APPENDIX G
NOMOGRAPHS AND CHARTS FOR GUTTER FLOW & INLET DESIGN

Exhibit G.1 Use of Nomograph for Flow in Triangular Channels..G-2
Exhibit G.2 Nomograph for Flow, Q, in Triangular Channels..G-3
Exhibit G.3 Capacity Nomograph for Curb Opening Inlets on Continuous GradeG-4
Exhibit G.4 Capacity Nomograph for Curb Opening Inlets in a Low Point or Sump ...G-5
Exhibit G.5 Performance Curves for Curb Inlets Standard PlanG-6
Exhibit G.6 Ratio of Frontal Flow to Total Gutter Flow ..G-7
Exhibit G.7 Grate Inlet Frontal Flow Interception Efficiency ..G-8
Exhibit G.8 Grate Inlet Side Flow Interception Efficiency ..G-9
Exhibit G.9 Grate Inlet Capacity in Sump Conditions ..G-10
Exhibit G.10 Slotted Inlet Length for Total Interception ...G-11
Exhibit G.11 Slotted Inlet Interception Efficiency ..G-12
Exhibit G.12 Slotted Inlet Capacity in Sump Locations ..G-13
Exhibit G.13 Value of K for Slotted Vane Drain ...G-14
Instructions for Use

1. Connect $\frac{Z}{b}$ ratio with slope s, connect discharge Q with point where line crosses turning line. Read depth at curb d, Q can be found from d by connecting d with crossing of turning line.

2. For shallow V-shaped channel, use instruction 1, but with $Z = \frac{1}{d}$.

3. To determine discharge Q_A in portion of channel having width x, determine depth for the entire section as in instruction 1. Then use nomograph to determine Q in section of width b for depth $d = \frac{x}{Z}$, then $Q_A = Q_B$.

4. To determine discharge Q_T in composite section, follow instruction 3 to obtain discharge Q_A in section A at assumed depth d based on an extension of slope ratio Z_A to intersect water surface. Obtain Q_B for slope ratio Z_B and depth $d' = \frac{x}{Z_A}$. Then $Q_T = Q_A + Q_B$.

Exhibit G.1 Use of Nomograph for Flow in Triangular Channels
Example (see instruction I)
Given: $S=0.03$
 $Z=24$
 $n=0.02$
 $Z/n=1200$
 $q=2.0$ cfs
Find $d=0.22$ by following dashed lines.

\[Q = 0.56 \left(\frac{Z}{n} \right) S^{\frac{1}{2}} d^{\frac{9}{4}} \]
\[Q = (0.56/n) S^{\frac{5}{3}} S^{\frac{1}{2}} T^{\frac{9}{5}} \]
Where $d=TS_x$
Exhibit G.3 Capacity Nomograph for Curb Opening Inlets on Continuous Grade

LEGEND

Qa = Total gutter flow
Q = Intercepted gutter flow
La = Length of curb opening necessary to intercept 100% of gutter flow
L = Actual length of curb opening

Q/Qa = the interception ratio for inlets of length, L, less than La

Qa/La is the total discharge divided by length of curb opening necessary to intercept 100% of gutter flow

(A)
Exhibit G.4 Capacity Nomograph for Curb Opening Inlets in a Low Point or Sump

\[a = \text{Local depression} = 5' \ (\text{Std, Plan No. 443}) \]
\[H = \text{Height of ponded water above depression limit} \]
\[h = \text{Height of opening} = 3' \ (\text{Std, Plan No. 443}) \]
Exhibit G.5 Performance Curves for Curb Inlets Standard Plan
(For a cross-slope of 0.02 ft/ft)
Exhibit G.6 Ratio of Frontal Flow to Total Gutter Flow
(Source: Reference G.1)
Exhibit G.7 Grate Inlet Frontal Flow Interception Efficiency
(Source: Reference G.1)
Exhibit G.8 Grate Inlet Side Flow Interception Efficiency
(Source: Reference G.1)
Exhibit G.9 Grate Inlet Capacity in Sump Conditions
(Source: Reference G.1)
Example:
Given: \(n = 0.016; \ S = 0.01 \)
\(S_x = 0.02; \ Q = 4 \ \text{ft}^3/\text{s} \)
Find: \(L_T = 34 \ \text{ft} \)

Exhibit G.10 Slotted Inlet Length for Total Interception
(Source: Reference G.1)
Exhibit G.11 Slotted Inlet Interception Efficiency
(Source: Reference G.1)
Exhibit G.12 Slotted Drain Inlet Capacity in Sump Locations
(Source: Reference G.1)
Exhibit G.13 Value of K for Slotted Vane Drain:
Applicable to Neenah Slotted Vane Drain R-3599 Only
(Source: Neenah Foundry Company)
REFERENCES
