

AT AUBURN UNIVERSITY

Good Life. Great Journey.

DEPARTMENT OF TRANSPORTATION

Workshop

Asphalt Paving

Learning Objectives

- Discuss how an asphalt paver operates
- Identify the five forces on a paver screed
- Explain how asphalt mixture is compacted in the field
- Identify the importance of a "balanced" paving operation

Planning is Essential

An essential for consistent and high quality hot mix asphalt pavement is to use a continuous operation.

Balancing Production

Mix Delivery Sequence

- Contractor's responsibility is to:
 - Provide proper sized and amount of equipment....
 - ...that will produce, deliver.....spread, and compact....
 - ...the plant mixed material in sufficient quantities....
 - ...for the continuous movement of spreader...

Why Use a Tack Coat? When Should a Tack Coat be Used?

From a nationwide survey, 17% of agencies indicated they do nothing to correct poor tack shots, and 56% did not vary application rate due to any factors.

Asphalt Paver

AT AUBURN UNIVERSITY

The Paver Utilizes a Free Floating Screed Principle

The Screed is Free to Float Up or Down In Relation to the Forces Applied.

Forces Acting on Screed

- Speed of paver (Tow Force)
- Head of Material
- Shear Force (Angle of Attack)
- Screed Weight
- Reaction of the Material

Setting Up the Paver

- Heat the screed
- Center the tow points
- Set the paving width
- Set the main screed crown
- Set Extensions (match or sloped?)
- Lower the screed to the starting blocks

Heat the Screed

Center the Tow Point

Set the Paving Width

Set the Main Screed Crown

Match Extensions

• Match or Sloped

Lower to Starting Blocks

A good rule of thumb is to raise the screed 20-25 percent more than the compacted thickness.

Setting Up the Paver

- Move the paver forward to pull out slack
- Null the screed
- Lower the end gates
- Set sonic feeders
- Charge the auger chamber
- Pull off

Null the Screed

Lower the End Gates

End Gate Should Ride on Existing Surface

Effect of Improper End Gate Adjustment

Set the Sonic Feed Sensors

Charge the Auger Chamber

Pull Off

Grade and Slope Control

Courtesy of Blaw-Knox Ingersoll Rand Paving Products

Contact-less Beam with Ultra-Sonic Sensors

Manual Adjustment

Sticking the Mat?

Direction of Paving —

Screed Reaction Time

Courtesy of Caterpillar Paving Products

- Screed reacts to change in angle of attack over five tow arm lengths
- 65% of change occurs in the first tow arm length
- 35% of change occurs in the last four tow arm lengths

Control Head of Material

Correct Depth of Mat Maintained

Constant Head of Material Volume

Screed Rises Due to Excess Material Forced Under Nose of Screed

Head of Material Volume Too High

Screed Settles Due to Inadequate Supporting Material

Head of Material Volume Too Low

Misaligned Screed Extension

Check Screed Crown with Stringline

Lead Crown: 3 mm (1/8 in) Greater Than Tail Crown

Courtesy of Caterpillar Paving Products

Improper Screed Crown

CAT SDX Screed Plate System

 Designed to create smoother surfaces, higher densities, faster screed plate changes and increased wear properties when compared to standard screed plates

Longitudinal Joints

Poor Joint Performance

Joint Without Luting

Infrared Photo of End Dump

Infrared Photo (End Dump Mix Behind Paver)

Materials Transfer Vehicle

6

Thermal Image of Continuous Paving

Washington Study: 2000

- Temperature differentials > 25°F 90% of inplace densities failed to meet minimum density criteria
- Temperature differentials < 25°F 80% of the in-place densities met or exceeded density specification criteria

I-R Sensors

PMTP Scanner

Sample PMTP Output

•	Collecting data	
F1		392°F
F2	2250.04	2300.06
F3	2200.01	2350 Oft
F4	2350.0H 378°F	2400.0ft
		6:40 AM
×.	1 2 _{ABC} 3 _{DEF} 4 _{GHI} 5 _{JKL}	
Source. H	arold von Quintuses 8 19 9	

OPERAND							
	_			-	-		
PaveApp (2.2.1526.14)	- Collecting d	ata		320°F		
Number of Profiles					Status		
	Number	Percent		Percent			
12	4	33					
Recent Test Result Beginning Location Ending Location Differential State			Status				
1800ft		1950ft	Calc	ulating	250 F		
€ 39.23928°N 81.50124°W 1837.6ft 71ft/min 10/4/2016 - 8:0							
1 2 3 DEF 4 GHI 5 JKL 6 7 8 TUV 9 0 V							

Infrared Temperature Scanning Data

Infrared Temperature Scanning Data

Thermal Profile		<u>51</u> 250	249	248	247		
	Thermal Profile Results Summary						
Т	Number of Profiles	Mode 25.0°F < differe	erate ential <= 50.0°F	Severe differential > 50.0°F			
	46	Number	Percent	Number	Percent		
		13	28	3	7		

Trouble Shooting with Pave-IR

• What caused this temperature scan to look like this?

Davian ataminad

Trouble Shooting with Pave-IR

What caused this temperature scan to look like this?

Monitoring QC with Pave-IR

- This crew was proud of a fast paving rate
- What is their actual rate over the day?

AT AUBURN UNIVERSITY

Learning Objectives

- Recognized surface preparation that is needed before paving
- Discuss how an asphalt paver operates
- Identify the five forces on a paver screed
- Explain how asphalt mixture is compacted in the field
- Identify the importance of a "balanced" paving operation

AT AUBURN UNIVERSITY

Questions

