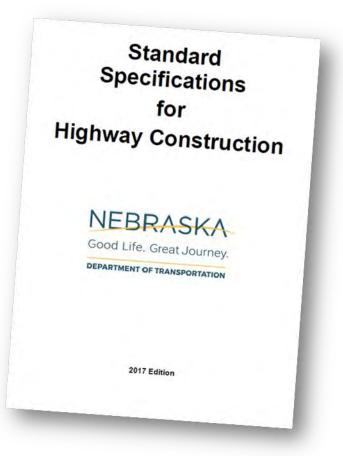


AT AUBURN UNIVERSITY

2024 Nebraska Asphalt Paving Workshop

Best Practices of Inspection and Construction for Asphalt Paving, Compaction, and Plant Operations


Learning Objectives

- Purpose of Tack Coats
- Types of Emulsions
- Distributor Basics
- Proper Application of Tack Coats

Cleaning the Surface

- Section 501.01- 4
 - Before placing the bituminous surfacing, the Contractor shall clean the surface to be treated with mechanical brooms or hand tools as necessary to remove all vegetation, loose surface materials, dirt, mud, old crack sealant, unstable bituminous or other deleterious materials. Any surfacing materials not securely bonded to the surface shall be removed. Material cleaned from the surface shall be swept to the sides or windrowed as required and removed from the project by the Contractor at no additional cost.

Section 501.01-4 - Cleaning the Surface

- Before placing the asphalt (or other treatment)
- Clean the surface with mechanical brooms or hand tools
- Remove all vegetation, loose surface materials, dirt, mud, old crack sealant, unstable, or other deleterious materials.
- Any surfacing materials not securely bonded to the surface shall be removed.
- Material cleaned from the surface shall be swept to the sides or windrowed as required and removed from the project by the Contractor at no additional cost.

Mechanical Brooms

Purpose of Tack Coats

- Bonds pavement layers together allows them to behave as a single layer
- Decreases distress between the existing pavement surface and the new asphalt overlay
 - Prevents slippage between pavement layers.
 - Vital for structural performance of pavement.
 - Apply along all transverse and longitudinal vertical surfaces.
- Improved pavement performance

From a nationwide survey, 17% of agencies indicated they do nothing to correct poor tack shots, and 56% did not vary the application rate due to many factors.

Effect of Poor Bonding on Service Life

- May & King (2004):
 - 10% bond loss = 50% less fatigue life
- Roffe & Chaignon (2002)
 - No bond = 60% loss of life
- Brown & Brunton (1984)
 - No Bond = 75% loss of life
 - 30% bond loss = 70% loss of life

Tack Coat Fundamentals

- Correct tack material
- Distributor calibrated and properly setup
- Correct application rate
- Application quality
- Break and Cured
- Limit Construction Traffic

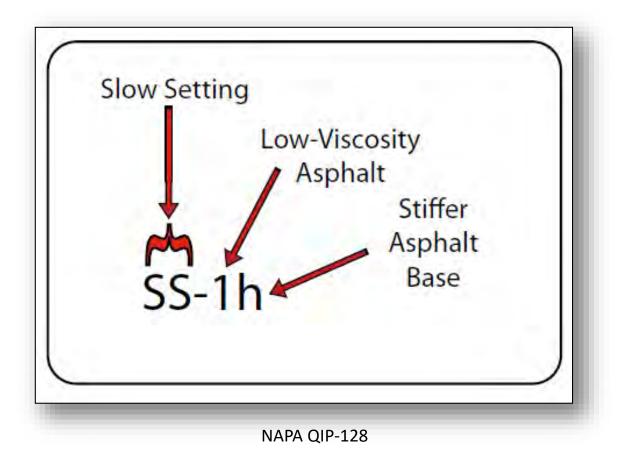
Tack Coat Materials

The type and grade of emulsified asphalt shall be specified in the contract and shall conform to the requirements in Sections 1031 or 1032.

Fast-Set type emulsified asphalt shall meet the requirements of Table 504.01.

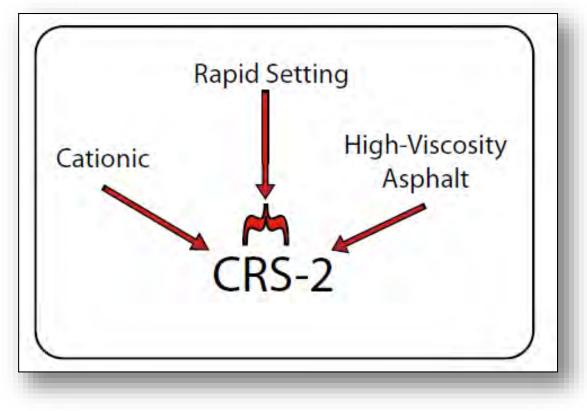
Standard Specifications for Highway Construction

> **NEBRASKA** Good Life. Great Journey. DEPARTMENT OF TRANSPORTATION


> > 2017 Edition

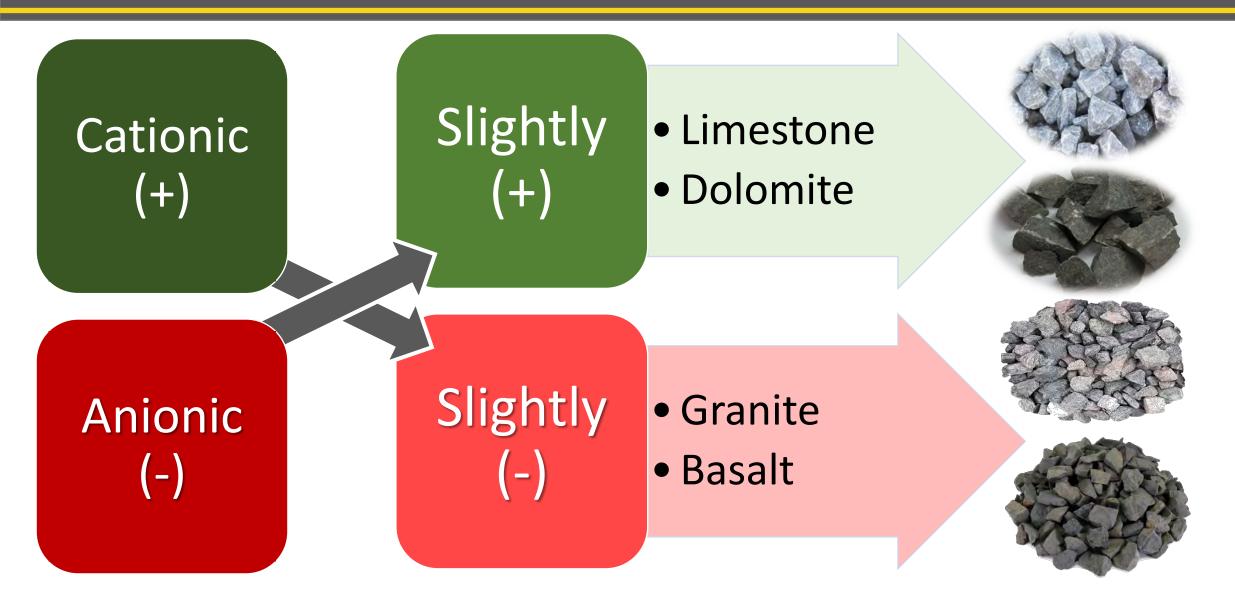
Types of Emulsions

- Four categories relating to set times:
 - QS Quick Set
 - RS Rapid Set
 - MS Medium Set
 - SS Slow Set
 - FS ???

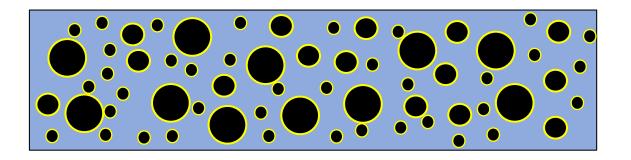

Emulsion type is not always a significant factor in curing time for tack coats.

Types of Emulsions

- Three Categories related to particle charge:
 - Anionic (-)
 - Cationic (+)
 - Nonionic (neutral)



NAPA QIP-128


Emulsions and Aggregates

Emulsions - Breaking and Curing Process

- Breaking and Curing
 - After emulsion is applied, it begins to "break"
 - Asphalt particles separate from the water
 - Color turns from brown to black
 - Breaking: Separation and subsequent evaporation of water from the residual asphalt film
 - Curing: The water <u>fully</u> evaporates and the mechanical properties of the residual asphalt are restored.

Is Tack Coat Cured?

 Asphaltic concrete shall not be placed over emulsified tack coat until the emulsion has broken and all free moisture has evaporated or drained off the surface.

Section 503.04 1.e.2

Tack picked up by trucks

Get out your phones...

How to join

Web

	-	-		
				-
-	_	_	_	

- 1 Go to PollEv.com
- 2 Enter TRAVISW910
- 3 Respond to activity

How can you visually tell that a tack coat has cured and is ready for construction traffic and paving?

It's been 20 minutes.	
	0%
It turns completely black and no water it present.	
	0%
The trucks have arrived with the mix.	
	0%
The tack is the color of chocolate milk.	
	0%
The foreman is ready to pave.	
	0%

Reduced-Tracking Emulsified Tack Coats

- Designed to minimize the tracking problems associated with traditional tack coat materials
- Typical characteristics:
 - Stiffer base binders
 - Chemical modifications
 - Less-tacky finish
 - Good bond strengths
 - Break and cure faster

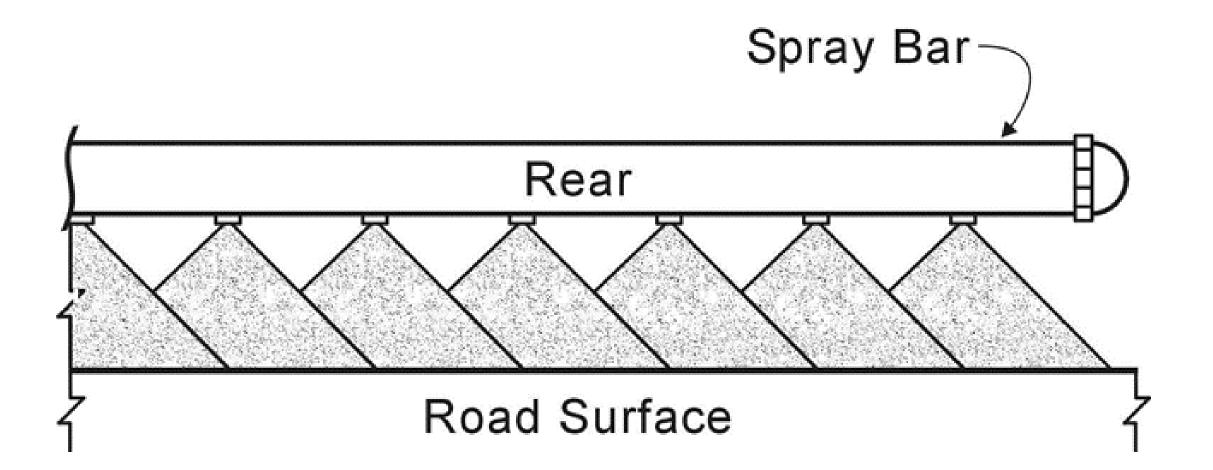
Emulsions with softer residues are more likely to track – even if properly cured

gency Guideling

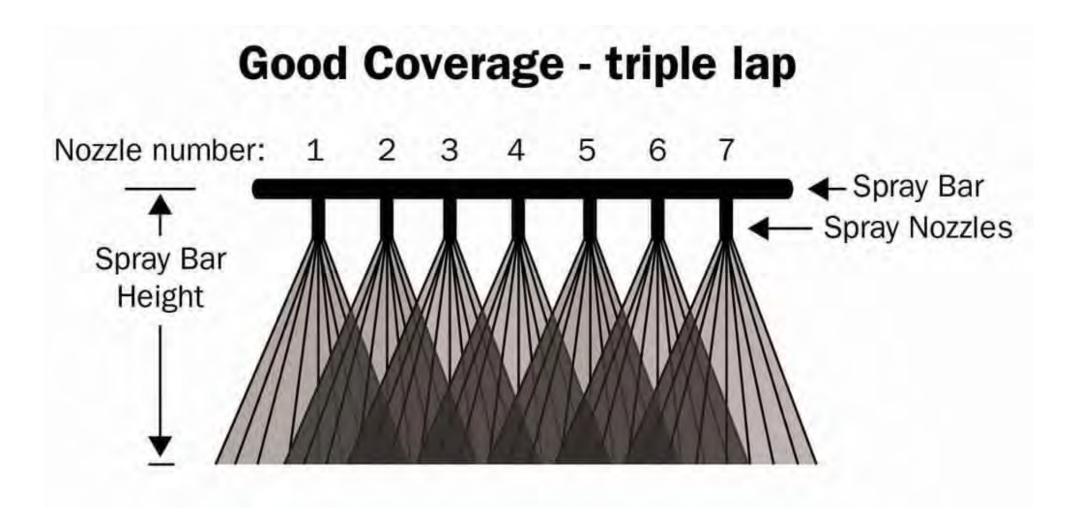
Distributor Calibration – ASTM D2995

Method to Check each Nozzle

Distributor Truck Setup



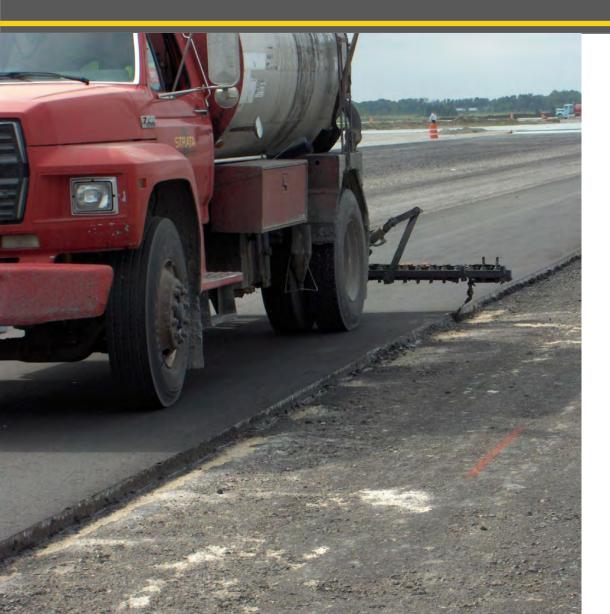
- Liquid temperature
 - Monitor and Match to material
- Calibrate distributor truck
 - Spray bar height
 - Spray bar pressure
 - Nozzle angle
 - Nozzle selection
 - Thermometers
 - Volumeter


Double Lap

Use Double or Triple Overlap

Note Angle of Nozzles

Application Rates


- The rate of application shall be adequate to bond the new bituminous layer to the existing surface.
- This shall be from
 - 0.10 to 0.20 Gal/SY (0.45 to 0.90 L/m2) when applied to existing or milled surfaces and from
 - 0.05 to 0.10 Gal/SY (0.23 to 0.45 L/m2) when applied to the freshly laid asphaltic concrete.

Proper Application of Tack Coat

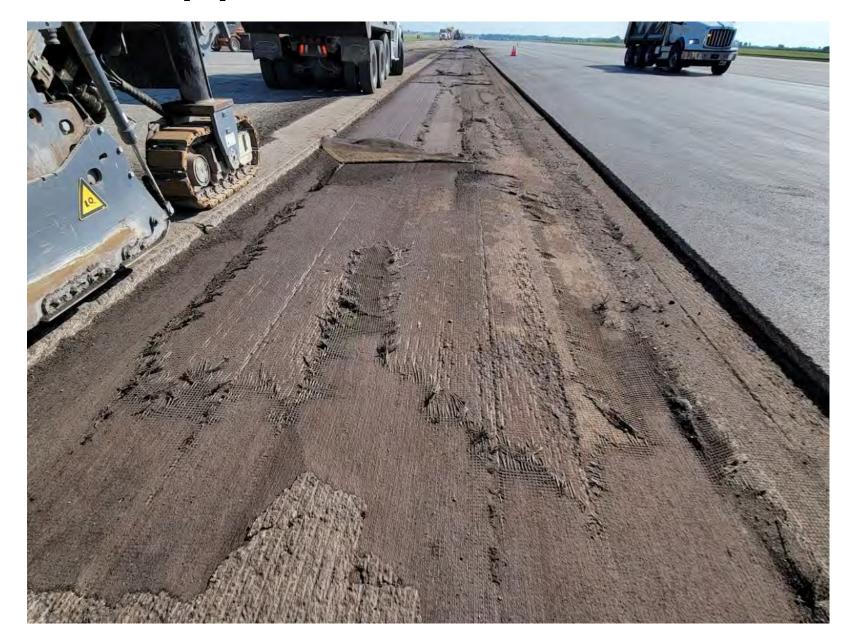
Applying Tack Coat on Longitudinal Joint

Is this acceptable?

Temperature Corrected Volume

1 40	R 13.	remperatu	ie volui			aspnan	muisio	H 5 •
°C	°F	М	°C	°F	М	°C	°F	М
10.0	50	1.0025	35.0	95	0.9912	60.0	140	0.9800
10.6	51	1.0022	35.6	96	0.9910	60.6	141	0.9797
11.1	52	1.0020	36.1	97	0.9907	61.1	142	0.9795
11.7	53	1.0017	36.7	98	0.9905	61.7	143	0.9792
12.2	54	1.0015	37.2	99	0.9902	62.2	144	0.9790
12.8	55	1.0012	37.8	100	0.9900	62.8	145	0.9787
13.3	56	1.0010	38.3	101	0.9897	63.3	146	0.9785
13.9	57	1.0007	38.9	102	0.9895	63.9	147	0.9782
14.4	58	1.0005	39.4	103	0.9892	64.4	148	0.9780
15.0	59	1.0002	40.0	104	0.9890	65.0	149	0.9777
15.6	60	1.0000	40.6	105	0.9887	65.6	150	0.9775
16.1	61	0.9997	41.1	106	0.9885	66.1	151	0.9772
16.7	62	0.9995	41.7	107	0.9882	66.7	152	0.9770
17.2	63	0.9992	42.2	108	0.9880	67.2	153	0.9767
17.8	64	0.9990	42.8	109	0.9877	67.8	154	0.9765
18.3	65	0.9987	43.3	110	0.9875	68.3	155	0.9762
18.9	66	0.9985	43.9	111	0.9872	68.9	156	0.9760
19.4	67	0.9982	44.4	112	0.9870	69.4	157	0.9757
20.0	68	0.9980	45.0	113	0.9867	70.0	158	0.9755
20.6	69	0.9977	45.6	114	0.9865	70.6	159	0.9752
21.1	70	0.9975	46.1	115	0.9862	71.1	160	0.9750

 Table 13. Temperature - volume corrections for asphalt emulsions ⁽⁶⁾.


Tack Surface Preparation

- Clean the surface of all materials that prevent the tack from bonding to the existing surface
- Tack all layers
- Cover all tacked surface areas the same day

What happened here...?

When poll is active, respond at pollev.com/travisw910
 Text TRAVISW910 to 37607 once to join

What is the primary function of tack coat?

Add one more person to the crew

Add binder to the mix

Glue the layers together

We really don't need it

Show the location path that the trucks take back to the plant

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Cleaning the Existing Surface

What could be better here...?

Apply Tack Coat

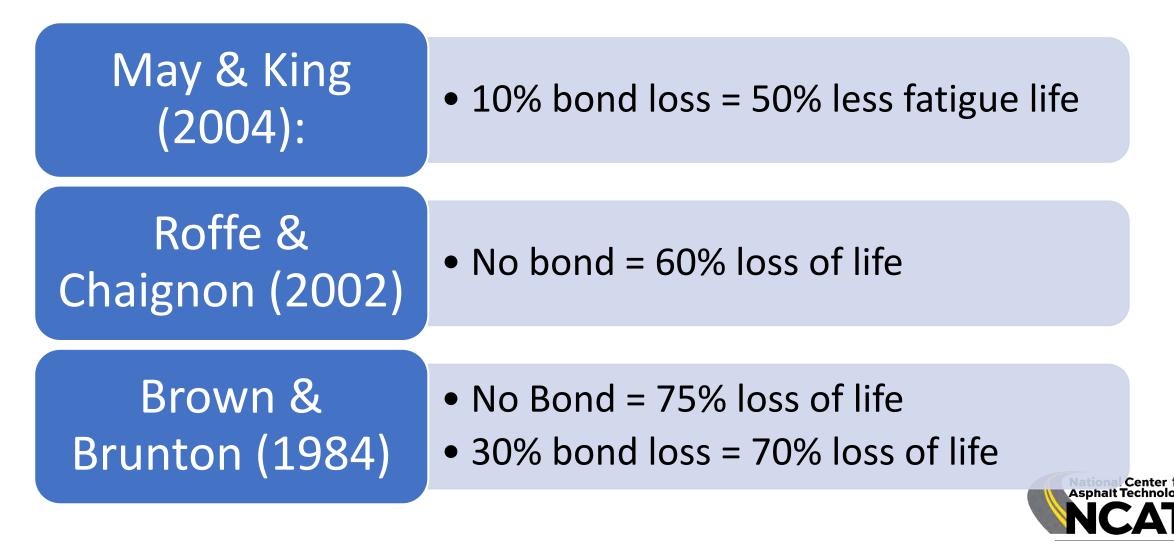
Does this look okay?

Typical Application

Tack Coat Examples

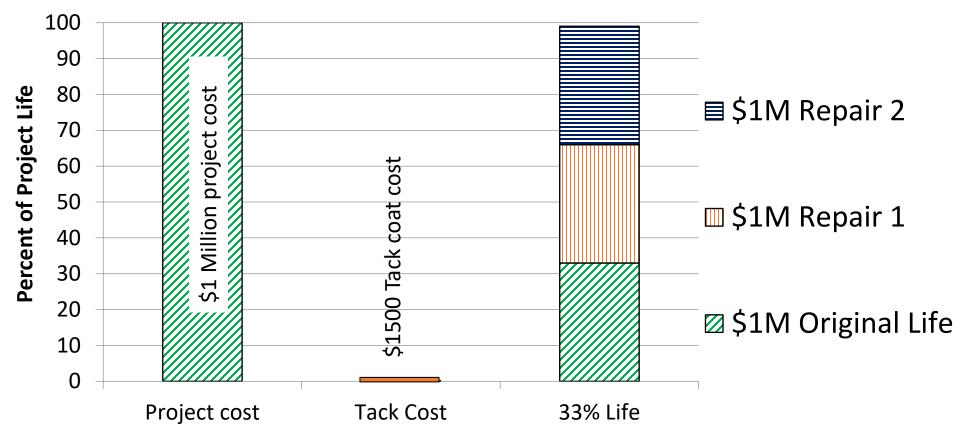
Proper Coverage?

Anything wrong here?


Why use a tack coat? When should a tack coat be used?

Purpose of Tack Coat

- To improve bond
- To improve pavement performance



Effect of Poor Bonding on Service Life

AT AUBURN UNIVERSITY

What is the Risk?

\$1500 now vs. \$2 million later!

Best Practices for Tack Coat Application

- Clean and dry surfaces to be tacked
- Tack all surfaces (horizontal and vertical)
- Match application rate to conditions
- Obtain uniform application
- Verify application rate

Recommended Tack Application Range

Surface Type	Residual Rate (gal/sy)	Appx. Bar Rate Undiluted [*] (gal/sy)	Appx. Bar Rate Diluted 1:1 [*] (gal/sy)
New Asphalt	0.02 – 0.04	0.03 – 0.06	0.06 - 0.13
Existing Asphalt	0.04 – 0.07	0.06 - 0.10	0.12 - 0.21
Milled Surface	0.04 – 0.08	0.06 – 0.12	0.12 – 0.24
Portland Cement Concrete	0.03 – 0.05	0.04 – 0.08	0.09 – 0.15

*Assume the emulsion is 33% water and 67% asphalt.

Effect of Dilution Ratio

Dilution Ratio (Emulsion:Water)	Divide Total Volume Applied By:	
1:1	ראסטווכע שע. ר	
	2	
1:2	3	
1:3	4	

Account for original emulsion's water content to determine residual asphalt applied.

Calculate Tack Spread Rate

- 1. Gallons applied = distributor quantity × distributor calibration factor
- 2. Undiluted gallons = gallons applied/dilution factor
- 3. Residual gallons = undiluted gallons \times % residual
- 4. Gallons @ 60°F = residual gallons × temperature multiplier factor (M)
- 5. Distance = Absolute value of beginning station minus ending station
- 6. Width = Measured width of application
- 7. Square Yards = (length × width in feet)/(9sf/sy)
- 8. Rate = gallons at 60°F/square yards

Learning Objectives

- Purpose of Tack Coats
- Types of Emulsions
- Distributor Basics
- Proper Application of Tack Coats

AT AUBURN UNIVERSITY

Questions

