The survival rate for beetles buried beetles was 93.42% and 

49.31% for beetles overall (Table 4). The deepest burial depths were seen in January and 

March, and some more shallow burial depths were seen throughout all months. There 

was not a clear month where burial depth was shallower. The deepest depth a beetle 

buried and survived was 105 cm, and the shallowest depth a beetle buried and survived 

was 5 cm. The deepest depth of a beetle that died was 8 cm, and the shallowest was 2 

cm. 

Twenty-seven beetles were removed from tubes during the first pull of tubes on 

January 9, 2014. All 27 beetles removed had buried and were alive. Twenty-five beetles 

were removed from tubes during the second pull of tubes on February 7, 2014. Twenty- 

one beetles were alive, while 4 beetles were dead. Twenty-four beetles were removed 

from tubes during the third and final pull of tubes on March 7, 2014. Twenty-three 

beetles were alive, while only 1 beetle was dead. Sixty-six beetles were found at or 

deeper than the 20-30 cm mark, and only 5 beetles were found shallower than this mark 

(Figure 5). 

Similar to previous years’ data, the thermocouples showed considerable variation 



 

closer to the surface. The air temperature and 20 cm reached below 0°C for a period of 

around 2 months (December-February) (Figure 8). The 30 cm thermocouple showed 

temperatures staying near the 0°C mark, and the frost line was estimated at around 20-30 

cm below the surface. The frost line was present during the months of November, 

December, January, February, and March. This was the longest the frost line was present 

compared to data from 2011-2013. 

 
1.3.5 Water Fraction per Volume (WFV) Measurements 

 
When soil water fraction per volume (WFV) was measured and compared 

between the moisture-controlled tubes and regular tubes, the average WFV measurement 

was equal for both (0.04 WFV). The average beetle depth for moisture-controlled tubes 

(49.33 cm) was similar to regular tubes (50.32 cm) and was not statistically different 

(p=0.69). WFV was measured in the soil of tubes with beetles alive and dead, but there 

was no significant differences found between them when statistically compared with a 

Mann-Whitney U-test. Alive beetle tube soil was measured 0.05 WFV and dead beetle 

tube soil was measured at 0.04 WFV (p=0.66). 

1.3.6 Beetle Depth and Temperature 
 

A regression compared the relationship between average beetle depth and average 

temperature (Figure 9). The temperatures at the surface and depths of 20 cm, 30 cm, and 

60 cm were compared to the average depths beetles buried at these temperatures. A 

strong relationship was found at each of these depths (R2=0.90, 0.91, 0.94, 0.81, 

respectively). The colder temperatures became, the deeper beetles would bury, and the 

warmer temperatures became, the shallower beetles would bury. This indicates beetles 

base their burial depth on temperature and avoided freezing temperatures (Figure 9, Table 

3). 

1.4 DISCUSSION 
 

Beetles had a high survival rate once they buried into the soil but would die if 



 

they did not bury. Beetles would at least double their survival rates if they buried (2011- 

2012: 44.17% and 81.54%; 2012-2013: 17.14% and 96%; 2013-2014: 49.31% and 

93.42%). However, the beetles that died at the surface did not seem to attempt burial and 

stayed active on the surface until they died of cold injury, desiccation, or starvation. This 

could have occurred because of a variety of reasons, including the difference between 

senescent and teneral beetles used or beetles could possibly search for a specific, 

habitable microclimate. 

Precipitation may have also been a factor for the large amount of beetles that died 

in 2012-2013. Precipitation was higher in the months of October and November in 2011 

and 2013, and it is these months that beetles were placed in the tubes and buried before 

freezing temperatures occurred. In October and November of 2012, precipitation was 

very low, and thus, dehydration could have accounted for large amount of beetles dying 

on the surface during the 2012-2013 trial. 

Temperature may also be an important factor in the beetles’ decision to bury and 

begin the overwintering process. Temperatures were higher during the 2012-2013 trial so 

beetles may not have been ready for burying to start the overwintering process. Beetles 

were then “stranded” because it was too warm for overwintering but could not escape 

tubes to find food, and thus, died from starvation or desiccation. Burying beetles have 

high water-loss rates because of transpiration through exposed, shortened elytra, and oral 

and anal excretions secreted during disturbances, so it is likely that these beetles died 

from desiccation (Bedick et al. 2006). 

These results supported the findings from Schnell et al. (2008), where 

temperatures stayed above freezing, and beetles needed food provisions to survive their 

overwintering period. In Nebraska, where temperatures usually stay below freezing in the 

winter, the beetles that overwinter slow their metabolic processes to survive. They are 

able to stay the duration of the winter in soil below the frost line and do not need food 



 

provisions that beetles in above freezing temperatures utilize for survival. The warmer 

temperatures in 2012-2013 resulted in beetles that usually slow their metabolic rate and 

survive cold temperatures, but instead died at the surface of the soil because they were 

likely unable to find these much needed food provisions. While Schnell et al. (2008) 

found that beetles overwintering above freezing temperatures needed food provisions, 

this study found that food provisions were unnecessary for survival, considering the high 

survival rates of beetles without food provisions. 

The following trial from 2013-2014, soil water content was controlled for by 

adding dry soil and keeping moisture and precipitation out of the tubes to see if beetles 

would die from desiccation. Bedick et al. (2006) found that in low-humidity conditions 

with little access to water, N. marginatus was unable to survive. The WFV of the 

moisture-controlled tubes was similar to that of the regular tubes, so it could not be 

directly determined if desiccation was the reason for the high mortality in 2012-2013. 

More beetles did bury in the moisture-controlled trial, compared to the trial from 2012- 

2013 where beetles stayed active on the surface until December and January. When tubes 

were pulled, WFV was taken in tubes where beetles were alive and dead, but the soil 

moisture content did not seem to affect beetle survival. 

Some beetles found in soil with 0.00 WFV were able to successfully overwinter 

and survived these drought-like conditions. A hard, cement-like mixture formed at the top 

of some of the tubes (0-20 cm) in the 2013-2014 trial, and beetles were still found in these 

seemingly inhospitable conditions, even when soil moisture was higher towards the 

bottom of the tube. It may be possible that beetles are selective when deciding where to 

bury and overwinter and may be able to withstand less favorable conditions once buried. 

Costanzo et al. (1997) studied the influence of soil moisture on the overwintering 

of the Colorado potato beetle and found that moisture, texture, water potential, and other 

physiological properties of the soil have an effect on cold hardiness and survival. Soil 



 

properties were not focused on in this study, with the exception of soil moisture, but 

studying more physiological properties of the soil and beetle microhabitat could elucidate 

why beetles died on the surface or buried. Insect cold-hardiness and mortality is affected 

by temperature, soil moisture, substrate, and relative humidity, so these are important 

factors to consider in overwintering success of terrestrial invertebrates (Leather 1984, 

Costanzo et al. 1997, Bennet et al. 2003, Ellsbury and Lee 2004). 

While beetles that buried in the soil had a greater chance at survival, the depth 

that they buried was mostly chosen based on the depth of the frost line and presence of 

colder temperatures. Some beetles buried deeply at the very bottom of the tubes and 

might have been able to avoid having to move with the fluctuation of warmer and colder 

temperatures. Other beetles may move throughout their overwintering period, considering 

some of the beetles were found at more temperature variable, shallower depths during 

colder months with the frost line present. There were likely local differences, but there 

were no beetles found in ice. Mean beetle depth data was strongly correlated with mean 

temperature data, indicating that burying beetles are freeze avoidant. 

The movement of beetles with temperature is evident as seen with the regression 

between mean beetle depth and mean temperature data. The average temperatures for 

each month are very similar, and as shown by beetle burial depth, there are a similar 

number of beetles found at each burial increment, especially the shallower and deeper 

ones. The 10-20 cm, 90-100 cm, and 100< cm increments all had the same number of 

beetles each month that tubes were pulled. This could have been because temperatures 

were similar each month below 20 cm during the 2013-2014 trial where this was seen. 

Beetles had high mortality when burying at shallow depths, usually 0-10 cm in 

colder months. It is unknown why these beetles died or why they did not bury deeper to 

avoid freezing temperatures, but many of the N. marginatus died at shallow depths or on 

the surface. These beetles were added to tubes as replacements to tubes where N. 



 

orbicollis had died, so because of this later addition they may not have acclimated 

properly to the cooler temperatures. 

Burying beetles are freeze-avoidant, as evident with this experiment, and beetles 

were able to survive by burying very deep in the soil or moving with the fluctuation of 

temperature. However, more research should be done on the movement of burying 

beetles during their overwintering period. There also does seem to be a trend with the 

beetle burial depth exhibiting a bell curve distribution with shallower depths for early 

winter months, deepest depths for the middle of winter months, and again, shallower 

depths for later winter months. This pattern of beetle burial depth could be explained by 

the presence and absence of the frost line. 

Knowing how these beetles react to the influence of temperature is important for 

learning more about overwintering biology (Zachariassen 1985). Overwintering biology 

could be important to the conservation management of the American Burying Beetle, 

because it could have implications for reintroductions, as well as construction in beetle 

habitat. Reintroductions in the ABBs’ northern range utilized beetles reared in the lab 

from a southern range population for their reintroduction efforts. The different 

overwintering behaviors of southern range (Schnell et al. 2008) and northern range 

beetles may contribute to the lack of success in places of reintroduction, such as Ohio. 

Also, construction in beetle habitat during winter months may affect the 

compaction of the soil or physically injure or kill beetles that overwinter close to the 

surface of the soil. However, in the northern range of ABB, beetles were found to bury 

beneath the frost line, so construction in beetle habitat would pose little threat to those 

overwintering beetles (Hoback unpublished). 

Southern and northern populations of burying beetles exhibit different 

overwintering behaviors and strategies to elicit survival in colder temperatures (Schnell et 

al. 2008). These differences in overwintering behavior may have implications on 



 

reintroduction efforts and also for construction efforts in beetle habitat. Knowledge of the 

frost line’s presence (or absence), where the frost line occurs, and temperature 

fluctuations may help to avoid harm to these beetles during winter months. Further 

research should also be done on determining the lower lethal temperatures of northern 

and southern range burying beetles, as there may be differences in these characteristics 

with latitude (Addo-Bediako et al. 2000). 
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TABLES 
 
Table 1. Dates of tube removal by year. Tubes were removed in thirds in the winter/spring 
months. 
 
 

 
 

 
 
Table 2. Descriptive statistics of the beetles once they had buried in the soil. Alive and 
dead beetles’ shallowest, deepest, and average depths are shown by year. 
 
 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Average burial depth and average monthly temperature at each depth. Bolded numbers show between 
what depths the average beetle buried and the corresponding temperature at that depth. The “-“ indicate where 
the HOBO unit could not retrieve data or where thermocouples were not installed yet during the 2011-2012 trial. 

 
 
 
 

 



 
 

 
 
 
 
 

Table 4. Beetle survival rates for all 3 trials was calculated by looking at how many 
beetles buried and if these beetles were alive or dead. 

 
 

 



 

 
 
 

FIGURES 
 
 
 
 

 
 
 

Figure 2. Average beetle burial depth and standard error by month of pull. Averages 
were compiled from every trial (2012-2014). 



 
 

 
 
 
 
 

 
 

 
 

A 



 
 

 
 
 

Figure 3. 2011-2012 beetle burial depths (A) and average temperature by 
month (B). Samples were pulled in January, March, and May of 2012. 
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Figure 4. 2012-2013 beetle burial depths (A) and average temperature by month 
(B). Samples were pulled in February, March, and April of 2013. 
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Figure 5. 2013-2014 beetle burial depths (A) and average temperature by 
month (B). Samples were pulled in January, February, and March of 2014. 
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Figure 6. Temperatures taken from the HOBO unit and thermocouples corresponding to different 
incremental depths (surface, 20 cm, 30 cm) from 2011-2012. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7. Temperatures taken from the HOBO unit and thermocouples corresponding to different incremental depths 
(surface, 10 cm, 20 cm, 30 cm, 60 cm, 90 cm) from 2012-2013. 



 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8. Temperatures taken from the HOBO unit and thermocouples corresponding to different incremental 
depths from 2013-2014. 



 
 

 
 
 
 
 

 
 
 
 

Figure 9. Regression analysis from all 3 trials (2011-2014) of average beetle temperature 
and average temperature at different depths at the surface (A), 20 cm (B), 30 cm (C), and 
60 cm (D). 
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CHAPTER 2:  THE EFFECTS OF TRAP AND RELOCATION OF BURYING 
BEETLES (NICROPHORUS MARGINATUS, NICROPHORUS CAROLINUS) ON 
SURVIVAL AND RECAPTURE RATE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
2.1 BACKGROUND 
 

Mark and recapture has been used for population estimates, recruitment, and survival 

estimation in biological and ecological studies (Pradel 1996). These studies focus on 

marking a large number of organisms in their natural habitat, releasing them back into their 

habitat, and comparing the number of marked organisms that are recaptured to the number 

unmarked individuals captured during subsequent sampling (Pradel 1996, Miller et al. 

2005). This experimental method enables researchers to use an equation, such as the 

Lincoln-Peterson Index, to estimate the population size (Hawes 2008). Estimations of 

population size are very important in monitoring threatened or endangered species, as well 

as species that are potentially at risk. 

In order to obtain accurate estimates with a mark-recapture study, a relatively high 

fraction of the population, usually 10% or more, must be initially marked (Krebs and 

Boonstra 1984). In addition, the life history of the organism being studied must be 

considered, because assumptions to the population estimate are made including that the 

population is closed (no immigration and emigration) and that the marks do not influence 

mortality or behavior (Krebs and Boonstra 1984, Pradel 1996). Trapping likelihood should 

also be known because it highly affects the results of a mark-recapture study, and different 

methods for capture should be thoroughly considered (Krebs and Boonstra 1984). Further, 

techniques for capturing and marking should not inhibit the organisms’ survival or behavior 

(Hagler and Jackson 2001). The marks should be environmentally safe, cost-effective, and 

easy for researchers to use (Hagler and Jackson 2001). Marks should also be retained for the 

study period and be readable because the loss of marks increases the population estimates 

based on proportion recaptured (Butler et al. 2012). 

Many different insect populations have been estimated using mark-recapture techniques, 



 

and these efforts have been useful in documenting demography and behavior of various 

insects (Hagler and Jackson 2001, Jurzenski et al. 2011). Insects that have been studied 

using mark-recapture studies include the American burying beetle (ABB), gypsy moth 

(Lymantria dispar), stag beetle (Lucanus cervus), and various dung beetles (Aphodius) 

(Weseloh 1985, Creighton and Schnell 1998, Roslin 2000, Hawes 2008). 

The marking techniques for each insect species are different and specific to the 

organism being studied. Insects can be marked by clipping or cutting small areas of their 

exoskeleton. For example, stag beetles have been marked with a hot pin leaving small holes 

in the elytra (Hawes 2008). Dung beetles were marked by cutting a small portion of their 

elytra (Roslin 2000). Gypsy moths were marked by removing the prolegs of the larvae 

(Weseloh 1985), and ABBs have been marked by cutting part of the elytra, using a cauterizer 

to burn a small hole in the elytra, painting elytra, and issuing individual bee tags (Creighton 

and Schnell 1998, Butler et al. 2012). 

Burying beetle population size and individual movement have been monitored by 

marking and recapturing beetles (Bedick et al. 1999, Jurzenski et al. 2011), and through this 

method ABB have been found to move more than 7.24 km in one night, which influenced 

how far apart traps were placed in this study (Jurzenski et al. 2011). Another study by 

Creighton and Schnell (1998), found that the average movement per night was around 1.23 

km with beetles moving as much as 10.00 km over six nights. There were no differences in 

recapture rates between males and females or teneral (younger) and senescent (older) beetles 

(Creighton and Schnell 1998). 

For conservation purposes, a trap and relocate technique may be used in situations 

where there will be significant habitat disturbance because of construction. This habitat loss 

is usually caused by human encroachment and human development. Mark-relocate may help 

individuals thrive in new, suitable habitats. However, the process of, collecting, marking, 

and releasing these organisms in a new habitat may cause harm. 



 

In this study, trap-mark-relocate methods were used on Nicrophorus marginatus, a 

species closely related to the ABB to study the efficacy of this method as a conservation 

technique when beetle habitat will be disturbed by contruction. N. marginatus is a habitat 

generalist and is one of the most common species of burying beetle in Nebraska. It is easily 

caught using pit-fall traps baited with rotting rats. In this study, beetles were marked in two 

ways – cauterization and paint. Elytral cauterization is a permanent marking method and 

causes very low mortality when applied properly (Butler et al.2012).  Acrylic paint applied to 

the elytra of the beetles lasts <10 days, (Butler et al. 2012), and in this study beetles were 

marked with paint for only up to 5 days. Both ways were shown to be safe, effective, and 

allow the beetles to continue to behave naturally without any known detrimental effects 

(Butler et al. 2012). 

 

2.2 MATERIALS AND METHODS 

Sites for study were chosen in the south-central and northern Sandhills regions of 

Nebraska.  Sites were chosen based on rangeland conditions with little human disturbance 

and were placed in roadside ditches. Baited pit-fall traps were used to collect N. marginatus. 

The traps consisted of an 18.9-liter (5 gallon), plastic bucket dug into the ground with only 

4-5 cm of the bucket above ground level (NGPC, USFWS 2008). A dead rat (>200 g) that 

had been allowed to decay for 3-5 days was then placed inside the bucket to attract the 

beetles. An appropriate amount of moist soil, about 5-8 cm, depending on how many beetles 

were usually caught in the trap, was placed inside the bucket to provide the beetles with 

substrate to limit aggressive interactions and prevent desiccation (Bedick et al. 1999). 

Two wooden sticks were placed across the top of the buckets, and wooden plywood 

boards were placed on top of the sticks. These created a gap between the buckets and a 

wooden board, allowing beetles to enter the traps, but not allowing them to climb or fly out 

of the traps. The boards also prevented rainfall, debris, and small animals from entering the 



 

traps (NGPC, USFWS 2008). Traps were checked every day, for a consecutive 10 days, to 

complete one trial. 

Both north (sandhills) and south (loess canyons) populations of ABB were represented 

in this study (Figure 10). Traps were located in Garfield, Sherman, Holt, Dawson, and 

Lincoln counties in Nebraska, USA (Figure 11). Lincoln and Dawson county trap locations 

were designated “south sites”, and Sherman, Holt, and Garfield county traps were 

designated “north sites.” Specific trap locations were chosen through previous collection 

success or finding potentially suitable beetle habitat, such as tall grasses and/or sandy loam 

(Jurzenski et al. 2011). The south sites were placed in the loess canyons area, both north and 

south of the Platte River. 

A global positioning system was used to record coordinates and photographs of each 

trap were taken at each trap location. Seven trials, lasting 10 days each, were completed in 

the months of May, June, July, and August 2012. Six trials, also lasting ten days, were 

completed in the months of June, July, and August 2013. For one trial, Brady 2013, an 

additional 10 trap nights were completed, giving this trial a 20-day time period. 

The seven sites in 2012 were located near the towns of Burwell, Chambers, 

Gothenburg, Farnam, Brady, and Lexington (2 trials were conducted in Chambers). The six 

sites in 2013 were located near Brady, Gothenburg, Burwell, Maxwell, and Loup City (2 

trials were conducted in Burwell). Three different locations were chosen at each site, and 

each location was approximately 8.05 km (5 miles) apart (Figure 12). One location was 

designated the control, another was designated the source, and the last was designated the 

destination. At each location there were 4 traps set at 1.61 km (1 mile) apart. Thus, there 

were 12 traps total at each location (Figure 12). 

The control location was used to determine beetle recapture rates; no beetles were 

moved from these locations, but were marked and immediately released at the trap site. The 

source location was where the beetles were taken from, and the destination location was 



 

where the source location beetles were taken to and released. For the first five trap nights, 

the captured beetles were cauterized or clipped on their left or right elytra depending on their 

location, in order to tell locations apart. The source and destination location beetles were 

oppositely marked, and the controls were marked on the left or right at random. The control 

beetles were cauterized and released at the site of capture, while the source and destination 

beetles were collected and kept in the laboratory with moist soil until the fifth trap night. 

Beetles caught from the source and destinations sites were housed in the laboratory in 

buckets separated by location (source and destination). The beetles were fed hamburger 

meat ad libitum before being released to the destination location. After the fifth trap night, 

the beetles were divided into 4 equal groups, and released at each of the 4 destination trap 

locations. After their stay in the laboratory, source location beetles were relocated and 

destination beetles were released where they were caught. Both source and destination 

beetles were released at the destination locations. Beetles were released approximately 15 

meters away from the baited pitfall traps at these destination locations. During the next five 

trap nights, captured beetles were marked with different colors of car scratch repair paints 

(Rust-Oleum Scratch and Chip Repair Marker), based on captive location. 

The control site had both clipped and painted beetle recaptures, because beetles were 

not relocated to other locations. The source site had only painted beetle recaptures because 

all beetles collected at the source site within the first five trap nights were relocated to the 

destination site. Therefore, captures at the source site represent individuals that were not 

captured in the first five days of sampling. These individuals were painted and could be 

recaptured. The destination site included clipped beetles from the source site (the moved 

beetles) and the destination site (from there or “resident” beetles). For days 6-10, all 

captured beetles received paint and could be recaptured additional times. 

Data were separated by north and south locations to compare whether trap and 

relocation as a conservation technique is similarly effective in both small and large 



 

populations of burying beetles. The loess canyons area (trial done in Dawson and Lincoln 

counties) is thought to have a smaller population of ABBs than the sandhills ABB 

population (trials done in Garfield, Sherman, and Holt counties). Years and locations 

(control, source, destination – residents, and destination – moved) were also compared to 

determine differences between 2012 and 2013. The statistical package InStat was used 

statistical testing with significance judged at p ≤ 0.05. Statistics for trap nights 1-5 and 6- 10 

were separately considered because trap nights 1-5 are before relocation and 6-10 is after 

relocation. 

 

2.3 RESULTS 
 
Total Beetle Numbers and Recapture Rates (2012 and 2013) 
 

Recapture rates were not statistically different between trap sites for beetles caught trap 

nights 1-5 or 6-10 (Figure 13, 14). There were high standard errors because of the variability 

within the data. While there was no statistical difference, there was a lower recapture rate of 

destination-moved beetles compared to destination-residents and control trap sites for trap 

nights 1-5 (cauterized) (Figure 14). Trap nights 6-10 (painted) showed no statistical difference 

because recapture rates all remained around 4% with the exception of the north control site, 

which was higher (Figure 13). There were high standard errors and variability within the data, 

as there was with recapture rates from trap nights 1-5. 

In 2012, there were 21,217 N. marginatus captured, marked, and released (Table 5). In 

2013, substantially fewer (7,768) beetles were marked and released (Table 6). The number of 

beetles recaptured in 2012 was 1,136, and there were 343 beetles recaptured in 2013. The 

recapture rates were 5.35% in 2012, 4.42% in 2013, and 5.10% for both years combined. 

In 2012 and 2013, there were 8,013 N. carolinus captured, marked, and released (Table 7). 

There were 5,124 beetles marked (cauterized) trap nights 1-5 at all locations and 2,889 beetles 

marked (painted) trap nights 6-10 at all locations. The overall recapture rate for cauterized and 



 

painted beetles was 11.13%, which was substantially higher than the overall recapture rates for 

N. marginatus (5.10%). The range of recapture rates for beetles was 2.21-25.00%. In the south, 

recapture rates ranged from 5.41-20.12% with an average of 11.52%, and in the north 2.21-

25.00% with an average of 10.74%. There was only one location included from 2012 with 

recapture rates ranging from 9.09-15.05% with an average of 12.34%. In 2013, the recapture 

rates ranged from 2.21-25.00% with an average of 10.72%. 

The recapture rates of N. marginatus from both years and all locations ranged from 0.00-

37.50% with high variation but similar average recapture rates (Table 5, 6). In the south, 

recapture rates ranged from 0.00-10.73 with an average of 4.50%, and in the north recapture 

rates ranged from 0.00-37.50% with an average 7.06%. In 2012 recapture rates ranged from 

0.00-28.57% with an average of 5.64%, and in 2013 recapture rates ranged from 0.00-37.50% 

with an average of 5.73%. 

The numbers of N. marginatus caught and marked from both years and all locations 

ranged from 14-1911 with high variation across sites and locations (Table 5, 6). In the south, 

beetles captured and marked ranged from 49-1911 with an average of about 478 beetles, and in 

the north beetles captured and marked ranged from 14-782 with an average of about 247 

beetles. In 2012, beetles captured and marked ranged from 14-1911 with an average of about 

505 beetles, and in 2013, beetles captured and marked ranged from 32-510 with an average of 

about 216 beetles. 

The numbers of N. carolinus caught and marked from both years and all locations ranged 

from 28-1249 with high variation across sites and locations (Table 7). In the south, beetles 

captured and marked ranged from 28-1249 with an average of about 357 beetles, and in the 

north beetles captured and marked ranged from 31-900 with an average of about 311 beetles. 

In 2012, beetles captured and marked ranged from 28-1249 beetles with an average of about 

450 beetles. In 2013, beetles captured and marked ranged from 31-900 beetles with an average 

of about 295 beetles. 



 

There were differences in the number of N. marginatus caught between north and south 

locations, and in 2012 north recapture rates were significantly higher than in the south (Table 

9). There was a difference in beetle recapture rates in 2012, but there was no difference 

between recapture rates in 2013. More beetles were caught and marked in the north in 2013, 

and more beetles were caught and marked in the south in 2012. Recapture rates of a location 

were independent of how many or few beetles were captured and marked. 

Recapture Rate Statistics: 2012 
The control recapture rates were compared for N. marginatus caught trap nights 1-5 and 6-

10 using a Mann-Whitney U-test (Table 8). The p-value is 0.1649 with a Mann-Whitney U-test 

statistic of 13.000. In 2012, north recapture rates were significantly higher than the south 

recapture rates (p=0.04). 

The data were not normally distributed, so Kruskal-Wallis ANOVA was used to compare 

the recapture rates of the control, source, and destination groups for beetles marked on trap 

nights 6-10. A Kruskal-Wallis ANOVA was also used to compare the control, destination-

resident, and destination-moved for beetles marked on trap nights 1-5. There were no 

significant differences in recapture rates between treatments for beetles caught trap nights 1-5 

(p=0.17) or 6-10 (p=0.36). 

 

Recapture Rate Statistics: 2013 

The control recapture rates were compared for trap nights 1-5 and 6-10 using an 

unpaired t-test (Table 8). The p-value is 0.04 with a t-statistic of 2.348 and was significantly 

different. There was a higher recapture rate for trap nights 1-5 (8.76%) than 6-10 (4.38%). 

North and south recapture rates were compared using a Mann-Whitney U- test and were not 

found to differ significantly (p=0.89) (Table 9). 

A Kruskal-Wallis test was used to compare the recapture rates between the different 

treatments for beetles marked on trap nights 1-5 and 6-10, as the data did not pass the 



 

normality test. There were no significant differences in recapture rates among treatments for 

beetles caught trap nights 1-5 (p=0.12) or 6-10 (p=0.24). 

Beetle Number Statistics: 2012 
The number of beetles captured and marked at the controls for trap nights 1-5 and 6-10 

were compared using a Mann-Whitney U-test, as the data did not pass the normality test (Table 

8). The p-value is 0.4428 with a Mann-Whitney U-test statistic of 18.000.  North and south 

beetles caught and marked were compared using a Mann-Whitney U-test as well. The p-value 

is 0.0003 with a Mann-Whitney U-test statistic of 73.000 (Table 9). This comparison was 

considered statistically significant (p=0.0003<0.05). More beetles were captured and marked 

in the south than in the north locations. 

A Kruskal-Wallis test was used to compare the number of beetles captured and marked 

between the different treatments for beetles marked on trap nights 1-5 and 6-10, as the data did 

not pass the normality test. There were no significant differences between beetles captured and 

marked on trap nights 1-5 or 6-10. The p-value for comparing different treatments of beetles 

marked on trap nights 1-5 is 0.9743 with a Kruskal-Wallis statistic of 0.052. The p-value for 

comparing different treatments of beetles captured and marked on trap nights 6-10 is 0.4294 

with a Kruskal-Wallis statistic of 0.3859. 

 
Beetle Number Statistics: 2013 
 

The number of beetles captured and marked at the controls for trap nights 1-5 and 6-10 

were compared using an unpaired t-test, as the data did pass the normality test. The p-value is 

0.6318 with the t-statistic of 0.4943 (Table 8). North and south beetles caught and marked 

were compared using a Mann-Whitney U-test, as the data did not pass the normality test 

(Table 6). The p-value is 0.0354 with a Mann-Whitney U-test statistic of 95.000. This 

comparison was considered statistically significant. More beetles were caught and marked in 

the north than in the south. 

 



 

A Kruskal-Wallis test was used to compare the number of beetles captured and marked 

between the different treatments for beetles marked on trap nights 1-5 and 6-10, as the data 

did not pass the normality test. There were no significant differences between beetles 

captured and marked on trap nights 1-5 or 6-10. The p-value for comparing different 

treatments of beetles captured and marked for trap nights 1-5 is 0.3971 with a Kruskal-Wallis 

statistic of 1.847. The p-value for comparing different treatments of beetles captured and 

marked on trap nights 6-10 is 0.4293 with a Kruskal-Wallis statistic of 0.4327. 

 
Trial Extension: Recapture Rates After 10-Day Trial 
 

In 2013, one trial near Brady, Nebraska was extended for an additional 10 days to see if 

recapture rates would differ from the previous 10 days of trapping (Table 10). A total of 

2,225 marked N. marginatus were released in the area during the first 10 trap nights. There 

were 80 beetles recaptured during the trial, eliciting a 3.60% recapture rate. During the 

additional sampling of trap nights 11-20, there were 3,013 N. marginatus captured. Fourteen 

beetles were recaptured during trap nights 11-20, eliciting a 0.01% recapture rate.  This 

additional ten days of sampling did show a change in recapture rates with a decrease from 

3.60% to 0.01%. There were 788 more beetles caught total from trap nights 11-20 (3,013 

beetles) compared to trap nights 1-10 (2,225 beetles). 

Control, Source, Destination Traps 
 

Control, source, and destination trap beetle (N. marginatus, N. carolinus) numbers were 

compared between trap nights 1-5 and 6-10 (Table 11, 12). The largest difference seen 

between early (1-5) and late (6-10) recaptures at the source was 29 beetles at the Maxwell 

2013 location. The number of beetles captured at the source before and after relocation was 

compared to see if beetle numbers declined, since beetles were taken from the source 

locations. 

 
 



 

At source trap sites there were 8 sites out of 13 where N. marginatus numbers decreased, 

and 5 out of 13 sites where beetle numbers increased (Table 11). The largest decrease at a 

source location was 720 beetles at the Lexington site in 2012.  The smallest decrease was 41 

beetles at the Burwell 1 site in 2013. The largest increase at a source location was 134 beetles 

at the Gothenburg location in 2013, and the smallest increase was 10 beetles. Also, a decrease 

in beetle numbers at the source location seemed more prevalent at north sites (5 out of 6) than 

south sites (3 out of 7). N. carolinus numbers decreased at 3 out of the 4 source trap locations 

(Table 12). The largest decrease was 274 beetles at the Burwell 1 site in 2013, and the smallest 

decrease was 27 beetles at the Brady site in 2012. The only increase in beetle numbers was 34 

beetles at the Maxwell site in 2013. 

At the destination trap sites there were 7 out of 13 sites where N. marginatus numbers 

decreased, and 6 out of 13 sites where beetle numbers increased (Table 11). The largest 

decrease at a destination location was 691 beetles at the Brady site in 2012. The smallest 

decrease was 49 beetles at the Maxwell location in 2013. The largest increase at a destination 

location was 236 beetles at the Burwell site in 2012, and the smallest increase was 8 beetles at 

the Gothenburg site in 2012. N. carolinus numbers decreased at 3 out of 4 destination trap 

locations (Table 12). The largest decrease was 538 beetles at the Burwell 2 site in 2013, and 

the smallest decrease was 73 beetles at the Maxwell site in 2013. The only increase in beetle 

numbers was 10 beetles at the Burwell 1 site in 2013. 

At the control trap sites there were 8 out of 13 sites where N. marginatus numbers 

decreased, and 5 out of 13 sites where beetle numbers increased (Table 11). The largest 

decrease at a control location was 593 beetles at the Chambers 2 site in 2012, and the smallest 

decrease was 6 beetles at the Gothenburg site in 2013. The largest increase at a control location 

was 230 beetles at the Gothenburg site in 2012, and the smallest increase at a control location 

34 beetles at the Chambers 1 site in 2012. 

 
 



 

N. carolinus numbers decreased at all locations at the control sites (Table 12). The largest 

decrease was 598 beetles at the Brady 2012 site, and the smallest decrease was 41 beetles at 

the Burwell 1 site in 2013. 

 
Effect of Trap and Relocate in Same Trapping Locations 
 

There were 3 sites that had the same placement of traps and treatments in years 2012 and 

2013. These sites were Burwell, Brady, and Gothenburg. The most notable result of being 

able to trap in the same locations both years was the pattern of decreasing beetle numbers at 

all the control locations. Also, while there was a sometimes severe decrease in beetle 

numbers, as much as a difference of 1329 beetles, the recapture rates did not seem to be 

affected by high or low beetle numbers. In contrast to the other sites,  Burwell did show a 

decrease at the control, source, and destination locations, as well as a decrease in the 

recapture rates at these locations. 

 
N. marginatus and N. carolinus 
 

Both beetle species, N. marginatus and N. carolinus, showed no differences between 

trap sites for both trap nights 1-5 (cauterized) and 6-10 (painted). However, N. carolinus 

showed higher recapture rates for trap nights 1-5 than N. marginatus (Table 13). At the 

control site N. carolinus percent recaptured (13.17%) was higher than N. marginatus 

(6.64%). There were slightly more destination-residents of N. carolinus recaptured (6.74%) 

than N. marginatus (4.47%). There were a lot more destination- moved of N. carolinus 

recaptured (12.38%) compared to N. marginatus (3.80%). 

Recapture rates were the highest for N. carolinus destination-moved beetles, whereas 

recapture rates were the highest for N. marginatus at the control sites. Overall, recapture 

rates for N. carolinus (11.13%) were higher on average than N. marginatus (5.10%). 

 
 
 
 



 

2.4 DISCUSSION 
 

The results of this study show that there is no difference between beetle recaptures at 

different locations, including the control, where beetles were removed (source), and where 

beetles were added (destination). This supports the hypothesis that moving beetles does not 

negatively affect the beetle population from where beetles were taken or added. There was a 

reduction in beetle numbers from 2012 to 2013 but this is most likely due to the previous 

year’s drought conditions (Bedick et al. 2007), considering the similar pattern of fewer 

beetles caught at the control sites in 2013 compared to 2012. 

We did not observe consistent declines in captures at the site from which beetles were 

taken. This suggests that N. marginatus and N. carolinus are filling in areas where numbers 

are reduced by dispersion. Recapture rates were similar across sites, indicating that burying 

beetles distribute randomly. In the case of ABB, trap and relocate is conducted until no ABB 

are caught for three consecutive days, which is generally achieved in Nebraska.  It is likely 

that areas of high occupancy will not eliminate ABB from the area but will substantially 

reduce the number that may be harmed through construction activities. 

There seems to be no detrimental effect in moving beetles from one habitat to another 

making trap and relocate a possibly effective conservation measure. Further, in Creighton and 

Schnell (1998), it was found that 71% of the ABBs captured and relocated were found in a 

different habitat than the one they were first caught in. This re-enforces that these beetles are 

habitat generalists and can survive in different habitats (Creighton and Schnell 1998). There 

was a general trend that there were less beetles at the source after removal and relocation, but 

the exceptions where beetle numbers increased may come from the mobility of these beetles 

to find carrion sources. This also may be the reason that at some locations there were no 

recaptures (Gothenburg – 2012, Chambers Trial 2 – 2012). It is possible that these beetles 

leave the habitat they were released into and seek habitats that are more favorable (moisture, 

carrion, etc.). 



 

Control trap sites showed a higher recapture rate than destination-resident and 

destination-relocated trap sites for both species of N. marginatus and N. carolinus. 

Resident and relocated beetles were collected, brought back to the laboratory, and fed 

ground beef while they were in our care, while control beetles were released immediately 

on site. This difference in treatment between the control and destination beetles could 

have accounted for the differences in percent recaptures among the groups. 

No significant differences were found between the destination-residents and destination-

moved groups of beetles caught and marked on trap nights 1-5 despite a difference in the 

numbers of beetles caught at each site. No significant differences were found between the 

source and destination groups of beetles marked on trap nights 6-10. Recapture rates were 

also similar between treatments for both beetles marked on trap nights 1-5 and 6-10 

(<≈10%). Recapture rates also stayed similar after the 11-20 day extension, although they did 

decrease after the 1-10 day trial. 

Based on these data, marking beetles with paint, on trap nights 6-10, and a cauterizer on 

trap nights 1-5 does not interfere with their natural movement or life history (Butler et al. 

2012). Painted beetles were considered “residents” because they were caught and returned to 

traps in the same location. There were no detrimental effects observed between recapture 

rates attributed to the respective marking technique (paint versus cauterized). If there was a 

negative impact, we would have seen a significant difference between the treatments (source 

and destination) and the control trap recapture rates, and this was nonexistent regardless of 

mark, location, site, and year. 

This could have further implications for conservation management of the ABB, such as 

being able to use this method in areas of large or small populations or even varying habitat 

conditions (ie. drought). Although this study found that beetle populations in the north and 

south were dynamic, with more beetles found in the south in 2012 and more beetles found in 

the north in 2013, we were able to see the effects of trap and relocate on these changing 



 

populations. The use of this congener species in varying habitats, years, and environmental 

conditions for testing the efficacy of trap and relocate is important to ABB conservation 

management implications. 

The ABB has been listed as federally endangered since 1989 due to a significant 

reduction in its numbers and range of occurrence (USFWS 1991). Within the last century, the 

ABB has disappeared from over 90% of its original range (Lomolino et al. 1995). It is a 

habitat generalist and is a highly vagile insect, traveling over large areas in search of 

appropriately sized carrion (Lomolino and Creighton 1996, Bell et al. 2013). ABB show a 

general preference for clay-based soil, mixed grass prairie, and wet meadow habitat in 

Nebraska (Panella 2012). While these beetles can be found in many areas of large, 

unfragmented areas, they do not seem to inhabit agricultural areas and may avoid areas with 

large numbers of eastern red cedars (Jurzenski 2012, Walker and Hoback 2007). 

Conservation efforts are advocated at both state and federal levels, with the goal to 

prevent extinction, and improve population numbers. Wild populations and introduced 

populations of ABBs are extensively monitored using sampling by baited pitfall traps 

(Amaral et al. 1997, Bedick et al. 2004). Management techniques have also been studied to 

improve ABB numbers, including the removal of competing beetle species, inverted buckets 

to protect breeding pairs from scavengers, and bait-away stations to attract beetles away from 

areas of potential threat (USFWS 1991, Hoback and Jurzenski 2011). However, bait-away 

station efforts were tested and found to be unsuccessful, and they also attracted undesired 

predators to the beetles, such as opossums and leopard frogs (Hoback and Jurzenski 2011, 

Jurzenski and Hoback 2011). Mark-relocate is another possible avoidance technique, but it 

has not been thoroughly studied for use with burying beetles. 

The ABB has considerably large and established populations in both the loess canyons 

and the sandhills of Nebraska, and N. marginatus also has high population numbers in these 

areas. The similar habitat between these beetle species offers insight into how ABB would 



 

similarly react to relocation and a new habitat. The surrogate species, N. marginatus and N. 

carolinus, were used to test the effectiveness of this conservation measure. The mortality rate 

of relocating N. marginatus was conservatively 0.67%, with resident beetle recaptures 

(4.47%) being higher than relocated beetle recaptures (3.80%). N. carolinus had more 

relocated beetles recaptured (12.38%) than the resident beetles recaptured (6.47%) at 

destination sites. These differences in recapture rates between species shows that different 

species of burying beetle may react differently to relocation and trapping in general. 

There was a difference between beetle recapture rates at trap sites between N. 

marginatus and N. carolinus when a Mann-Whitney U-test was used to test for significant 

differences (p=0.003). More cauterized N. carolinus were caught at every trap site (control, 

resident, relocated). However, there still was a similar pattern across trap sites, years, and 

beetle species. Beetle numbers captured at trap sites after relocation were most notably 

reduced compared to beetle numbers before relocation. We predicted that there would be 

more beetles at the destination sites because of the added, relocated beetles, less at the source 

sites because of the beetles removed, and a mixture of increases and decreases at the control 

sites. 

The prediction was not correct, and there were decreases in beetle numbers caught after 

the relocation (trap nights 6-10) at the great majority of locations. Both species, N. 

marginatus and N. carolinus, both years, 2012 and 2013, and all trap sites, control, source, 

and destination, showed this similarity. Trap avoidance, weather, or any of the previous 

factors discussed, rather than an indication that trap and relocation is detrimental to beetle 

populations, could cause this decrease in numbers after relocation. If there were a negative 

effect from relocation causing these lower numbers after relocation, there would be 

differences between control, source, and destination trap sites. However, beetle numbers 

decrease at a similar numbers of trap sites, regardless of the treatment. 

 



 

While there were these low recapture rates, and many possible reasons for the variation, 

there is no evidence suggesting any detrimental effects of relocation. However, the recapture 

rates were observably low. These low percent recapture rates for the traps may be caused by 

many reasons, including the high vagility of this insect and the ephemeral resource they need. 

While these recapture rates are low, they are similar to other mark-recapture studies 

involving marking and releasing ABB (Bedick et al. 1999, Peyton 2003, Bedick et al. 2004). 

For example, a mark-recapture study tested ABB from the loess canyon region, and found 

that recapture rates ranged from only 6.2-7.8% (Peyton 2003). 

Two assumptions are used when determining a population size and these are that 

population size is to remain static and organisms are available to be recaptured during the 

sampling period (Peyton 2003). These criteria may not be met with burying beetles, because 

they are highly mobile and are dependent upon carrion availability for survival and 

reproductive purposes. Beetles may not remain in the same habitat or sampling area because 

of this. Also, when beetles find a suitable carrion source for reproduction, they stay with the 

offspring and exhibit biparental care, so it is likely that the timing of sampling periods 

affected the recapture rates of our study (Peyton 2003). 

Sampling was done through the months of May-September, which includes emergence 

and reproductive times for burying beetles. In emergence months more beetles were likely 

caught, while in reproductive months fewer beetles were likely caught. This not only had the 

ability to affect collection numbers but also recapture numbers. Another way in which beetle 

capture and recapture numbers could have varied is because of weather conditions. Beetle 

movement is dependent upon hotter temperatures (>15°C) and fair weather conditions, 

because finding carrion involves the beetles’ use of chemoreceptors located on their antennae 

(Carde and Willis 2008, Scott 1998). Storms, rain, and colder and/or windy conditions may 

make it difficult for beetles to navigate to the carrion source. Different weather conditions 

may have affected how many beetles were captured, marked, recaptured, and could have 



 

influenced these numbers before and after the beetle relocations. 

Another factor possibly influencing beetle recapture rates was the effect of trapping, 

holding, and releasing the beetles. During a burying beetle’s life history they are only in a 

group setting while fighting and securing a carrion source. If they lose, they leave the area 

(Müller et al. 1990, Otronen 1988). However, in this study beetles were forced to stay at the 

carrion site because they were enclosed in the baited pitfall trap, were housed together in 

large quantities, and were released together in a large group. Because beetles are not 

naturally inclined to be in these large groups, beetles once released could have traveled even 

further from the area than they would have naturally, if not for the unnatural group living 

conditions. This could explain the lower recapture rates at all trap sites and both species after 

relocation and trapping for 5 days. 

Moving beetles seems to have no to little effect on beetle population, and because these 

beetles are habitat generalists and are known to move throughout habitats in search of 

carrion, trap and relocate may allow these beetles to thrive in a different habitat with little 

harm to individual beetles. Adding hundreds to thousands of beetles to an area could 

arguably create more competition for the beetles already at the area and the beetles moved 

into the area. However, burying beetles are univoltine and a large increase in beetle 

population mirrors the competition during a successful reproductive year when natural 

selection ordinarily occurs. 

Trap and relocation as a conservation method for the ABB may be successful in cases 

where there is imminent threat to their current habitat. When deciding when to use the trap 

and relocate method, a risk assessment should be considered for removing/relocating beetles 

and leaving the beetles at the site of endangerment. If risks outweigh the benefits of moving 

the beetles, then the option to leave the beetles where they are may be more beneficial, 

depending on why the beetles’ habitat is being threatened. 
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2.6 TABLES 
 
 
 
 

Table 5. For 2012, beetles marked trap nights 1-5 (cauterized) (A) and 6-10 (painted) 
(B) and their correlating recapture rates at each site, which show the percentage of 
beetles returning to the site they were released. Destination-R indicates resident beetles 
from the destination, and Destination-M indicates moved beetles from the source that 
were relocated to the destination. A Kruskal-Wallis ANOVA was used to determine if 
there were significant differences between the data. 
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Table 6. For 2013, beetles marked trap nights 1-5 (cauterized) (A) and 6-10 (painted) 
(B) and their correlating recapture rates at each site, which show the percentage of 
beetles returning to the site they were released. Destination-R indicates resident beetles 
from the destination, and Destination-M indicates moved beetles from the source that 
were relocated to the destination. A Kruskal-Wallis ANOVA was used to determine if 
there were significant differences between the data. 
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Table 7. N. carolinus marked trap nights 1-5 (cauterized) (A) and 6-10 (painted) (B) 
and their recapture rates by location for 2012 and 2013. Destination-R indicates 
resident beetles from the destination, and Destination-M indicates moved beetles from 
the source that were relocated to the destination. 
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Table 8. Beetle numbers caught and marked and the recapture rates of these beetles 
compared at the control traps in 2012 (A) and 2013 (B). Beetles marked and recaptured 
on trap nights 1-5 and 6-10 were compared using a Mann-Whitney U-test. 
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Table 9. Beetle numbers caught and marked and the recapture rates of these beetles 
compared at the north and south traps in 2012 (A) and 2013 (B). Beetles marked and 
recaptured were compared using a Mann-Whitney U-test. 
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Table 10. N. marginatus were sampled 10 days following the Brady 2013, 10-day trial 
and recaptures were noted. No beetles were further marked during days 11-20 of 
sampling. Beetle numbers for the first 10-day trial and consequent 10-day trial (trap 
nights 11-20), as well as recaptures for the last 10 days are shown. 



 

 
 
 

Table 11. N. marginatus caught early (trap nights 1-5) and beetles caught late (trap 
nights 6-10) at the control (A), source (B), and destination (C). The highlighted areas 
show where beetle numbers decreased from trap nights 1-5 (early) to 6-10 (late). 

 
 
 
 

 



 

 
 

 

Table 12. N. carolinus caught early (trap nights 1-5) and beetles caught late (trap 
nights 6-10) at the control (A), source (B), and destination (C). The highlighted areas 
show where beetle numbers decreased from trap nights 1-5 (early) to 6-10 (late). 
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Table 13. A comparison of recapture rates between trap sites and species, 
N. marginatus and N. carolinus, was statistically compared using a Mann- 
Whitney U-test. A total comparison by species of all trap sites was also 
compared. 

 
 

 



 

 
 
 

FIGURES 
 
 

 
 
 
 
 

Figure 10. Two populations of ABB are distributed in Nebraska. The north population 
is present in the larger, sandhill region of the state. The south population is present in 
the smaller, loess canyon region of the state. 



 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11. N. marginatus and N. carolinus trapping locations in the north, sandhills region are marked by a 
square, and trapping locations in the south, loess canyons region are marked by a circle. 



 
 

 
 
 
 

 
 
 

Figure 12. An example of the control, source, and destination locations showing the 
distance between each trap location and treatments. There are 4 traps at each location 
and 12 traps total at each site. 



 
 

 
 
 
 

 
 
 

Figure 13. A comparison of the recapture rates with standard error at the control, 
source, and destination sites (trap nights 6-10). North and south locations are 
shown for each trap site. 



 

 
 
 
 
 

 
 
 

Figure 14. A comparison of the recapture rates with standard error at the control, 
destination-residents, and destination-moved sites (trap nights 1-5). North and 
south locations are shown for each trap site. 
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Chapter 3.0  FUTURE WORK AND IMPLICATIONS 
 
 

The objectives of this project were to use surrogate species, Nicrophorus 

marginatus, Nicrophorus carolinus, and Nicrophorus orbicollis, to determine the 

American burying beetles’ overwintering biology and to investigate the efficacy of trap 

and relocation as a conservation measure. Overwintering behavior is an integral life 

history trait to study because it may provide more information on conservation methods 

vital to protecting the federally endangered ABB from both construction efforts and 

aiding in determining optimal reintroduction efforts. Trap and relocation may be an 

important conservation measure to protect burying beetles from construction disturbances 

that threaten major ABB habitat. 

Human encroachment is limiting and fragmenting known areas of ABB 

populations such as prairies, grasslands, and woodlands. If human disturbance must occur 

in known ABB habitat, it would be beneficial to know how to administer this process in a 

way that is least likely to negatively impact the beetles. Construction work in areas of 

current beetle habitat may have a detrimental effect, and knowing how close to the 

surface of the soil that beetles overwinter is important in the conservation of this species. 

Northern range burying beetles bury deeper than the frost line for overwinter survival, so 

construction and preconstruction activities such as tree clearing and grubbing and 

clearing, which may otherwise result in crushing the ABB in the summer, can be safely 

accomplished in the winter. The species is below the frost line during this time and the 

ground is frozen above the frost line. 



 
 

 
 
 

Determining overwintering biology of the ABB is not only important for avoiding 

harm to ABB during construction but also for their reintroduction efforts. The ABB that 

were reintroduced to establish sustainable populations were often reared in the lab before 

being released. These beetles were collected and reared in Arkansas and released in Ohio. 

Ohio reported a high success rate of ABB reproducing on carcasses, the occurrence of 

larval development, and the emergence of new, teneral beetles. However, they did not 

find these teneral beetles the following year. 

Burying beetles from the southern range, like Arkansas and Oklahoma, do not 

bury deep in the soil and need food provisions to survive the winter. Burying beetles from 

the northern range, like Nebraska and Ohio, bury deep beneath the frost line to avoid the 

freezing temperatures, slow their metabolic rate, and thus, do not need food provisions to 

survive the winter. Because burying beetles from the northern and southern ranges have 

such behaviorally and metabolically different strategies to overwinter, the difference 

between using beetles from the northern or southern range could be the difference 

between success and failure of a sustainable ABB population. Reintroduction sites in 

northern ranges should release beetles originally from the northern range, and 

reintroduction sites in southern ranges should release beetles originally from the southern 

range. 

Future work should include testing northern overwintering strategy of ABB from 

Nebraska to see how similar our findings were to the surrogate species’, N. orbicollis. It 

would also be beneficial to determine the low temperature tolerance of both N. orbicollis 

and ABB to act as a sort of control for our simulated, natural overwintering environment. 



 
 

 
 
 

Finding out more about the overwintering biology of these beetles would be helpful for 

conservation, and would also validate that our experiment created a suitable environment 

for overwintering beetles. 

We also wanted to better understand the effects of trap and relocation on burying 

beetles species, Nicrophorus marginatus and Nicrophorus carolinus. These surrogate 

species were used in the experiment to determine survival and recapture rates, and the 

results were implicated for the conservation management of the American burying beetle. 

There were no differences between recapture rates at trap sites for N. marginatus and N. 

carolinus. The mortality rate calculated for N. marginatus was 0.67% and for N. 

carolinus there was a higher percent recapture for relocated beetles than resident beetles. 

While surrogate species were used for this experiment and there were different 

mortality and recapture rates by species, there were no differences between recapture 

rates and low mortality rates within these species. The ABB should similarly have these 

results with trap and relocation, considering these species are comparable in genetics, life 

history, behavior, and habitat. Our data suggests that relocation may benefit beetles in 

circumstances where mortality from relocation is less than mortality from construction in 

beetle habitat. Beetle mortality should be the main consideration in determining whether 

to trap and relocate beetles. Other considerations include habitat, handling, month of 

release, and weather. 
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