

State of Nebraska Department of Transportation Materials and Research Division

LABORATORY

QUALITY SYSTEM

MANUAL

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

TABLE OF CONTENTS

TABLE OF CONTENTS	
LIST OF FIGURES	i
LIST OF TABLES	ii
PREFACE	i\
SECTION 1: SCOPE OF QUALITY SYSTEM	1-1
SECTION 2: ORGANIZATION AND ORGANIZATIONAL PRACTICES	2-^
2.1 Name, Address and Administration	
2.2 Organizational Charts	
2.3 Functional Statement	
2.4 Quality System Management	2-1
SECTION 3: STAFF	3-′
3.1 Position Descriptions	3-1
3.2 Biographical Sketches	
3.3 Technician Training Program	
3.4 Technician Competency Evaluation Program	
3.5 Training and Competency Evaluation Records	
SECTION 4: EQUIPMENT	
4.1 Inventory4.2 Equipment Calibration and Verification	
4.3 Retention of Records	Δ-2
SECTION 5: TEST RECORDS AND REPORTS	
5.1 Procedures	
5.2 Records and Reports	5-1
5.3 Retention of Records	
SECTION 6: SAMPLE MANAGEMENT	6-1
SECTION 7: DIAGNOSTIC AND CORRECTIVE ACTION	7-´
7.1 Proficiency Samples and On-Site Inspection Programs	7-′
7.2 External Technical Complaints	7-1
SECTION 8: INTERNAL QUALITY SYSTEM REVIEW	8-1
8.1 Scope and Responsibility	8-1
8.2 Retention of Records	8-1
SECTION 9: SUBCONTRACTING	9-1
APPENDIX A – Class Specifications	A-1
APPENDIX B – Biographical Sketches	B-1
APPENDIX C – Major Equipment Inventory	C-′
APPENDIX D – In-House Calibration and Verification Procedures	D-′
APPENDIX E – Test Report Forms and Worksheets	E-1

DATE: 5-28-09 REVISED: 02-07-24

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

LIST OF FIGURES

SECTION 2: ORGANIZAT	FION AND ORGANIZATIONAL POLICIES	
Figure 2.1 Name, Ad	Idress and Administration of NDOT	2-3
	ganization Chart	
Figure 2.3 NDOT Ma	terials and Research Division Organization Chart	2-5
Figure 2.4 NDOT Ma	terials and Research Division Laboratory Organization Chart	2-6
Figure 2.5 Materials	and Research Division Functional Statement	2-7
Figure 2.6 Materials	and Research Division Quality Policy Statement	2-9
SECTION 3: STAFF		
	erence of Employees, Title or Laboratory and Class Specification	3-3
	Biographical Sketches, Supervisory Personnel	
	Program for Testing Technicians	
	r Reviewing the Competency of Testing Technicians	
	n Training Record	
	n Competency Evaluation Record	
SECTION 4: EQUIPMENT		
· · · · · · · · · · · · · · · ·	t Calibration and Verification Policies and Procedures	4-3
	ertificate of Calibration	
	ertificate of Verification	
SECTION 5: TEST RECO		
	es for Producing Test Records and Preparing, Checking nending Test Reports	5.2
SECTION 6: SAMPLE MA		
Figure 6.1 Procedure	e for Sample Management	6-2
SECTION 7: DIAGNOSTIC	C AND CORRECTIVE ACTION	
	es Related to Proficiency Sample Testing and On-Site Inspections	7-2
Figure 7.2 Procedure	es for Handling Complaints	7-4
_	QUALITY SYSTEM REVIEW	
	/stem Review Procedures	0.0
	uality System Review Report	
•		0-0
SECTION 9: SUBCONTR		
Figure 9.1 Outside C	alibration Contractor List	9-2
APPENDIX A		
Figures A.1 – A.13	Class Specifications	A-1 – A-30
Ğ	•	
APPENDIX B		
Figures B.1 – B.14	Biographical Sketches	B-1 – B-14
APPENDIX D	La Harris Call and a care IV all and a call and	D.4 D.40
Figures D.1 – D.48	In-House Calibration and Verification Procedures	. ט-1 – ט-48
APPENDIX E		
	Test Report Forms and Worksheets	- -1-1 _ F6-21
1 1941 00 - 1.10.21		

DATE: 05-28-08 REVISED: 09-26-18

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

LIST OF TABLES

	SCOPE OF QUALITY SYSTEM	
Table 1.1	Test Methods Covered by the Scope of the Quality Manual	
	and Laboratories Conducting the Test	1-2
SECTION 3: S	STAFF	
Table 3.1	Test Methods for Internal Proficiency Sample Testing	
	(Competency Evaluation Program)	3-10
SECTION 4: E	COLUDMENT	
	• -	4 7
Table 4.1	Equipment Calibration and Verification Information	4-/
Table 4.2	Listing of In-House Verification Procedures	4-12
Table 4.3	Listing of Reference Standards	4-14
SECTION 5: 1	TEST RECORDS AND REPORTS	
	Listing of Test Report Forms and Worksheets Used for Test Procedures	5-4
	Listing of Test Report Forms and Worksheets Used in Laboratories	
Table 5.2	Listing of Test Report Forms and Worksheets Osed in Laboratories	3-9
APPENDIX C		
Tables C.	1 – C.7 Major Equipment Inventory	C-1 - C-12

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

PREFACE

This Quality System Manual contains documents describing the Nebraska Department of Transportation (NDOT) quality system as it pertains to the testing areas of soils, aggregates, bituminous materials, hydraulic cement and portland cement concrete. Future revisions to the manual will include testing in other areas.

The Quality System Manual was developed as part of a process for the NDOT Materials and Research Division Laboratory to obtain accreditation through the American Association of State Highway and Transportation Officials (AASHTO) Accreditation Program. The AASHTO Accreditation Program (AAP) identifies specific criteria for a laboratory to become accredited. Major accreditation criteria is as follows:

1. Quality System Criteria—The NDOT Materials and Research Division Laboratory will conform to the requirements specified in AASHTO R 18 "Recommended Practice for Establishing and Implementing a Quality System for Construction Materials Testing Laboratories." This manual documents the organizational structure, staff responsibilities, policies, standard operating procedures and processes for the laboratory's quality system.

- 2.On-Site Inspection and Quality System Evaluation Criteria—The NDOT Materials and Research Division Laboratory will be subjected to AASHTO re:source (Formerly AMRL) AASHTO Material Reference Laboratory and Cement and Concrete Reference Laboratory (CCRL) on-site inspections and quality system evaluations at routine intervals.
- 3. Proficiency Testing Criteria—The NDOT Materials and Research Division Laboratory will participate in all required AASHTO re:source and CCRL proficiency programs.

Details of the above criteria and other accreditation criteria can be found in the "Procedures Manual for the AASHTO Accreditation Program".

All documents in this manual identify the date the document was prepared. If a document is revised the date of revision will be indicated on the document. Since frequent revisions relating to personnel changes, equipment inventory, etc. will probably occur, the manual has been developed in a loose leaf format. Manual holders should insert revised pages immediately upon receipt in order that their copy of the manual is current at all times.

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

1. SCOPE OF QUALITY SYSTEM

1.1 This manual describes the organization structure, staff responsibilities, policies, standard operating procedures and processes for the implementation of a quality system for the testing of soils, aggregates, bituminous materials, hydraulic cement and portland cement concrete.

NOTE 1 – Future revisions to this manual will include testing in other areas.

1.2 The test methods covered by the scope of this manual and the laboratories conducting the test methods are identified in Table 1.1.

DATE: 04-28-08 REVISED: 3-26-21

Table 1.1 – Test Methods Covered by the Scope of the Quality Manual and Laboratories Conducting the Tests

TEST METHOD		TESTING	
NUMBER	TITLE	LABORATORY	
	Asphalt Binder Test Procedures		
AASHTO R 28	Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV)	Bituminous	
AASHTO T 49	Penetration of Bituminous Materials	Bituminous	
AASHTO T 51	Ductility of Bituminous Mixtures	Bituminous	
AASHTO T 78	Distillation of Cut-Back Asphaltic (Bituminous) Products	Bituminous	
AASHTO T 201	Kinematic Viscosity of Asphalts (Bitumens)	Bituminous	
AASHTO T 202	Viscosity of Asphalts by Vacuum Capillary Viscometer	Bituminous	
AASHTO T 240	Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test)	Bituminous	
AASHTO T 301	Elastic Recovery Test of Bituminous Materials by Means of a Ductilometer	Bituminous	
AASHTO T 313	Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)	Bituminous	
AASHTO T 315	Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer	Bituminous	
	Emulsified Asphalt Test Procedures		
AASHTO T 53	Softening Point	Bituminous	
AASHTO T 59	Testing Emulsified Asphalts Residue by Evaporation Residue by Distillation Saybolt Viscosity	Bituminous	
	Hot-Mix Asphalt Test Procedures		
AASHTO T 30	Mechanical Analysis of Extracted Aggregate	Bituminous Aggregate	
AASHTO T 166	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens	Bituminous Aggregate	
AASHTO T 170	Recovery of Asphalt from Solution by Abson Method		
AASHTO T 209	Maximum Specific Gravity of Bituminous Paving Mixtures	Bituminous Aggregate	
AASHTO T 245	Resistance to Plastic Flow of Bituminous Mixtures Using —Marshall Apparatus	Bituminous Aggregate	
AASHTO T 269	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	Bituminous Aggregate	
AASHTO T 312	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the SHRP Gyratory Compactor	Bituminous Aggregate	
AASHTO T 283	Resistance of Compacted Bituminous Mixture to Moisture Induced Damage	Bituminous Aggregate	
AASHTO T 308	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	Bituminous Aggregate	

Table 1.1 – Continued

	TESTING		
NUMBER	TITLE	LABORATORY	
Hot-Mix Asphalt Aggregate Test Procedures			
AASHTO T 11	Materials Finer Than 75μm (No. 200) Sieve in Mineral Aggregate by Washing	Aggregates	
AASHTO T 27	Sieve Analysis of Fine and Coarse Aggregate	Aggregates / Soils	
AASHTO T 84	Specific Gravity and Absorption of Fine Aggregate	Aggregates	
AASHTO T 85	Specific Gravity and Absorption of Coarse Aggregate	Aggregates	
AASHTO T 96	Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Abrasion Machine	Aggregates / Soils	
AASHTO T 104	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	Aggregates / Soils	
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	Aggregates / Soils	
AASHTO T 248	Reducing Field Samples of Aggregate to Testing Size	Aggregates / Soils	
AASHTO T 255	Total Moisture Content of Aggregate by Drying	Aggregates	
AASHTO T 304	Uncompacted Void Content of Fine Aggregate	Aggregates	
ASTM D 4791	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	Aggregates	
ASTM D 5821	Determining the Percentage of Fractured Particles in Coarse Aggregate	Aggregates	
Soil Test Procedures			
AASHTO T 87	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	Soils	
AASHTO T 88	Particle Size Analysis of Soils	Soils	
AASHTO T 89	Determining the Liquid Limit of Soils Soils		
AASHTO T 90	Determining the Plastic Limit and Plasticity Index of Soils	Soils	
AASHTO T 99	The Moisture-Density Relation of Soils Using a (2.5 kg) 5.5 lb Rammer and a (305 mm) 12 in. Drop	Soils	
AASHTO T 100	Specific Gravity of Soils	Soils	
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	Aggregates / Soils	
AASHTO T 180	Moisture-Density Relations of Soils Using a (4.54-kg) 10-lb Rammer and a (457-mm) 18-in Drop	Soils	
AASHTO T 208	Unconfined Compressive Strength of Cohesive Soils	Soil Mechanics	
AASHTO T 216	One-Dimensional Consolidation Properties of Soils	Soil Mechanics	
AASHTO T 236	Direct Shear Test Under Consolidated Drained Conditions	Soil Mechanics	
AASHTO T 265	Laboratory Determination of Moisture Content of Soils	Soils Soil Mechanics	
AASHTO T 296	Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression	Soil Mechanics	
AASHTO T 297	Consolidated, Undrained Triaxial Compression Tests on Cohesive Soils.	Soil Mechanics	

Table 1.1 - Continued

	TEST METHOD	TESTING	
NUMBER	TITLE	LABORATORY	
Portland Cement Concrete Test Procedures			
ASTM C 31	Making and Curing Concrete Test Specimens in the Field	Cement and Concrete	
ASTM C 39	Compressive Strength of Cylindrical Concrete Specimens	Cement and Concrete	
ASTM C 42	Obtaining and Testing Drilled Cores and Sawed Beams of Concrete	Cement and Concrete	
ASTM C 138	Unit Weight, Yield, and Air Content (Gravimetric) of Concrete	Cement and Concrete	
ASTM C 143	Slump of Hydraulic Cement Concrete	Cement and Concrete	
ASTM C 172	Sampling Freshly Mixed Concrete	Cement and Concrete	
ASTM C 173	Air Content of Freshly Mixed Concrete by the Volumetric Method	Cement and Concrete	
ASTM C 174	Measuring Length of Drilled Concrete Cores	Cement and Concrete	
ASTM C 231	Air Content of Freshly Mixed Concrete by the Pressure Method	Cement and Concrete	
ASTM C 617	Capping Cylindrical Concrete Specimens	Cement and Concrete	
ASTM C 1064	Temperature of Freshly Mixed Portland Cement Concrete	Cement and Concrete	
ASTM C 1231	Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders	Cement and Concrete	
	Portland Cement Concrete Aggregate Test Procedure	es	
AASHTO T 11	Materials Finer Than 75μm (No. 200) Sieve in Mineral Aggregate by Washing	Aggregates	
AASHTO T 19	Unit Weight and Voids in Aggregate	Aggregates	
AASHTO T 21	Organic Impurities in Fine Aggregates for Concrete	Aggregates	
AASHTO T 27	Sieve Analysis of Fine and Coarse Aggregate	Aggregates	
AASHTO T 84	Specific Gravity and Absorption of Fine Aggregate	Aggregates	
AASHTO T 85	Specific Gravity and Absorption of Coarse Aggregate	Aggregates	
AASHTO T 96	Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Abrasion Machine	Aggregates	
AASHTO T 104	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	Aggregates	
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	Aggregates / Soils	
AASHTO T 248	Reducing Field Samples of Aggregate to Testing Size	Aggregates	
AASHTO T 255	Total Moisture Content of Aggregate by Drying	Aggregates	
	Hydraulic Cement Test Procedures		
ASTM C 109	Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or 50-mm Cube Specimens)	Cement and Concrete	
ASTM C114	Chemical Analysis of Hydraulic Cement	Chemical	
ASTM C 151	Autoclave Expansion of Portland Cement	Cement and Concrete	
ASTM C 151	Supplemental Cementitious Materials – SCM Autoclave Expansion of Portland Cement	Cement and Concrete	
ASTM C 185	Air Content of Hydraulic Cement Mortar	Cement and Concrete	
ASTM C 187	Normal Consistency of Hydraulic Cement	Cement and Concrete	

Table 1.1 - Continued

	TESTING	
NUMBER TITLE		LABORATORY
	Hydraulic Cement Test Procedures – Continued	
ASTM C 191	Time of Setting of Hydraulic Cement by Vicat Needle	Cement and Concrete
ASTM C 204	Fineness of Portland Cement by Air Permeability Apparatus	Cement and Concrete
ASTM C 305	Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency	Cement and Concrete
ASTM C 311	Portland Cement Concrete (Strength Activity Index)	Cement and Concrete
ASTM C 311 / C109	Supplemental Cementitious Materials – SCM (Strength Activity Index)	Cement and Concrete
ASTM C 311 / C188	Supplemental Cementitious Materials – SCM (Density)	Cement and Concrete
ASTM C 430	Fineness of Hydraulic Cement by the 45-μm (No. 325) Sieve	Cement and Concrete
ASTM C 430	Supplemental Cementitious Materials – SCM Fineness of Hydraulic Cement by the 45-μm (No. 325) Sieve	Cement and Concrete
ASTM C 451	Early Stiffening of Portland Cement (Paste Method)	Cement and Concrete
ASTM C 618	Supplemental Cementitious Materials – SCM Class C Fly Ash Physical Analysis	Cement and Concrete
ASTM C 618	Supplemental Cementitious Materials – SCM Class F Fly Ash Physical Analysis	Cement and Concrete
ASTM C 989	Supplemental Cementitious Materials – SCM Ground Granulated Blast – Furnace Slag Physical Analysis	Cement and Concrete
ASTM C 1222	Evaluation Criteria of Hydraulic Cement Testing	Cement and Concrete Chemical

DATE: 2-7-08 REVISED: 10-23-18

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

2. ORGANIZATION AND ORGANIZATIONAL POLICIES

- 2.1 Name, Address and Administration.
- 2.1.1 The name, address, telephone number, fax number and administration of the Nebraska Department of Transportation (NDOT) Materials and Research Division Laboratory are shown in Figure 2.1.
 - 2.2 Organization Charts.
- 2.2.1 Figure 2.2 identifies the organizational structure of the Nebraska Department of Transportation.
- 2.2.2 Figure 2.3 identifies the organizational structure of the NDOT Materials and Research Division. This organization chart shows the overall structure of the Materials and Research Division including functional responsibility of the Division and positions within the Division not directly related to laboratory testing of materials and this Quality System Manual.
- 2.2.3 Figure 2.4 identifies the organizational structure of the NDOT Materials and Research Division Laboratory relating specifically to this Quality System Manual. This organization chart is identical in content to the organization chart shown in Figure 2.3 except that employee's names are included and the functions and positions not covered in the scope of this manual are omitted.
- 2.2.3.1 Temporary Summer Employees—The various laboratories covered by the scope of this manual may utilize summer temporary employees. Although some of these employees may perform tests covered by the scope of this manual, they are not included in the organization charts shown in Figures 2.3 and 2.4. The length of employment is normally mid-May to mid-August, but may be longer depending on the work load of

the laboratory. Summer temporary employees shall be subject to all provisions of this manual if they are performing tests covered by the scope of this manual.

2.2.4 The organization charts shown in Figures 2.3 and 2.4 constitute the official organizational structure of the NDOT Materials and Research Division. Policies for maintaining and modifying the Division's organization structure are contained in Nebraska Department of Transportation Operating Instruction 21-1 (not included in this Quality System Manual).

2.3 Functional Statement.

- 2.3.1 Figure 2.5 identifies the functions assigned to the Materials and Research Division including those related to the laboratory testing of materials identified in this Quality System Manual.
- 2.3.2 The functional statement shown in Figure 2.5 constitutes the official delegation of management functions authorized by the Director-State Engineer of the Nebraska Department of Transportation. Policies for updating and maintaining the functional statement are contained in Department of Transportation Operating Instruction 21-4 (not included in this Quality System Manual).

2.4 Quality System Management.

- 2.4.1 The Technical Manager for the NDOR Materials and Research Division Laboratory is the Materials and Research Engineer as identified in Figure 2.4. The Technical Manager has overall responsibility for the technical operations of the laboratory.
- 2.4.2 The Flexible Pavement and Quality Assurance Engineer, as identified in Figure 2.4, will serve as the Technical Manager during absence of the Materials and Research Engineer.

2.4.3 The Quality Coordinator and Equipment Calibration/Verification Coordinator for the NDOT Materials and Research Division is the Highway Quality Assurance Manager for the PCC Materials Unit as identified in Figure 2.4. The Quality Coordinator has responsibility for determining if the laboratory staff is conducting quality system activities in the manner specified in this Quality System Manual. The Equipment Calibration/Verification Coordinator has responsibility for determining if calibration/verification procedures are being performed in accordance with the requirements of this Quality System Manual.

2.4.4 In the event a technical complaint is received relating to the quality of the NDOT Materials and Research Division Laboratory's work, the management team described in Section 2.4.4 shall meet within 30 days of receipt of the complaint. The purpose of this meeting will be to investigate and resolve the complaint and, if necessary, introduce changes or improvements in the quality system.

2.5 Quality Policy Statement

2.5.1 Figure 2.6 Identifies the intentions and commitment to the quality and objectives of our technical services.

DATE: 10-23-18 REVISED: 02-07-24

Figure 2.1 – Name, Address and Administration of NDOT Materials and Research Division Laboratory

Laboratory Name and Mailing Address: Nebraska Department of Transportation

Materials and Research Division

P. O. Box 94759

Lincoln, NE 68509-4759

Laboratory Location: 1400 Highway 2

Lincoln, NE 68502

Phone: (402)479-4750

FAX: (402)479-3975

Ownership: State of Nebraska

Nebraska Department of Transportation and Materials and Research Division Laboratory Administration

Position	Name
Governor, State of Nebraska	Jim Pillen
Director	Vicki Kramer
Deputy Director - Engineering	Khalil Jaber
Materials and Research Engineer	Brendon Schmidt

DATE: 10-23-18 REVISED: 02-07-24

Figure 2.2 – Nebraska Department of Transportation Organization Chart to District/Division Level

Governor, State of Nebraska, Jim Pillen

- State Highway Commission (8 District Representatives)
- ❖ Director, Department of Transportation, Vicki Kramer
 - Controller Division
 - · Government Affairs Div.
 - Human Resources Div.
 - Business Technology Support Div.

Deputy Director, Operations, Mostafa Jamshidi

- District 1 Engineer
- District 2 Engineer
- District 3 Engineer
- District 4 Engineer
- District 5 Engineer
- District 6 Engineer
- District 7 Engineer
- District 8 Engineer
- · Communication Div.
- Construction Division
- Operations Division
- Rail & Public Transportation Div.

o Deputy Director, Engineering, Khalil Jaber

- Bridge Division
- Traffic Engineering Division
- Project Scheduling & Program Management Section
- · Right of Way Division
- Roadway Design Division
- Planning & Project Development Division
- Materials and Research Division, Brendon Schmidt

DATE: 10-20-08 REVISED: 02-07-24

Figure 2.3a – Materials and Research Division Organization Chart (Page 1 of 4)

* Materials & Research Engineer, Engineer VII

> Portland Cement & Concrete, Chemical Tests, Physical Tests, Engineer III

- PCC Pre-cast, Highway Quality Assurance Manager
 - Highway Construction Technician III
- Highway Program Specialist
 - Professional Engineer I
 - Federal Aid Administrator II
- Chemical Tests Laboratory, Highway Chemical Tests Manager
 - Scientist II
 - Scientist II
- PCC Materials & Laboratory, Highway Materials and Tests Manager
 - Highway Materials and Tests Technician III
 - · Highway Materials and Tests Technician III
 - Highway Materials and Tests Technician III
 - Coring, Pavement Smoothness, Highway Quality Assurance Manager
 - ♦ Highway Materials and Tests Technician III
 - ♦ Highway Materials and Tests Technician III
 - ♦ Highway Materials and Tests Technician III

> Flexible Pavement & Quality Assurance, Engineer III

- District 1 Quality Assurance, Highway Materials and Tests Technician III
- District 2 Field Laboratory, Highway Quality Assurance Manager
 - Highway Materials and Tests Technician III
- District 3 Field Laboratory, Highway Quality Assurance Manager
 - Highway Materials and Tests Technician III.
- District 4 Field Laboratory, Highway Quality Assurance Manager
 - Highway Materials and Tests Technician III
- District 6 Field Laboratory, Highway Quality Assurance Manager
 - Highway Materials and Tests Technician III
 - Highway Materials and Tests Technician III
 - · Highway Materials and Tests Technician III
- Bituminous Aggregate Laboratory, Highway Quality Assurance Manager
 - Highway Materials and Tests Technician III
 - Highway Materials and Tests Technician II
- Bituminous Laboratory, Highway Quality Assurance Manager
 - Highway Materials and Tests Technician III

AASHTO Ware Project, Engineer III

- Physical Tests Laboratory, Highway Materials and Tests Manager
 - Highway Quality Assurance Manager
 - Highway Materials and Tests Technician III
 - Highway Materials and Tests Technician III

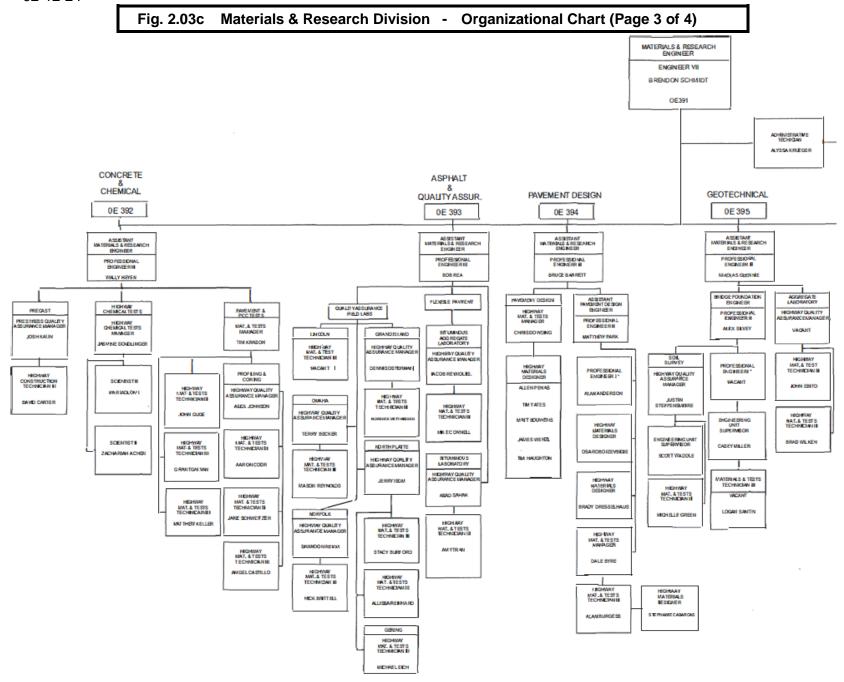
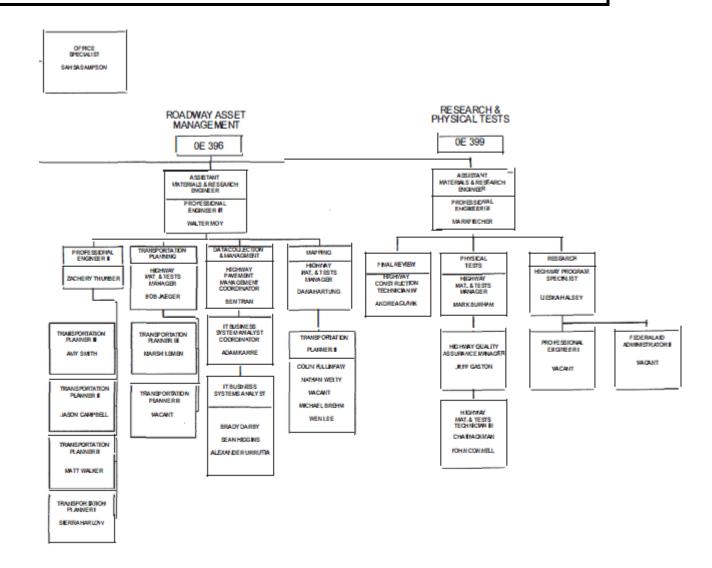

DATE: 10-20-08 REVISED: 02-07-24

Figure 2.3b – Materials and Research Division Organization Chart (Page 2 of 4)

> Geotechnical Engineer, Engineer III


- Bridge Foundation Engineer, Engineer II
 - Soil Laboratory Manager, Highway Quality Assurance Manager
 - ♦ Engineering Unit Supervisor
 - ♦ Highway Materials and Tests Technician III
 - Highway Materials and Tests Technician III
 - Engineer III
 - ♦ Highway Maintenance Worker Senior
 - ♦ Highway Maintenance Worker Senior
- Aggregate Laboratory Manager, Highway Quality Assurance Manager
 - Highway Materials and Tests Technician III
 - Highway Materials and Tests Technician III

Date: 06-15-09 Revised: 02-12-24

Date: 06-15-09 Revised: 02-12-24

Fig. 2.03d Materials & Research Division - Organizational Chart (Cont.) (Page 4 of 4)

DATE: 09-26-18 REVISED: 02-07-24

Figure 2.4 – Materials and Research Division Laboratory Organization Chart (Names and positions relating specifically to Quality System)

❖ Brandon Varilek, Materials and Research Engineer, Engineer VII

> Wally Heyen, Portland Cement & Concrete, Chemical Tests, Engineer III

- Tim Krason, PCC Materials & Laboratory, Materials and Tests Manager (Quality System Coordinator)
 - John Gude, Highway Materials and Tests Technician III
 - Grant Galvan, Highway Materials and Tests Technician III
 - Matt Keller, Highway Materials and Tests Technician III
- Josh Kalin, PCC Pre-stress, Highway Quality Assurance Manager (NP)
 - David Carter, Highway Construction Technician III (NP)
- Jasmine Dondlinger, Chemical Laboratory, Highway Chemical Tests Manager
 - Maria Olomi, Scientist II
 - Zach Achen, Scientist II
- Alex Johnson, Pavement Coring & Smoothness Testing, Highway Quality Assurance Manager (Quality System Equipment Calibration Coordinator)
 - Jake Schweitzer, Highway Materials and Tests Technician III
 - Aaron Codr, Highway Materials and Tests Technician III
 - Angel Castillo, Highway Materials and Tests Technician III

Bob Rea, Flexible Pavement & Quality Assurance Engineer, Engineer III

- Jacob Reynolds, Bituminous Aggregate Laboratory, Highway Quality Assurance Manager
 - Mike Connell, Highway Materials and Tests Technician III
 - Vacant, Highway Materials and Tests Technician II
- Asad Sahak, Bituminous Laboratory, Highway Quality Assurance Manager
 - Amy Tran, Highway Materials and Tests Technician III

> Nick Glennie, Geotechnical Engineer, Engineer III

- Alex Silvey, Bridge Foundation Engineer, Engineer II (NP)
 - Justin Steffensmeier, Soil Laboratory, Highway Quality Assurance Manager
 - ♦ Scott Waddle, Highway Engineering Unit Supervisor
 - Shelly Green, Highway Materials and Tests Technician III.
 - Justin Steffensmeier, Aggregate Laboratory, Highway Quality Assurance Manager
 - ♦ John Ebito, Highway Materials and Tests Technician III
 - ♦ Brad Wilken, Highway Materials and Tests Technician III

Mark Fischer, AASHTO Ware Project, Physical Tests, Engineer III

- Mark Burham, Physical Tests Laboratory, Highway Materials and Tests Manager
 - Jeff Gaston, Highway Quality Assurance Manager
 - Chad Jackman, Highway Materials and Tests Technician III
 - ♦ John Connell, Highway Materials and Tests Technician III

Figure 2.5 – Materials and Research Division Functional Statement

Materials and Research Division

Materials and Research Division designs, manages, researches and tests highway materials used for constructing and maintaining a quality highway transportation system within the state of Nebraska.

Site Manager & Office Services Section

The Site Manager & Office Services Section is responsible for implementing and managing the materials portion of SiteManager. SiteManager allows us to record, track, and maintain historical data on materials used in highway construction. The section provides IT support staff for 1400 building and performs all clerical tasks within the division.

The shop maintains and repairs laboratory equipment in the central and branch laboratories.

<u>Portland Cement & Concrete, Chemical</u> <u>Tests, Physical Tests Section</u>

The Concrete Section provides written specifications, sampling and testing of concrete, cement, blended cements, and other materials. The section also answers questions from other divisions and districts and investigates problems in the field.

The Chemistry Laboratory conducts chemical tests on various types of materials.

The Physical Tests Section tests and inspects numerous construction and maintenance materials, i.e., anchor bolts, concrete, metal and plastic pipe, electrical items, high tensile fasteners, bridge bearing devices, structural reinforcing, highway safety prod-

ucts and wood products. Develop material specifications, standards, plans and policy for NDOT. Provide technical support on material and specification related questions. Perform pavement skid resistance tests.

Flexible Pavement and Quality Assurance Section

The Flexible Pavement and Quality Assurance Section provides "Reports of Tests" on maintenance and construction materials; are conveniently available to make recommendations; and gives guidance and answers to questions on maintenance / construction materials, strategies and procedures.

Perform on-site inspections and testing. Provide technical assistance and guidance in the field. Administer technical control of the branch laboratories.

Pavement Design Section

The Pavement Design Section is responsible for making all pavement related determinations, specifications and final quantities for every new construction, rehabilitation or repair project.

Geotechnical Section

The Geotechnical Section performs exploration of existing subsurface conditions and evaluates risks posed by site and provides recommendations for the design and construction of roadway and structures for all NDOT projects as needed.

Test material properties of soils and aggregates and prepare soil and subgrade situation reports.

the roadway geometric data in Integrated Highway Inventory (IHI). We are also responsible for collecting the pavement rating and profile data for the 10,000 mile State Highway System. We report this information through the Needs Assessment, corporate measures, Pavement Optimization Program (POP), listings, and maps.

Research & Development Section

The Research & Development Section is responsible for fiscal and technical management of Nebraska's federally funded transportation research program. They also serve as the research project liaison, between academic researchers and transportation industry professionals.

Figure 2.6 - Materials and Research Quality Policy Statement

The Nebraska Department of Transportation Materials and Research Testing Laboratories is committed to total quality to support and achieve our department's mission statement by setting testing and equipment standards for our laboratories and maintaining those standards consistently during our assessment and throughout our performance period. These standards will be maintained and reviewed annually through our testing programs for Independent Assurance, Verification and Validation testing that is conducted throughout the year.

- Each Testing Laboratory will respond to "Bad" Proficiency Sample ratings, results which are beyond 2 standard deviations from the mean, 100% of the time within one month of the Quality System Evaluation.
- The Evaluation record will be turned in an average of 5 working days from the due date.

DATE: 9-10-02 REVISED: 10-23-18

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

3. STAFF

- 3.1 Position Descriptions.
- 3.1.1 The class specifications for the positions in the NDOT Materials and Research Division Laboratory covered by the scope of this manual are shown in Appendix A.
- 3.1.1.1 The class specifications are developed and revised, as necessary, by the State of Nebraska, Department of Administrative Service, Division of State Personnel, working in conjunction with the Nebraska Department of Transportation Human Resources Division.
- 3.1.2 Figure 3.1 should be used to crossreference specific employees or positions to the class specifications shown in Appendix A.
 - 3.2 Biographical Sketches.
- 3.2.1 Brief biographical sketches for supervisory personnel in the NDOT Materials and Research Division Laboratory, covered by the scope of this manual, are shown in Appendix B.
- 3.2.2 Figure 3.2 lists supervisory personnel in the NDOT Materials and Research Division Laboratory with biographical sketches shown in Appendix B.
 - 3.3 Technician Training Program.
- 3.3.1 Figure 3.3 describes the methods and procedures used to ensure that NDOT Materials and Research Division Laboratory personnel are trained to perform tests covered by the scope of this manual in accordance with standard testing procedures used by the laboratory.
- 3.3.2 The training specified in Figure 3.3 is applicable to new employees with little or no experience in laboratory or inspection

- work. Employees having experience in laboratory testing are considered as new employees for purposes of the Technician Training Program if they have not previously performed a particular test.
- 3.3.3 Summer temporary employees shall be trained in accordance with the requirements identified in Figure 3.3. Even though summer temporary employees may have worked in a laboratory and performed certain tests the previous summer, the employee shall be considered a new employee for purposes of the Technician Training Program. There could be a period of nine months, or more, since a summer temporary employee performed a specific test.
- 3.3.4 The laboratory manager having responsibility for the specific laboratory is responsible for the training program and the distribution and maintenance of training records.
- 3.4 Technician Competency Evaluation Program.
- 3.4.1 Figure 3.4 describes the methods and procedures used to evaluate technician competency to ensure that each test covered by the scope of this manual is performed in accordance with standard testing procedures used by the laboratory.
- 3.4.2 The competency evaluation specified in Figure 3.4 is applicable to all technicians in a laboratory if they perform the test being evaluated. The competency evaluation is applicable to new employees after they complete the technician training as specified in Figure 3.3.
- 3.4.3 Proficiency sample testing will be used as a means of evaluating technician competency. Table 3.1 shows the test methods in which proficiency sample testing will

be used. The use of proficiency sample testing will be supplemented with observation by the laboratory manager of the actual testing being performed.

- 3.4.4 The laboratory manager having responsibility for the specific laboratory is responsible for the competency evaluation program and the distribution and maintenance of competency evaluation records.
- 3.5 Training and Competency Evaluation Records.
- 3.5.1 Figure 3.5 shows the form to be used for recording technician training activities.

- 3.5.2 Figure 3.6 shows the form to be used for recording technician competency evaluation activities.
- 3.5.3 Training records and competency evaluation reviews shall be kept on file in the office of the laboratory manager.
 - 3.6 Retention of Records.
- 3.6.1 Technician training records shall be retained for as long as the employee is employed by NDOT.
- 3.6.2 Technician competency evaluation records shall be retained for minimum of five years.

DATE: 10-10-08 REVISED: 02-07-24

Figure 3.1 – Cross Reference of Employees, Title or Laboratory, and Class Specifications

SUPERVISORY PERSONNEL			
NAME	TITLE	CLASS SPECIFICATION	FIGURE NO.
Brendon Schmidt	Materials and Research Engineer	Engineer VII	A.1
Nikolas Glennie	Geotechnical Engineer	Engineer III	A.2
Wally Heyen	Portland Cement and Concrete, Chemical Tests, Physical Tests Engineer	Engineer III	A.2
Bob Rea	Flexible Pavement and Quality Assurance Engineer	Engineer III A.2	
Mark Fischer	Research & Physical Tests	Engineer III	A.2
Tim A. Krason	PCC Materials & Lab Manager (Quality System Coordinator)	Hwy. Materials & Tests Manager	A.9
Jasmine Dondlinger	Chemical Tests Laboratory Manager	Highway Chemical Tests Manager	A.10
Justin Steffensmeier	Aggregates Laboratory Manager	Hwy. Quality Assurance Manager	A.13
Asad Sahak	Bituminous Laboratory Manager	Hwy. Quality Assurance Manager	A.13
Justin Steffensmeier	Soils Laboratory Supervisor	Hwy. Quality Assurance Manager	A.13
Jacob Reynolds Bituminous Aggregate Laboratory Manager		Hwy. Quality Assurance Manager	A.13
Coring & Smoothness Manager Alex Johnson (Equipment Calibration / Verification Coordinator)		Hwy. Quality Assurance Manager	A.13
Scott Waddle	Soils Laboratory	Engineering Unit Supervisor	A.5
Mark Burham	Physical Tests Lab Manager	Hwy. Materials & Tests Manager	A.9
Jeff Gaston	Physical Test Lab Supervisor	Hwy. Materials & Tests Manager	A.13

Figure 3.1 – Continued

LABORATORY PERSONNEL			
NAME	LABORATORY	CLASS SPECIFICATION	FIGURE NO.
Maria Olomi	Chemical Laboratory	Scientist II	A.12
Zach Achen	Chemical Laboratory	Scientist II	A.12
Shelly Green	Soils Laboratory	Hwy. Materials & Tests Tech. III	A.6
John Ebito	Aggregates Laboratory	Hwy. Materials & Tests Tech. III	A.6
Brad Wilken	Aggregates Laboratory	Hwy. Materials & Tests Tech. III	A.6
John Gude	PCC Laboratory	Hwy. Materials & Tests Tech. III	A.6
Matt Keller	PCC Laboratory	Hwy. Materials & Tests Tech. III	A.6
Jake Schweitzer	Pavement Tests	Hwy. Materials & Tests Tech. III	A.6
Aaron Codr	Pavement Tests	Hwy. Materials & Tests Tech. III	A.6
Angel Castillo	Pavement Tests	Hwy. Materials & Tests Tech. III	A.6
Grant Galvan	PCC Laboratory	Hwy. Materials & Tests Tech. III	A.6
Chad Jackman	Physical Test Laboratory	Hwy. Materials & Tests Tech. III	A.6
John Connell	Physical Test Laboratory	Hwy. Materials & Tests Tech. III	A.6
Amy Tran	Bituminous Laboratory	Hwy. Materials & Tests Tech. III	A.6
Mike Connell	Bituminous Agg. Laboratory	Hwy. Materials & Tests Tech. III	A.6

DATE: 10-20-08 REVISED: 02-07-24

Figure 3.2 – Listing of Biographical Sketches, Supervisory Personnel

NAME	NAME POSITION	
Brendon Schmidt	Engineer VII – Materials and Research Engineer	B.1
Wally Heyen	Engineer III – Portland Cement & Concrete, Chemical Tests, Physical Tests Engineer	B.2
Nikolas Glennie	Engineer III - Geotechnical Engineer	B.3
Bob Rea	Engineer III - Flexible Pavement, Quality Assurance Engineer	B.4
Mark Fischer	Engineer III – Research & Physical Test Engineer	B.5
Tim A. Krason	Materials and Tests Manager – PCC Materials and Laboratory	B.6
Jasmine Dondlinger	Highway Chemical Tests Manager – Chemical Laboratory	B.7
Justin Steffensmeier	Highway Quality Assurance Manager – Soils & Aggregate Laboratory	B.8
Asad Sahak	Highway Quality Assurance Manager – Bituminous Laboratory	B.9
Alex Johnson	Highway Quality Assurance Manager – Coring and Pavement Smoothness	B.10
Jeff Gaston	Highway Quality Assurance Manager – Physical Test Laboratory	B.11
Jacob Reynolds	Highway Quality Assurance Manager – Bituminous Aggregate Laboratory	B.12
Mark Burham	Materials and Tests Manager – Physical Test B.1 Laboratory	
Scott Waddle	Highway Engineering Unit Supervisor – Soil Laboratory	B.14

Figure 3.3 – Training Program for Testing Technicians

Each laboratory manager is responsible for the training program and maintenance of all training records. (See figure 3.5 for the form to be used for recording technician training activities.)

Copies of the results of all training shall be forwarded to the Quality Coordinator for the NDOT Materials and Research Division Laboratory. Training records shall be retained in the office of the laboratory manager. All technicians shall be trained prior to performing test procedures not previously performed.

The following training procedures shall be performed for each test.

- 1. The trainee shall obtain a copy of the applicable test procedure and report form.
- 2. The trainee shall study the test procedure and test report forms to become familiar with the equipment, terminology, test procedure, calculations and test reports.
- 3. A qualified technician shall demonstrate the test procedure for the trainee.
- 4. The trainee shall repeatedly perform the test procedure under the guidance of a qualified technician until proficiency is obtained.
- 5. The laboratory manager shall observe the trainee demonstrating the procedure and document that the trainee has demonstrated the ability to perform the test procedure, if it is performed properly, by making an entry in the trainee's training record.

Figure 3.4 – Method for Reviewing the Competency of Testing Technicians

Each laboratory manager is responsible for evaluating the competency of their testing technicians at least once every twelve months by requiring each technician to demonstrate the AASHTO and/or ASTM test procedures for which he/she has been trained to perform. [If a technician does not routinely perform a test, it may not be necessary to evaluate his or her competency to perform the test every twelve months. However, the technicians competency shall be evaluated prior to performing the test.] Copies of the results of all competency evaluations shall be distributed to the Quality Coordinator. Competency evaluation records shall be retained in the office of the Laboratory Manager.

A proficiency sample or stock material may be used for competency testing. AMRL/CCRL assessment may count towards the twelve month testing interval.

For each testing technician, the supervisor shall record the test demonstrated, the date of the demonstration, and the results of the evaluation (satisfactory or unsatisfactory). In addition, the supervisor shall sign each entry on the evaluation record.

If an unsatisfactory result is recorded for a specific test the supervisor shall review all observed deviations from the standard AASHTO or ASTM procedure with the testing technician, observe the technician re-demonstrate the test procedure and record the results as indicated above.

Figure 3.5 – Technician Training Record

Date: Revised:	2-3-97 3-29-01		
rtevioca.	0 20 01	Nebraska De	epartment of Transportation
		Materials and	Research Division Laboratory
		TECHNICIA	N TRAINING RECORD
		TECHNICIA	IN TRAINING RECORD
Technicia	an:		Laboratory:
Date	Test Method	Evaluated By	Comments/Results
_			

Figure 3.6 – Technician Competency Evaluation Record

Date: Revised:	2-3-97 10-23-18								
		М	Nebras aterials	ska Departmen s and Research	t of Transportation Division Laboratory				
TECHNICIAN COMPETENCY EVALUATION RECORD									
Technician: Laboratory:									
Date	Test Method	Proficiency Sample Yes No		Evaluated By	Comments/Results				
	I	1	1	I					

DATE: 01-16-15 REVISED: 10-17-22

Table 3.1 – Test Methods for Internal Proficiency Sample Testing (Competency Evaluation Program)

	TEST METHOD						
NUMBER	TITLE						
Aggregates Laboratory							
AASHTO T 11	Materials Finer Than 75μm (No. 200) Sieve in Mineral Aggregate by Washing						
AASHTO T 19	Unit Weight and Voids in Aggregate						
AASHTO T 21	Organic Impurities in Fine Aggregates for Concrete						
AASHTO T 27	Sieve Analysis of Fine and Coarse Aggregate						
AASHTO T 84	Specific Gravity and Absorption of Fine Aggregate						
AASHTO T 85	Specific Gravity and Absorption of Coarse Aggregate						
AASHTO T 96	Resistance to Degradation on Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Abrasion Machine						
AASHTO T 104	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate						
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of The Sand Equivalent Test						
AASHTO T 248	Reducing Field Samples of Aggregate to Testing Size						
AASHTO T 255	Total Moisture Content of Aggregate by Drying						
AASHTO T 304	Uncompacted Void Content of Fine Aggregate						
ASTM D 4791	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse						
	Aggregates						
ASTM D 5821	Determining the percentage of Fractured Particles in Coarse Aggregate						
	Bituminous Laboratory						
AASHTO T 44	Solubility of Bituminous Materials						
AASHTO T 48	Flash and Fire Points by Cleveland Open Cup						
AASHTO T 49	Penetration of Bituminous Materials						
AASHTO T 51	Ductility of Bituminous Mixtures						
AASHTO T 53	Softening Point of Bitumen (Ring and Ball Apparatus)						
AASHTO T 59	Testing Emulsified Asphalts: Residue by Distillation, Saybolt Viscosity 25C, Residue by Evaporation						
AASHTO T 72	Saybolt Viscosity 50 C						
AASHTO T 78	Distillation of Cut-Back Asphaltic (Bituminous) Products						
AASHTO T 170	Recovery of Asphalt from Solution by Abson Method						
AASHTO T 201	Kinematic Viscosity of Asphalts (Bitumens)						
AASHTO T 202	Viscosity of Asphalts by Vacuum Capillary Viscometer						
AASHTO T 228	Specific Gravity of Semi-Solid Bituminous Materials						
AASHTO T 240	Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test)						
AASHTO T 301	Elastic Recovery Test of Bituminous Materials						
AASHTO T 313	Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)						
AASHTO T 315	Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer						
AASHTO T 316	Viscosity determination of Asphalt Binders by Rotational Viscometry						
AASHTO R 28	Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV)						

Table 3.1 - Continued

	TEST METHOD						
NUMBER	TITLE						
Bituminous Aggregate Laboratory							
AASHTO T 30	Mechanical Analysis of Extracted Aggregate						
AASHTO T 164	Quantitative Extraction of Bitumen from Bituminous Paving Mixtures						
AASHTO T 166	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surfactory Specimens						
AASHTO T 209	Maximum Specific Gravity of Bituminous Paving Mixtures						
AASHTO T 245	Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus						
AASHTO T 269	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures						
AASHTO T 283	Resistance of Compacted Bituminous Mixture to Moisture Induced Damage						
AASHTO T 308	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method						
AASHTO T 312	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the SHRP Gyratory Compactor						
Chemical Laboratory							
ASTM C 114	Chemical Analysis of Hydraulic Cement						
	PCC Laboratory						
	(Portland Cement Concrete Test Procedures)						
ASTM C 31	Making and Curing Concrete Test Specimens in the Field						
ASTM C 39	Compressive Strength of Cylindrical Concrete Specimens						
ASMT C 42	Obtaining and Testing Drilled Cores and Sawed Beams of Concrete						
ASTM C 138	Unit Weight, Yield, and Air Content (Gravimetric) of Concrete						
ASTM C 143	Slump of Hydraulic Cement Concrete						
ASTM C 172	Sampling Freshly Mixed Concrete						
ASTM C 173	Air Content of Freshly Mixed Concrete by the Volumetric Method						
ASTM C 174	Measuring Length of Drilled Concrete Cores						
ASTM C 231	Air Content of Freshly Mixed Concrete by the Pressure Method						
ASTM C 1064	Temperature of Freshly Mixed Portland Cement Concrete						
	Use of Unbonded Caps in Determination of Compressive Strength of Hardened						
ASTM C 1231	Concrete Cylinders						
	PCC Laboratory						
	(Hydraulic Cement Test Procedures)						
ASTM C 109	Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or 50-mm Cube						
ASTM C 151	Specimens) Autoclave Expansion of Portland Cement						
ASTM C 181	Air Content of Hydraulic Cement Mortar						
ASTM C 185	Normal consistency of Hydraulic Cement						
ASTM C 191							
ASTM C 191	Time of Setting of Hydraulic Cement by Vicat Needle						
	Fineness of Portland Cement by Air Permeability Apparatus						
ASTM C 266	Time of Setting of Hydraulic Cement Paste by Gillmore Needles Machanical Mixing of Hydraulic Coment Pastes and Morters of Plastic Consistency						
ASTM C 305	Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency						
ASTM C 430	Fineness of Hydraulic Cement by the 45-μm (No. 325) Sieve						
ASTM C 451	Early Stiffening of Portland Cement (Paste Method)						
ASTM C 1222	Evaluation Criteria of Hydraulic Cement Testing						
ASTM C 1567	Alkali Silica Reactivity of Combinations of Cementitous Material and Aggregate						

Table 3.1 - Continued

TEST METHOD						
NUMBER	TITLE					
Soil Mechanics Laboratory						
AASHTO T 208	Unconfined Compressive Strength of Cohesive Soils					
AASHTO T 216	One-Dimensional Consolidation Properties of Soils					
AASHTO T 236	Direct Shear Test of Soils Under Consolidated Drained Conditions					
AASHTO T 265	Laboratory Determination of Moisture Content of Soils					
AASHTO T 296	Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression					
AASHTO T 297	Consolidated, Undrained Triaxial Compression Tests on Cohesive Soils					
Soils Laboratory						
AASHTO T 19	Unit Weight and Voids in Aggregates					
AASHTO T 27	Sieve Analysis of Fine and Coarse Aggregate					
AASHTO T 87	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test					
AASHTO T 88	Particle Size Analysis of Soils					
AASHTO T 89	Determining the Liquid Limit of Soils					
AASHTO T 90	Determining the Plastic Limit and Plasticity Index of Soils					
AASHTO T 99	The Moisture-Density Relation of Soils Using a (2.5 kg) 5.5 lb Rammer and a (305 mm) 12 in. Drop					
AASHTO T 100	Specific Gravity of Soils					
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test					
AASHTO T 180	Moisture-Density Relations of Soils Using a 10-lb (4.54-kg) Rammer and an 18-in (457-mm) Drop					
AASHTO T 248	Reducing Field Samples of Aggregate to Testing Size					
AASHTO T 265	Laboratory Determination of Moisture Content of Soils					

DATE: 12-15-08 REVISED: 10-23-18

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

4. EQUIPMENT

- 4.1 Inventory.
- 4.1.1 The inventory of major sampling, testing, calibration and verification equipment contained within the scope of this manual is shown in Appendix C.
- 4.1.2 Where applicable, manufacturer's instructions for major sampling, testing, calibration and verification equipment used in a particular laboratory shall be kept on file in the Laboratory Manager's office. All manufacturers' instructions shall be kept in the same location within the Laboratory Manager's office and shall be clearly marked so that they are readily available in the event they are needed.
- 4.1.3 Major equipment is defined as equipment that is normally "tagged" with a State of Nebraska identification number in accordance with Nebraska Department of Transportation Operating Instruction 80-14 (not included in this Quality System Manual). Examples of such equipment are shakers, physical or chemical testing machines, balances, baths, ovens, microscopes, and computing equipment dedicated to testing. There may be equipment that is not "tagged" which is considered major for the purpose of the NDOT Materials and Research Division Laboratory quality system.
- 4.1.4 Major equipment does not include expendable items such as miscellaneous glassware, sieves, molds and viscometers. Office equipment such as desks, chairs and file cabinets are excluded from the inventory records covered by this Quality System Manual.
- 4.1.5 New major equipment received by a laboratory or major equipment taken out of service on a permanent basis shall be reported by the Laboratory Supervisor to the

- Quality Coordinator (see Section 2.4.2) in order that the inventory record (Appendix C) can be revised.
- 4.1.5.1 Major equipment taken out of service on a permanent basis shall be disposed of as surplus property in accordance with the Nebraska Department of Transportation Operating Instruction 80-6 (not included in the Quality System Manual).
- 4.2 Equipment Calibration and Verification.
- 4.2.1 Table 4.1 contains a general description, by laboratory, of equipment for performing tests covered by the scope of this manual which requires calibration or verification. Each equipment item listed includes the associated test method(s), the interval of calibration or verification, calibration and verification requirements and a reference to the calibration or verification procedure used. Table 4.1 also identifies the location of calibration and verification records.
- 4.2.2 Figure 4.1 describes the methods for ensuring that the calibration and verification procedures are performed for all required equipment at the specified intervals. Figure 4.1 also describes procedures for handling equipment which is new, removed from service, out of calibration or defective.
- 4.2.3 Table 4.2 contains a listing of all inhouse equipment calibration and verification procedures which cannot be referenced in applicable standards. Appendix D contains the in-house calibration and verification procedures listed in Table 4.2.
- 4.2.3.1 A copy of the in-house calibration and verification procedure shall be kept in the equipment record file, if applicable (See Figure 4.1).
- 4.2.4 Examples of a typical certificate of calibration and certificate of verification are

shown in Figures 4.2 and 4.3 respectively.

- 4.2.4.1 Certificates of calibration (Figure 4.2) are those received with the purchase of Reference Standard equipment that is used to calibrate or verify other equipment in the laboratory, those received when an outside contractor calibrates testing equipment, or those received from the manufacturer when new equipment is purchased. Reference Standards needing recalibrated will be sent to a facility for recalibration in accordance with Table 4.3.
- 4.2.4.2 A certificate of verification (Figure 4.3) is issued by the Equipment Calibration/Verification Coordinator or a member of the In-House Inspection Team at regular intervals as identified in Table 4.1 and in accordance with calibration and verification procedures identified in Figure 4.1.
- 4.2.4.3 Complete calibration and verification records shall be stored on the computer in the Laboratory Supervisor's office in accordance with the procedures identified in Figure 4.1. A duplicate set of calibration and verification records shall be kept in the office of the Equipment Calibration/Verification Coordinator in accordance with the procedures identified in Figure 4.1.

- shall be retained in the Laboratory Supervisor's office and the Equipment Calibration/Verification Coordinator's office throughout the useful life of the equipment and for a minimum of five years after the equipment is permanently taken out of service.
- 4.3.2 Certificates or other documents that establish traceability of in-house equipment or reference standards used for calibration and verification shall be retained in the Equipment Calibration/Verification Coordinator's office.

4.3 Retention of Records

4.3.1 Calibration and verification records

DATE: 2-13-08 REVISED: 10-23-18

Figure 4.1 – Equipment Calibration, Maintenance and Verification Policies and Procedures

General Policies:

- 1. All equipment files and past records are maintained on the NDOT computer system.
- Required equipment shall be calibrated at specified intervals following the general procedures indicated below.
- 3. Newly acquired equipment without manufacturer's certification shall be calibrated or verified before being placed in service. Any item of new equipment, which has been shown by verification or otherwise to be defective, shall be taken out of service and clearly identified by attaching a red ribbon or tape.
- 4. Equipment that has not been calibrated or verified because it has been removed from service shall be calibrated or verified and maintenance performed if necessary, before being placed back into service.
- 5. When any piece of equipment is overloaded, mishandled, giving results that are suspect, or is not meeting specification tolerances, the Laboratory Supervisor shall remove it from service and clearly mark it by attaching a red ribbon or tape. The equipment shall be returned to service only after appropriate repairs are made and calibration and verification shows the equipment to function satisfactorily or to meet specification tolerances.

General Procedures – Laboratory Supervisor:

- The Supervisor in each laboratory shall monitor their labs files which are kept on the computer. Each laboratory has a file created with its name. Inside each file is a list of yearly folders. In each of the yearly folders is a list of equipment which has been checked or monthly folders (Jan. Dec.). Any discrepancies for example, a piece of equipment not showing up in a folder, shall be reported immediately to the Calibration / Verification Coordinator.
- 2. During the first week of each month, the Laboratory Supervisor of each laboratory shall review the documents from the current years folder. He or she shall review the monthly folders, make a determination for calibration or verification and if there is any maintenance required and arrange for the necessary work as follows:
 - a. Calibration or Verification by Laboratory Staff The Laboratory Supervisor shall instruct appropriate staff to perform the necessary calibration or verification work within the next week and return the completed calibration or verification worksheets. The Laboratory Supervisor shall then forward the worksheets to the Equipment Calibration/Verification Coordinator for review and issuance of a Certificate of Verification.

Figure 4.1 – Continued

- Calibration or Verification by In-House Inspection Team The Laboratory supervisor shall make arrangements with the Equipment Calibration/Verification Coordinator for calibration or verification work to be performed by the In-House Inspection Team.
- c. Calibration or Verification by Outside Contractor The Laboratory Supervisor shall contact the Equipment Calibration/Verification Coordinator to determine the date and time the outside contractor will perform the calibration/verification work.
- d. Maintenance of Equipment Some equipment requires routine maintenance. The Laboratory Supervisor the In-House Inspection Team or an Outside Contractor will perform maintenance on the equipment that is needed. This will be done during the calibration or verification intervals of the equipment.

General Procedures – Equipment Calibration/Verification Coordinator

- The Equipment Calibration/Verification Coordinator has overall responsibility for the In-House Inspection Team and equipment calibration or verification in the Materials and Research Division.
- 2. The Equipment Calibration/Verification Coordinator shall maintain the files for all calibration or verification work performed within the Materials and Research Division, whether performed by the individual laboratory staff, the In-House Inspection Team or an outside contractor. These files shall include certificates or other documents that establish traceability of in-house equipment or reference standards used for calibration and verification.
- The Equipment Calibration/Verification Coordinator shall review all calibration or verification worksheets completed by individual laboratory personnel, In-House Inspection Team or an outside contractor and; if appropriate, issue a Certificate of Verification.

DATE: 2-3-97 REVISED: 10-24-19

Figure 4.2 – Typical Certificate of Calibration

Ever Ready Thermometer Co., Inc. 401 Park Avenue South New York, NY 10016

Report of Calibration

Liquid in Glass Thermometer

Marked: Ertco Cat 1003-3FC S/N - 1292

Range: -1 to +51 Degrees C in 0.1 Degree Graduations

Thermometer Reading	Correction (ITS-90)**
0.00 C	0.00 C
10.00	0.00
20.00	0.00
30.00	0.00
37.00	-0.02
40.00	-0.02
50.00	0.00

^{**} All temperatures in this report are based on the International Temperature Scale if 1990 (ITS-90) published in the Metrolgia 27, No. 1, 3/10/90.

This thermometer was calibrated against a standard calibrated at the National Institute of Standards and Technology (NIST) formerly the National Bureau of Standards (NBS).

For a discussion of accuracies attainable with such thermometers see NBS Nomograph 150.

If no sign is given on the correction, the true temperature is higher than the indicated temperature. If the sign given is negative, the true temperature is lower than the indicated temperature. To use the corrections properly, reference should be made to the notes given below.

The thermometer was tested in a large, closed-top, electrically heated, liquid bath, being "immersed" 76mm. the temperature of the room was about 25 degrees C (77 degrees F). If the temperature is used under conditions which would cause the average temperature of the emergent liquid column to differ markedly from that prevailing in the test, appreciable differences in the indications of the thermometer would result.

The tabulated corrections apply provided the ice-point reading, taken after exposure for not less the 3 days to a temperature of about 20 degrees C (70 degrees F) is 0.00 degrees C. If the ice-point reading is found to higher (or lower) than stated, all other readings will be higher (or lower) to the same extent. If the thermometer is used at a given temperature shortly after being heated to a higher temperature and error of 0.01 degrees of less, for each 10 degree difference between the two temperatures, may be introduced. The tabulate corrections apply if the thermometer is used in the upright position. If used in a horizontal position, the indications may be a few hundredths of a degree higher.

Test Number: 143110

Date: 02/19/92 (Signature)

Standard Serial No. 128239 Charles Tang-Nian
NIST Identification No. 88024 Quality Control Manager

DATE: 3-21-97 REVISED: 3-29-01

Figure 4.3 – Typical Certificate of Verification

CERTIFICATE OF VERIFICATION
Date: <u>March 21, 2001</u>
Equipment Verified:
Equipment Serial No.: <u>1234</u>
Method Used For Acceptance: <u>ASTM E 100</u>
Method Designation:
Equipment Checked By:
Calibration Equipment Used:Caliper #166765, Thermometer #1315, Rule #7734
Location of Equipment: <u>M & R Soils Laboratory</u>
This certificate is issued for the aforementioned equipment and certifies that the equipment has been checked and found to comply with the requirements set forth in the Method listed above.
In order for this equipment to remain in service it must be re-certified on the following date and must comply with the latest methods listed at that time.
Next Calibration Due:
copies:
Equipment Files R. Gloe (Soils Laboratory)

DATE: 09-26-18 REVISED: 10-17-22

Table 4.1 – Equipment Calibration and Verification Information

Equipment – Requirement – Test Method	Calib./Verf. Interval (Months)	Calib./Verf. Procedure Reference			
NOTE: All calibration and verification records shall be kept Supervisor.	AGGREGATES LABORATORY NOTE: All calibration and verification records shall be kept in the office of the Aggregates Laboratory Supervisor.				
Balances, Scales and Weights (General Purpose) – Verify T 11, T 19, T 27, T 84, T 85, T 96, T 104, T 255	12	In-House Procedure # 8			
Conical Molds and Tampers – Check Critical Dimensions T 84	24	In-House Procedure # 9			
Stand, Funnel and Cylindrical Measure – Check Critical Dimensions, Calibrate Volume T 304	12	In-House Procedure # 35			
Hydrometers – Check Critical Dimensions T 104	12	In-House Procedure # 24A			
Los Angeles Abrasion Machine – Check RPM and Critical Dimensions T 96	24	In-House Procedure # 7			
Mechanical Shakers – Check Sieving Thoroughness	12	In-House Procedure # 27			
Ovens – Verify Temperature Settings T 11, T 27, T 96, T 104, T 255, T 176	12	In-House Procedure # 1			
Sieves – Check Physical Condition T 11, T 27, T 85, T 104, T 176, D 4791, D 5821	12	In-House Procedure # 25			
Steel Spheres – Check Individual Weight and Charge Weight T 96	12	In-House Procedure # 7			
Sulfate Oven – Check Rate of Evaporation T 104	12	In-House Procedure # 24B			
Sulfate Soundness Containers – Check Physical Condition T 104	12	In-House Procedure # 24			
Sodium Solution Bath – Temperature Calibration T 104	12	In-House Procedure # 48			
Unit Weight Measure – Calibrate T 19	12	In-House Procedure # 26			
Thermometers – Calibrate	12	In-House Procedure # 47			
Calipers	12	In House Procedure # 45			
BITUMINOUS LABORATORY NOTE: All calibration and verification records shall be kept in the office of the Bituminous Laboratory Supervisor.					
Balances, Scales and Weights (General Purpose) – Verify	12	In-House Procedure # 8			
Ductilometers – Calibrate T 51, T 301	12	In-House Procedure # 39			
Ovens – Verify Temperature Settings 12 In-House Procede					
Rings, Ring Holder, Balls and Assemblage T 53	12	In-House Procedure # 44			

Table 4.1 - Continued

Equipment – Requirement – Test Method	Calib./Verf. Interval (Months)	Calib./Verf. Procedure Reference	
BITUMINOUS LABORATORY	' – CONTINUE	D	
Penetrometers – Check Accuracy of Dial and Timer, Check Needle Condition T 49	12	In-House Procedure # 12	
Vacuum Degassing Oven – Calibrate R 28	12	In-House Procedure # 41	
Pressurized Aging Vessel (PAV) – Check Pressure and Temperature R 28	6	In-House Procedure # 31	
Dynamic Shear Rheometer – Calibrate T 315	6	In-House Procedure # 40	
Bending Beam Rheometers – Calibrate T 313	12	In-House Procedure # 42	
Rolling Thin Film Oven – Check Rotation Speed of Carriage, Check Temperature T 240	12	In-House Procedure # 30	
Saybolt Viscometers – Calibrate T 59	36	AASHTO T 72	
Thermometers – Calibrate T 49, T 201, T 202, T 301	12	In-House Procedure # 47	
Timers – Check Accuracy T 201, T 202	12	In-House Procedure # 4	
Calipers 12 In House Procedu		In House Procedure # 45	
BITUMINOUS AGGREGATE NOTE: All calibration and verification records shall be kept Laboratory Supervisor.			
Asphalt Extraction Apparatus – Check Speed of Centrifuge and Critical Dimensions T 164	12	In-House Procedure # 21	
Balances, Scales and Weights (General Purpose) – Verify	12	In-House Procedure # 8	
Breaking Heads – Check Critical Dimensions T 245 Removed from AASHTO Certification 11/18/16	12	In-House Procedure # 28	
Compression Testing Machines –Verify Load Indications T 245 Removed from AASHTO Certification 11/18/16	12	Outside Contractor	
Calipers	12	In-House Procedure # 45	
Ignition Oven – Verify temperature and Calibrate Balance T 308	12	In-House Procedure # 38	
Gyratory Compactor – Calibrate T 312	12	In-House Procedure # 37	
Gyratory Molds and Ram Heads – Check Critical Dimensions T 312	12	In-House Procedure # 36	
Marshall Molds – Check Critical Dimensions T 245 Removed from AASHTO Certification 11/18/16	12	In-House Procedure # 3	
Vacuum System - Check Pressure T 209	12	In-House Procedure # 23	

Table 4.1 - Continued

	Calib./Verf.	Calib./Verf.		
Equipment – Requirement – Test Method	Interval (Months)	Procedure Reference		
BITUMINOUS AGGREGATE LABORATORY – CONTINUED				
Manual and Mechanical Compactors – Check Rammer				
Weight, Calibrate T 245 Removed from AASHTO Certification 11/18/16	12 Manual 36 Mech.	In-House Procedure # 6 In-House Procedure # 6A		
Mechanical Shakers – Check Sieving Thoroughness T 30	12	In-House Procedure # 27		
Ovens – Verify Temperature Setting	12	In-House Procedure # 1		
Sieves – Check Physical Condition T 30	12	In-House Procedure # 25		
Thermometers – Calibrate T 209	12	In-House Procedure # 47		
CHEMICAL LABORA	ATORY			
NOTE: All calibration and verification records shall be kept Supervisor.	in the office of th	e Chemical Laboratory		
Balances, Scales and Weights (General Purpose) – Verify	12	In-House Procedure # 8		
Muffle Furnace – Verify Temperature Setting T 105	12	In-House Procedure # 34		
X-Ray Fluorescence Spectrometer – Calibrate C 114 Manufacturer's Proce				
PCC LABORATORY – CONC NOTE: All calibration and verification records shall be kept Supervisor.				
Air Meters – Calibrate C 231	3	ASTM C 231		
Balances, Scales and Weights (General Purpose) – Verify	12	In-House Procedure # 8		
Bearing Blocks – Check Planeness C 39	12	In-House Procedure # 11		
Capping Material – Check Strength Not CCRL Cert.	3	ASTM C 617		
Capping Plates and Alignment – Verify C 617	3	In-House Procedure # 15		
Compression Test Machines – Verify Load Indications C 39	12	ASTM E 4		
Moist Rooms/Storage Tanks – Verify Temperature C 39	6	ASTM C 511		
Calipers	12	In-House Procedure # 45		
Molds, Plastic – Check Dimensions C 39	Each Shipment	ASTM C 470		
Slump Cones – Check Dimensions C 143	12	ASTM C 143		
Unit Weight Measure – Calibrate C 138	12	In-House Procedure # 26		

Table 4.1 - Continued

	Т	T T
	Calib./Verf.	Calib./Verf.
Equipment – Requirement – Test Method	Interval	Procedure
	(Months)	Reference
PCC LABORATORY – CEMENT AN	ID FLY ASH TE	ESTING
NOTE: All calibration and verification records shall be kept i	n the office of th	e PCC Laboratory
Supervisor.	_	
Air Content Measure – Calibrate C 185	30	CCRL Inspection
Air Permeability Apparatus – Standardize Using NIST 114 C 204	30	ASTM C 204
Air Permeability Apparatus – Verification Using NIST 114 C 204	6	ASTM C 204
Balances and Weights (Analytical) – Verify	12	Outside Contractor
Balances, Scales and Weights (General Purpose) – Verify	12	In-House Procedure # 8
Bearing Blocks – Check Planeness	12	III-House Procedure # 6
C 109	12	In-House Procedure # 14
Compression Test Machines – Verify Load Indications C 109	12	ASTM E 4
Cube Molds and Tampers – Check Critical Dimensions and Mass	30	CCRL Inspection
C 109	30	CCRL Inspection
Flow Tables – Verify Flow Results	20	CCDI Increation
C 230	30	CCRL Inspection
Gilmore Test Apparatus – Check Critical Dimensions and		0051
Mass C 266 Not CCRL Cert.	30	CCRL Inspection
Mechanical Mixing Apparatus – Check Critical Dimensions		
and Mass	30	CCRL Inspection
C 305		·
Moist Room Storage Tanks – Verify Accuracy	6	ASTM C 511
C 109, C 151, C 451, C 191, C 266		7.0 1.11 0 0 1.1
No. 325 Nozzle – Check Flow Rate C 430 Not CCRL Cert.	6	In-House Procedure # 16
No. 325 Sieves – Clean After 5 Determinations. Calibrate		
After 100 Determinations	_	ASTM C 430
C 430 Not CCRL Cert.		
Ovens – Verify Temperature Settings	12	In-House Procedure # 1
Standard Sand – conformance to ASTM C 778	Each New Shipment	ASTM C 778
Storage Water – Check for Lime Saturation C 109	6	ASTM C 109
Vicat Apparatus and Vicat Ring – Check Critical		
Dimensions and Mass	30	CCRL Inspection
C 187, C 191, C 451		
Thermometers – Calibrate	12	In-House Procedure # 47

Table 4.1 - Continued

	ı		
Equipment – Requirement – Test Method	Calib./Verf. Interval (Months)	Calib./Verf. Procedure Reference	
SOIL MECHANICS LABO	DRATORY		
NOTE: All calibration and verification records shall be kept i Supervisor.		e Soil Mechanics Laboratory	
Balances, Scales and Weights (General Purpose) – Verify T 208, T 216, T 236, T 265, T 296	12	In-House Procedure # 8	
Compression or Loading Devices – Verify Load Indications T 208, T 216, T 236, T 296	12	In-House Procedure # 43	
Ovens – Verify Temperature Settings T 208, T 216, T 236, T 265	12	In-House Procedure # 1	
Timer – Check Accuracy T 208	12	In-House Procedure # 4	
Force, Displacement & Pressure Transducers – Calibrate T 208, T 216, T 236, T 296	12	In-House Procedure # 46	
SOILS LABORATO	DRY		
NOTE: All calibration and verification records shall be kept i Supervisor.		e Soils Laboratory	
Balances, Scales and Weights (General Purpose) – Verify	12	In-House Procedure # 8	
Grooving Tools – Check Critical Dimensions T 89	12	In-House Procedure # 18	
Hydrometers – Check Critical Dimensions T 88	24	In-House Procedure # 17A	
Liquid Limit Devices – Check Wear and Critical Dimensions T 89	12	In-House Procedure # 18	
Manual Hammers – Check Weight and Critical Dimensions T 99, T 180	12	In-House Procedure # 5	
Mechanical Mixers and Cups – Check Speed of Mixer, Critical Dimensions and Physical Condition T 88	24	In-House Procedure # 17	
Mechanical Shakers – Check Sieving Thoroughness	12	In-House Procedure # 27	
Mechanical Soil Rammers – Calibrate T 99, T 180	12	In-House Procedure # 22	
Mechanical Shakers – Check Sieving Thoroughness	Thoroughness 12 AASHTO T 27		
Molds – Check Critical Dimensions T 99. T 180	12	In-House Procedure # 2	
Ovens – Verify Temperature Settings	12	In-House Procedure # 1	
Sieves – Check Physical Condition	6	In-House Procedure # 25	
Straightedges – Check Planeness of Edge T 99, T 180	12	In-House Procedure # 19	
Weighted Foot Assembles – Check Weight T 176	12	In-House Procedure # 20	
Thermometers – Calibrate	12	In-House Procedure # 47	

DATE: 3-27-07 REVISED: 10-23-18

Table 4.2 – Listing of In-House Verification Procedures

In-House Verification Procedure Number	Equipment Description	Location of Procedure
1	Drying Ovens	Appendix D, Figure D.1
2	Compaction Molds	Appendix D, Figure D.2
3	Marshall Molds	Appendix D, Figure D.3
4	Timers	Appendix D, Figure D.4
5	Manual Hammer (T99, T180)	Appendix D, Figure D.5
6	Manual and Mechanical Compactors – Rammer Weight, Drop Height (T245)	Appendix D, Figure D.6
6A	Mech. Compactor – Calibration (T245)	Appendix D, Figure D.6A
7	L. A. Abrasion Machine & Steel Spheres	Appendix D, Figure D.7
8	Scales and Balances	Appendix D, Figure D.8
9	Conical Molds and Tampers	Appendix D, Figure D.9
10	Flash Cups	Appendix D, Figure D.10
11	Bearing Blocks & Retainers (ASTM C 39 & ASTM C 1231))	Appendix D, Figure D.11
12	Penetrometers and Water Baths	Appendix D, Figure D.12
13	Thin Film Ovens	Appendix D, Figure D.13
14	Bearing Blocks (ASTM C 109)	Appendix D, Figure D.14
15	Capping Plates and Alignment	Appendix D, Figure D.15
16	Spray Nozzles	Appendix D. Figure D.16
17	Mechanical Mixers and Cups	Appendix D, Figure D.17
17A	Hydrometer (AASHTO T 88)	Appendix D, Figure D.17A
18	Liquid Limit Device and Grooving Tool	Appendix D, Figure D.18
19	Straightedges	Appendix D, Figure D.19
20	Weighted Foot Assembly	Appendix D, Figure D.20
21	Asphalt Extraction Apparatus	Appendix D, Figure D.21
22	Mechanical Soil Rammer	Appendix D, Figure D.22
23	Vacuum System	Appendix D, Figure D.23

Table 4.2 - Continued

In-House Verification Procedure Number	Equipment Description	Location of Procedure
24	Sulfate Soundness Containers	Appendix D, Figure D.24
24A	Hydrometer (AASHTO T 104)	Appendix D, Figure D.24A
24B	Sulfate Oven	Appendix D, Figure D.24B
25	Sieves	Appendix D, Figure D.25
26	Unit Weight Measure	Appendix D, Figure D.26
27	Mechanical Sieve Shaker	Appendix D, Figure D.27
28	Breaking Head	Appendix D, Figure D.28
29	Flow Meter	Appendix D, Figure D.29
30	Rolling Thin Film Oven	Appendix D, Figure D.30
31	Pressurized Aging Vessel (PAV)	Appendix D, Figure D.31
32	Pycnometer	Appendix D, Figure D.32
33	Gas Flow Meter	Appendix D, Figure D.33
34	Muffle Furnace	Appendix D, Figure D.34
35	Funnel Stand and Cylindrical Measure	Appendix D, Figure D.35
36	Gyratory Molds and Ram Heads	Appendix D, Figure D.36
37	Gyratory Compactor	Appendix D, Figure D.37
38	Ignition Oven	Appendix D, Figure D.38
39	Ductilometer	Appendix D, Figure D.39
40	Dynamic Shear Rheometer	Appendix D, Figure D.40
41	Vacuum Degassing Oven	Appendix D, Figure D.41
42	Bending Beam Rheometer	Appendix D, Figure D.42
43	Soil Compression or Loading Devices	Appendix D, Figure D.43
44	Rings, Ringholder, Balls, and Assembly for Softening Point of Bitumen (AASHTO T 53)	Appendix D. Figure D.44
45	Calipers	Appendix D. Figure D.45
46	Force, Displacement & Pressure Transducers	Appendix D. Figure D.46
47	Thermometer & Thermocouples	Appendix D. Figure D.47
48	Sodium Solution Bath	Appendix D. Figure D.48

DATE: 07-07-09 REVISED: 01-29-21

Table 4.3 – Listing of Reference Standards

Reference Standard	Intervals for Re-Calibration
Balance Weights	Calibrated annually by Nebraska Weights & Measures.
Caliper Gage Block	5 years
Step Gage Blocks (Rheometer)	If Gage Blocks are damaged or the accuracy is in question they will be submitted for re-calibration.
Saybolt Reference Fluid	Fluid will not be kept past its expiration date.
DSR Reference Fluid	Fluid will not be kept past its expiration date.
Thermometers	5 Years
Digital Thermometers	1 Year
Vacuum Gage	3 Years
Pressure Gauge	3 Years
Stopwatch	5 Years
Steel Ruler	1 Year

DATE: 3-26-08 REVISED: 10-24-19

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

5. TEST RECORDS AND REPORTS

- 5.1 *Procedures*—Figure 5.1 describes the procedures used to produce test records and to prepare, check and amend test reports.
 - 5.2 Records and Reports.
- 5.2.1 The test report forms and lab worksheets used in the various test procedures covered by the scope of this manual are identified in Table 5.1. Table 5.2 shows a listing of test report forms and lab worksheets used by the various laboratories having responsibility for conducting the tests and documenting the test results.
- 5.2.2 Appendix E contains a copy of all test report forms and lab worksheets covered by the scope of this manual.

- 5.3 Retention of Records—All test records and reports shall be retained in the laboratory performing the tests for a minimum of five years. Records can be hardcopy paper files or electronic forms.
- 5.4 Disposal of Records Electronic records are saved on the departments servers. They may be deleted from the server after a final project review has been performed and there is no legal litigation pending. Hardcopy files are shredded by the lab supervisor after the final project review has been performed and there is no legal litigation pending.

DATE: 2-3-97 REVISED: 3-29-01

Figure 5.1 – Procedures for Producing Test Records and Preparing, Checking and Amending Test Reports

Preparing Sample Log:

Each sample brought to the Materials and Research Division Laboratory shall be recorded in a log book. Each Laboratory Manager will assign responsibility for maintenance of the log book to a technician working in the laboratory. The following information is recorded for each sample:

- 1. Field sample identification number (when applicable).
- 2. Laboratory sample identification number.
- 3. Project number (when applicable).
- 4. Description of the material.
- 5. Supplier of the material.
- 6. Location from which the sample was taken.
- 7. Name of person(s) who sampled the material.
- 8. Date of sampling.
- 9. Date the sample was received in the materials laboratory.
- 10. The word "RESAMPLE" in red ink (when applicable).
- 11. The date testing was completed.
- 12. The initials of the tester.

NOTE: Additional information, unique to a specific laboratory or to a specific type of material may be included in the log book at the discretion of the Laboratory Manager.

Preparing and Checking Test Reports:

1. Test results are recorded on standard worksheets (where applicable) by the technician performing the test.

NOTE: In some cases, test results may be recorded directly on the final test report.

- 2. The technician performing the test prepares the test report. The technician either signs the test report or initials the test report adjacent to the signature line in situations where the report is signed by the Laboratory Manager or other management personnel.
- 3. An original and two copies of the test report are prepared and forwarded to the Laboratory Manager for review.

Figure 5.1 – Continued

- 4. The distribution of test reports is as follows:
 - a. The original test report is filed in the Materials and Research Division project files.
 - b. One copy of the test report with worksheets attached is kept on file in the laboratory performing the test.
 - c. One copy of the test report is sent to the Project Engineer/Manager.

NOTE: The number of copies of a test report may vary depending on unique circumstances of the laboratory performing the test or the material being tested. Additional copies of the test report may be needed for forwarding to other Materials and Research Division laboratories, other project personnel, material suppliers, etc.

5. Report of Failed Test — In the event results of a test indicate the material has failed to meet specification requirements, an additional copy of the test report will be prepared and forwarded to the Laboratory Manager's immediate supervisor.

Amending Reports:

When a report must be amended a report form shall be filled out indicating the amended test results. The following procedures are used for amending a test report:

- 1. The words "AMENDED REPORT" shall be printed in bold capital letters in the upper right hand corner of the report form
- 2. The reason for the amended report shall be stated in the comments section, or other appropriate location, on the report form.
- 3. The amended report shall be attached to the original report and processed in the normal manner.
- 4. The amended report shall be filed with the original report.

DATE: 4-02-98 REVISED: 02-20-24

Table 5.1 – Listing of Test Report Forms and Worksheets Used for Test Procedures

TEST METHOD		LOCA	TION
NUMBER	TITLE	TEST REPORT FIGURE NO.	WORKSHEET FIGURE NO.
	Asphalt Binder Test Procedures		
AASHTO R 28	Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV)	*	E1.11
AASHTO T 49	Penetration of Bituminous Materials	*	E1.1
AASHTO T 51	Ductility of Bituminous Mixtures	*	E1.12
AASHTO T 78	Distillation of Cut-Back Asphaltic (Bituminous)Products	*	E1.3
AASHTO T 201	Kinematic Viscosity of Asphalts (Bitumens)	*	E1.4
AASHTO T 202	Viscosity of Asphalts by Vacuum Capillary Viscometer	*	E1.5
AASHTO T 240	Rolling Thin Film (RTFO) Test	*	E1.6
AASHTO T 301	Elastic Recovery of Bituminous Materials by Ductilometer	*	E1.8
AASHTO T 313	Determining Flexural Creep Stiffness of Asphalt Binder Using Bending Beam Rheometer (BBR)	*	E1.9
AASHTO T 315	Determining Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer	*	E1.10
* No spec	cific report at this time. SiteManager is in the development	for this section	. 4-08.
	Emulsified Asphalt Test Procedures		
AASHTO T 53	Softening Point	*	E1.7
AASHTO T 59	Testing Emulsified Asphalts Residue by Distillation Saybolt Viscosity	*	E1.2
* No specific report at this time. SiteManager is in the development for this section. 4-08.			
Hot-Mix Asphalt Test Procedures			
AASHTO T 30	Mechanical Analysis of Extracted Aggregate	E2.1	E2.3, E2.2
AASHTO T 166	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens	E2.1, 2.10	E2.4, E2.2
AASHTO T 170	Recovery of Asphalt from Solution by Abson Method	_	_
AASHTO T 209	Maximum Specific Gravity of Bituminous Paving Mixtures	E2.1	E2.5, E2.2
AASHTO T 245	Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus	E2.1	E2.2
AASHTO T 269	Percent Air Voids in Compacted Dense and Open Asphalt Mixtures	E2.1	E2.2
AASHTO T 283	Resistance of Compacted Hot Mix Asphalt to Moisture-Induced Damage	E2.1	E2.7, E2.11
AASHTO T 308	Determining the Asphalt Binder Content of Hot-Mix Asphalt by the Ignition Oven Method	E2.1	E2.2

	TEST METHOD	LOCA	ATION
NUMBER	TITLE	TEST REPORT FIGURE NO.	WORKSHEET FIGURE NO.
	Hot-Mix Asphalt Test Procedures - Continue	ed	
AASHTO T 312	Density of Hot-Mix Asphalt Specimens by Means of the Superpave Gyratory Compactor	E2.1	E2.2
	Hot-Mix Asphalt Aggregate Test Procedure	S	
ASTM D 4791	Flat and Elongated Particles	_	E3.29,E2.11
ASTM D 5821	Coarse Aggregate Angulary	_	E3.30,E2.11
AASHTO T 11	Materials Finer Than 75µm (No. 200) Sieve in Mineral Aggregate by Washing	_	E3.22, 3.23
AASHTO T 27	Sieve Analysis of Fine and Coarse Aggregate	E3.1, E3.3, E3.4, E3.5, E3.6, E3.14	E3.18, E3.22, E3.23
AASHTO T 84	Specific Gravity and Absorption of Fine Aggregate for Asphalt	E3.1, E3.3 E3.41, 3.46	E3.28, E2.11
AASHTO T 85	Specific Gravity and Absorption of Coarse Aggregate	E3.3	E3.16,E2.11
AASHTO T 96	Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Abrasion Machine	E3.1, E3.3, E3.4, E3.5, E3.6, E3.14 E3.41,E3.45 E3.47,E3.48 E3.49	E3.17
AASHTO T 104	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	E3.1, E3.3 E3.4, E3.5 E3.6, E3.14 E3.41,E3.45 E3.46,E3.48 E3.49	E3.20,E3.21
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	E3.46	E3.24,E2.11
AASHTO T 248	Reducing Field Samples of Aggregate to Testing Size	_	_
AASHTO T 255	Total Moisture Content of Aggregate by Drying	_	E3.32
AASHTO T 304	Uncompacted Void Content of Fine Aggregate	E3.46	E3.31,E2.11
Soil Test Procedures			
AASHTO T 87	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	_	_
AASHTO T 88	Particle Size Analysis of Soils	E4.0	E4.1, E4.5
AASHTO T 89	Determining The Liquid Limit of Soils	E3.1, E4.0	E 4.2, E4.3
AASHTO T 90	Determining the Plastic Limit and Plasticity Index of Soils	E3.1, E4.0	E4.2, E4.3
AASHTO T 99	The Moisture-Density Relation of Soils Using a (2.5 kg) 5.5 lb Rammer and a (305 mm) 12 in. Drop	_	E4.4
AASHTO T 100	Specific Gravity of Soils	E4.0	E4.1
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	_	E3.24

	TEST METHOD	LOCA	TION	
NUMBER	TITLE	TEST REPORT FIGURE NO.	WORKSHEET FIGURE NO.	
	Soil Test Procedures - Continued			
AASHTO T 180	Moisture-Density Relations of Soils Using a (4.54-kg) 10-lb Rammer and a (457-mm) 18-in Drop	_	E4.4	
AASHTO T 208	Unconfined Compressive Strength of Cohesive Soils	*	E4.6	
AASHTO T 216	One-Dimensional Consolidation Properties of Soils	*	E4.9	
AASHTO T 236	Direct Shear Test of Soils Under Consolidated Drained Conditions	*	E.4.10	
AASHTO T 265	Laboratory Determination of Moisture Content of Soils	_	E4.1, E4.3, E4.4	
AASHTO T 296	Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression	*	E4.7	
AASHTO T 297	Consolidated, Undrained Triaxial Compression Test on Cohesive Soils	*	E4.8	
*No speci on test da	fic report form. Written technical report summarizing probleta.	em areas and so	olutions based	
	Portland Cement Concrete Test Procedure	S		
ASTM C 39	Compressive Strength of Cylindrical Concrete Specimens	E5.1	E5.2	
ASTM C 138	Unit Weight, Yield, and Air Content (Gravimetric) of Concrete	_	_	
ASTM C 143	Slump of Hydraulic Cement Concrete	_	_	
ASTM C 172	Sampling Freshly Mixed Concrete	_		
ASTM C 173	Air Content of Freshly Mixed Concrete by the Volumetric Method	_	_	
ASTM C 174	Measuring Length of Drilled Concrete Cores		_	
ASTM C 231	Air Content of Freshly Mixed Concrete by the Pressure Method	_	_	
ASTM C 617	Capping Cylindrical Concrete Specimens	_	_	
ASTM C 1231	Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders	_	_	
	Portland Cement Concrete Aggregate Test Proce	edures		
AASHTO T 11	Materials Finer Than 75µm (No. 200) Sieve in Mineral Aggregate by Washing	_	E3.22	
AASHTO T 19	Unit Weight and Voids in Aggregate	_	_	
AASHTO T 21	Organic Impurities in Fine Aggregates for Concrete	E3.7, E3.10, E3.11,E3.42 E3.43	E3.15	
AASHTO T 27	Sieve Analysis of Fine And Coarse Aggregate	E3.1, E3.7 E3.8, E3.9 E3.10,E3.11 E3.12,E3.14 E3.42,E3.43 E3.44, 3.47 E3.48, 3.50	E3.18, E3.22 E3.23	

TEST METHOD		LOCA	TION		
NUMBER	TITLE	TEST REPORT FIGURE NO.	WORKSHEET FIGURE NO.		
Po	Portland Cement Concrete Aggregate Test Procedures - Continued				
AASHTO T 84	Specific Gravity and Absorption of Fine Aggregate	E3.1, E3.7 E3.10,E3.11 E3.42,E3.43	E3.19		
AASHTO T 85	Specific Gravity and Absorption of Coarse Aggregate	E3.1, E3.8 E3.12,E3.44 E3.51	E3.16		
AASHTO T 96	Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Abrasion Machine	E3.1, E3.8 E3.10,E3.11 E3.12,E3.14 E3.42,E3.44 E3.47,E3.48	E3.17		
AASHTO T 104	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	E3.1, E3.7 E3.10,E3.11 E3.14,E3.42 E3.43,E3.48	E3.20, E3.21		
AASHTO T 176	Sand Equivalent Test	E3.10,E3.11 E3.42	E3.24		
AASHTO T 248	Reducing Field Samples of Aggregate to Testing Size				
AASHTO T 255	Total Moisture Content of Aggregate by Drying	_	E3.32		
	Hydraulic Cement Test Procedures				
ASTM C 109	Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or 50-mm Cube Specimens)	E6.1, E6.2, E6.3	E6.11		
ASTM C 114	Chemical Analysis of Hydraulic Cement	E6.12a - c	E6.13		
ASTM C 151	Autoclave Expansion of Portland Cement	E6.1, E6.2, E6.3	E6.10		
ASTM C 151	Supplemental Cementitious Materials – SCM Autoclave Expansion	_	E6.20		
ASTM C 185	Air Content of Hydraulic Cement Mortar	E6.1, E6.2, E6.3	E6.9		
ASTM C 187	Normal Consistency of Hydraulic Cement	_	E6.8		
ASTM C 191	Time of Setting of Hydraulic Cement by Vicat Needle	E6.3	E6.8		
ASTM C 204	Fineness of Portland Cement by Air Permeability Apparatus	E6.1, E6.2	E6.7		
ASTM C 305	Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency	_	_		
ASTM C 311	Portland Cement Concrete (Strength Activity Index)	_	E6.14		
ASTM C 311 / C 109	Supplemental Cementitious Materials – SCM (SAI w/ Portland Cement Worksheet)	_	E6.15		
ASTM C 311 / C 188	Supplemental Cementitious Materials – SCM (Density)	_	E6.19		

TEST METHOD		LOCATION	
		TEST REPORT FIGURE NO.	WORKSHEET FIGURE NO.
Hydraulic Cement Test Procedures – Continued			
ASTM C 430	Fineness of Hydraulic Cement by the 45-µm (No. 325) Sieve	_	E6.4
ASTM C 430 Supplemental Cementitious Materials – SCM Fineness of Hydraulic Cement 45µm Sieve (No.325)		_	E6.21
ASTM C 451	ASTM C 451 Early Stiffening of Portland Cement (Paste Method)		E6.5
ASTM C 618	Supplemental Cementitious Materials – SCM Class C Fly Ash Physical Analysis	_	E6.16
ASTM C 618	Supplemental Cementitious Materials – SCM Class F Fly Ash Physical Analysis	_	E6.17
ASTM C 989	Supplemental Cementitious Materials – SCM Ground Granulated Blast – Furnace Slag Phy. Analysis	_	E6.18

DATE: 2-14-97 REVISED: 01-17-14

Table 5.2 – Listing of Test Report Forms and Worksheets Used in Laboratories

Form Description	Type of Form	Location of Form	
Aggregates Laboratory			
Report of Test, Crushed Rock AASHTO T 27, T 84, T 85, T 89, T 90, T 96, T 104 NDR T 103, T 504	Test Report	App. E, Fig. E3.1	
Report of Test, Crushed Concrete for Use in Asphaltic Concrete AASHTO T 27, T 85, T 96, T 104 NDR T 103, T 504, T 584	Test Report	App. E, Fig. E3.2	
Report of Test, Crushed Rock for Use in Asphaltic Concrete AASHTO T 27, T 85, T 96, T 104 NDR T 89, T 90, T 103, T 504, T 585	Test Report	App. E, Fig. E3.3	
Report of Test, Mineral Aggregate for Use in Asphaltic Concrete AASHTO T 27, T 96, T 104, T 89, T 90 NDR T 89, T 90, T 584	Test Report	App. E, Fig. E3.4	
Report of Test, Mineral Aggregate for Use in Armor Coat AASHTO T 27, T 96, T 104, T 248	Test Report (SiteManager)	App. E, Fig. E3.5	
Report of Test, Gravel Surfacing AASHTO T 27, T 96, T 104, T 248	Test Report SM	App. E, Fig. E3.6	
Report of Test, Fine Aggregate (Class A) for Use in High Density Low Slump or Silica Fume Concrete AASHTO T 21, T 27, T 84, T 104, T 248 NDR T 504	Test Report SM	App. E, Fig. E3.7	
Report of Test, Coarse Aggregate (Class F) for Use in High Density Low Slump or Silica Fume Concrete AASHTO T 27, T 85, T 96, T 248 NDR T 103, T 504	Test Report SM	App. E, Fig. E3.8	
Report of Test, Fine Aggregate (Class D) for Use in Grout Sand AASHTO T 27 NDR T 504	Test Report	App. E, Fig. E3.9	
Report of Test, Fine Aggregate (Class B) for Use in Class 47B Concrete AASHTO T 21, T 27, T 84, T 96, T 104, T 176, T 248 NDR T 504	Test Report SM	App. E, Fig. E3.10	
Report of Test, Sand Gravel Aggregate (Class C) for Use in Class AX & BX Concrete AASHTO T 21, T 27, T 84, T 104, T 176, T 248 NDR T 504	Test Report SM	App. E, Fig. E3.11	
Report of Test, Coarse Aggregate (Class E) for Use in Class 47B Concrete AASHTO T 27, T 85, T 96, T 248 NDR T 103, T 504	Test Report SM	App. E, Fig. E3.12	
Report of Test, General AASHTO T 27, T 88, T 89, T 90, T 96, T 99, T 100, T 104 NDR T 103	Test Report	App. E, Fig. E3.14	

Form Description	Type of Form	Location of Form	
Aggregates Laboratory – Continued			
Organic Impurities in Fine Aggregate for Concrete AASHTO T 21	Lab Worksheet	App. E, Fig. E3.15	
Coarse Aggregate Specific Gravity and Absorption AASHTO T 85	Lab Worksheet	App. E, Fig. E3.16	
Aggregate - Los Angeles Abrasion Test AASHTO T 96	Lab Worksheet	App. E, Fig. E3.17	
Sieve Analysis of Mixtures of Fine and Coarse Grained Materials AASHTO T 27	Lab Worksheet	App. E, Fig. E3.18	
Fine Aggregate Specific Gravity and Absorption for Concrete AASHTO T 84	Lab Worksheet	App. E, Fig. E3.19	
Aggregate - Sodium Sulfate Soundness Test, Record of Cycles AASHTO T 104	Lab Worksheet	App. E, Fig. E3.20	
Sodium Sulfate Soundness Test AASHTO T 104	Lab Worksheet	App. E, Fig. E3.21	
Coarse Aggregate for Concrete (All Classes) AASHTO T 11, T 27, T 255	Lab Worksheet	App. E, Fig. E3.22	
Sieve Analysis of Aggregates AASHTO T 27	Lab Worksheet	App. E, Fig. E3.23	
Sand Equivalent Test AASHTO T 176	Lab Worksheet	App. E, Fig. E3.24	
Percent Clay, Shale and Soft Particles NDR T 504	Lab Worksheet	App. E, Fig. E3.25	
Aggregate, Freezing and Thawing Test (16 Cycles) NDR T 103	Lab Worksheet	App. E, Fig. E3.26	
Aggregate and Stone, Record of Freezing and Thawing Cycles NDR T 103	Lab Worksheet	App. E, Fig. E3.27	
Aggregate for Asphaltic Concrete - Specific Gravity and Absorption AASHTO T 84	Lab Worksheet	App. E, Fig. E3.28	
Flat and Elongated Particles ASTM D 4791	Lab Worksheet	App. E, Fig. E3.29	
Coarse Aggregate Angulary (CAA) ASTM D 5821	Lab Worksheet	App. E, Fig. E3.30	
Uncompacted Void Content of Fine Aggregate AASHTO T 304	Lab Worksheet	App. E, Fig. E3.31	
Total Moisture Content of Aggregate by Drying AASHTO T 255	Lab Worksheet	App. E, Fig. E3.32	
Aggregate Laboratory Sample Record	Sample Record Check-In	App. E, Fig. E3.33	
Fine Aggregate Laboratory Sample Record	Sample Record Check-In	App. E, Fig. E3.34	
Coarse Aggregate Laboratory Sample Record	Sample Record Check-In	App. E, Fig. E3.35	
Crushed Rock Laboratory Sample Record	Sample Record Check-In	App. E, Fig. E3.36	
Super Pave Combined Mineral Aggregate	Sample Record Check-In	App. E, Fig. E3.37	

Form Description	Type of Form	Location of Form	
Aggregates Laboratory – Continued			
Report of Test, CAA and FAA	Test Report	App. E, Fig. E3.38	
Report of Test, Mineral Aggregate – Ice Control (District) AASHTO T 27, T 248	Test Report	App. E, Fig. E3.39	
Report of Test, Combined Mineral Aggregate AASHTO T 27, T 248, T 304	Test Report	App. E, Fig. E3.40	
Report of Test, Asphaltic Concrete Aggregate AASHTO T 27, T 84, T 96, T 104, T 248 NDR T 504	Test Report SM	App. E, Fig. E3.41	
Report of Test, Fine Aggregate for Precast / Prestressed Concrete. AASHTO T 21, T 27, T 84, T 96, T 104, T 176, T 248 NDR T 504	Test Report SM	App. E, Fig. E3.42	
Report of Test, C33 Fine Sand AASHTO T 21, T 27, T 84, T 104. T 248 NDR T 504	Test Report SM	App. E, Fig. E3.43	
Report of Test, Coarse Aggregate for Precast / Prestressed Concrete. AASHTO T 27, T 85, T 96, T 248 NDR T 103, T 504	Test Report SM	App. E, Fig. E3.44	
Report of Test, Chip Seal Aggregate AASHTO T 27, T 96, T 104, T 248	Test Report SM	App. E, Fig. E3.45	
Report of Test, Microsurfacing - Mineral Aggregate AASHTO T 27, T 84, T 96, T 104, T 176,T 248, T 304	Test Report SM	App. E, Fig. E3.46	
Report of Test, Crushed Rock for Surfacing AASHTO T 27, T 96, T 248 NDR T 103	Test Report SM	App. E, Fig. E3.47	
Report of Test, Gravel for Surfacing, Class X AASHTO T 27, T 96, T 104, T 248	Test Report SM	App. E, Fig. E3.48	
Report of Test, Granite, Dolomite Aggregates for Asphaltic Concrete. AASHTO T 27, T 96, T 104. T 176, T 248 NDR T 173, T 504	Test Report SM	App. E, Fig. E3.49	
Report of Test, Granular Subdrain AASHTO T 27 NDR T 103	Test Report SM	App. E, Fig. E3.50	
Report of Test, Rock Riprap, Gabion and Revet Mattress Stone AASHTO T 85, T 103	Test Report SM	App. E, Fig. E3.51	
Report of Test, Mineral Aggregate for Armor Coat (District) AASHTO T 27, T 96, T 104, T 248	Test Report	App. E, Fig. E3.52	
Bituminous Laboratory			
Penetration of Bituminous Materials AASHTO T 49	Lab Worksheet	App. E, Fig. E1.1	
Ductility of Bituminous Mixtures AASHTO T 51	Lab Worksheet	App. E, Fig. E1.12	
Emulsified Asphalt Residue by Distillation AASHTO T 59	Lab Worksheet	App. E, Fig. E1.2	
Distillation of Cut –Back Asphaltic (Bituminous) Products AASHTO T 78	Lab Worksheet	App. E, Fig. E1.3	

Form Description	Type of Form	Location of Form	
Bituminous Laboratory – Continued			
Kinematic Viscosity of Asphalts (Viscosity at 135° C) AASHTO T 201	Lab Worksheet	App.E, Fig. E1.4	
Viscosity of Asphalt by Vacuum Capillary Viscometer (at 60° C) AASHTO T 202	Lab Worksheet	App. E, Fig. E1.5	
Rolling Thin Film Oven (RTFO) Test AASHTO T 240	Lab Worksheet	App. E, Fig. E1.6	
Softening Point AASHTO T 53	Lab Worksheet	App. E, Fig. E1.7	
Elastic Recovery of Bituminous Materials by Ductilometer AASHTO T 301	Lab Worksheet	App. E, Fig. E1.8	
Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR) AASHTO T 313	Lab Worksheet	App. E, Fig. E1.9	
Determining Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer AASHTO T 315	Lab Worksheet	App. E, Fig. E1.10	
Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV) AASHTO R 28	Lab Worksheet	App. E, Fig. E1.11	
Bituminous Aggregate Lab	oratory		
Asphaltic Concrete Summary of Tests	Test Report	App. E, Fig. E2.1	
Report of Test Data – Collected Data Creates Summary of Tests Report for Asphaltic Concrete Mixtures AASHTO T 30, T 166, T 209, T 245, T 269, T 283, T 304, T 308, T 312	Test Data Worksheet	App. E, Fig. E2.2	
Mechanical Analysis of Extracted Aggregate AASHTO T 30	Lab Worksheet	App. E, Fig. E2.3	
Bulk Specific Gravity of Compacted Bituminous Mixtures using Saturated Surface-Dry Specimens AASHTO T 166	Lab Worksheet	App. E, Fig. E2.4	
Maximum Specific Gravity of Bituminous Paving Mixtures AASHTO T 209	Lab Worksheet	App. E, Fig. E2.5	
Percent Air Voids in Compacted Dense and Open Asphalt Mix AASHTO T 269	Lab Worksheet	App. E, Fig. E2.6	
Resistance of Compacted Hot Mix Asphalt to Moisture-Induced Damage AASHTO T 283	Lab Worksheet	App. E, Fig. E2.7	
Determining the Asphalt Binder Content of Hot-Mix Asphalt by the Ignition Oven Method AASHTO T 308	Lab Worksheet	App. E, Fig. E2.8	
Density of Hot-Mix Asphalt Specimens by Means of the Superpave Gyratory Compactor AASHTO T 312	Lab Worksheet	App. E, Fig. E2.9	
Asphaltic Concrete Density Correlation Summary AASHTO T 166	Test Report	App. E, Fig. E2.10	
Asphalt Concrete Design	Lab Worksheet	App. E, Fig. E2.11	

Form Description	Type of Form	Location of Form	
Cement and Concrete Laboratory			
Summary of Compressive Strength Test Data for Portland Cement Concrete Cylinders ASTM C 39	Test Report	App. E, Fig. E5.1	
Compressive Strength of Concrete Cylinders Worksheet ASTM C 39	Lab Worksheet	App. E, Fig. E5.2	
Portland Cement Physical Analysis (Type I/II Cement) ASTM C 109, C 151, C 185, C 204, C 266, C 451	Test Report	App. E, Fig. E6.1	
Portland Cement Physical Analysis (Type III Cement) ASTM C 109, C 151, C 185, C 266, C 451	Test Report	App. E, Fig. E6.2	
Portland Cement Physical Analysis (Type IP Cement) ASTM C 109, C 151, C 185, C 191 C 204	Test Report	App. E, Fig. E6.3	
Fineness of Hydraulic Cement Worksheet ASTM C 430	Lab Worksheet	App. E, Fig. E6.4	
Early Stiffening of Hydraulic Cement Worksheet ASTM C 451	Lab Worksheet	App. E, Fig. E6.5	
Fineness of Hydraulic Cement Worksheet ASTM C 204	Lab Worksheet	App. E, Fig. E6.7	
Normal Consistency Time of Set, Vicat, Worksheet ASTM C 187, C 191	Lab Worksheet	App. E, Fig. E6.8	
Air content for Hydraulic Cement Mortar Worksheet ASTM C 185	Lab Worksheet	App. E, Fig. E6.9	
Autoclave Expansion Worksheet (Cementitious Materials) ASTM C 151	Lab Worksheet	App. E, Fig. E6.10	
Cube Compressive Strength Worksheet (Hydraulic Cement Mortar) ASTM C 109	Lab Worksheet	App. E, Fig. E6.11	
Portland Cement Concrete(Strength Activity Index) ASTM C 311	Lab Worksheet	App. E, Fig. E6.14	
Supplemental Cementitious Materials – SCM (Strength Activity Index with Portland Cement Worksheet) ASTM C 311 / C 109	Lab Worksheet	App. E, Fig. E6.15	
Supplemental Cementitious Materials – SCM Class C Fly Ash Physical Analysis ASTM C 618	Lab Worksheet	App. E, Fig. E6.16	
Supplemental Cementitious Materials – SCM Class F Fly Ash Physical Analysis ASTM C 618	Lab Worksheet	App. E, Fig. E6.17	
Supplemental Cementitious Materials – SCM Ground Granulated Blast-Furnace Slag Physical Analysis ASTM C 989	Lab Worksheet	App. E, Fig. E6.18	
Supplemental Cementitious Materials – SCM (Density) ASTM C 311 / C 188	Lab Worksheet	App. E, Fig. E6.19	
Supplemental Cementitious Materials – SCM Autoclave Expansion ASTM C 151	Lab Worksheet	App. E, Fig. E6.20	
Supplemental Cementitious Materials – SCM Fineness of Hydraulic Cement 45µm Sieve (No.325) Sieve ASTM C 430	Lab Worksheet	App. E, Fig. E6.21	

Form Description	Type of Form	Location of Form
·		
Chemical Laboratory		
Portland Cement Chemical Analysis – Type I/II Cement ASTM C 114, C 150	Test Report	App. E, Fig. E6.12a
Portland Cement Chemical Analysis – Type III Cement ASTM C 114, C 150	Test Report	App. E, Fig. E6.12b
Portland Cement Chemical Analysis – Type IP Cement ASTM C 114, C 150	Test Report	App. E, Fig. E6.12c
ASTM C 114 Rapid Test Methods Calibration Worksheet ASTM C 114	Lab Worksheet	App. E, Fig. E6.13
Soil Mechanics Laborat	ory	
Triaxial Test – Unconfined Compressive Strength of Cohesive Soil AASHTO T 208	Lab Data Sheet	App. E, Fig. E4.6
Triaxial Test – Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression AASHTO T 296	Lab Data Sheet	App. E, Fig. E4.7
Triaxial Test – Consolidated, Undrained Triaxial Compression Test on Cohesive Soils AASHTO T 297	Lab Data Sheet	App. E, Fig. E4.8
One Dimensional Consolidation Properties of Soils AASHTO T 216	Lab Data Sheet	App. E, Fig. E4.9
Direct Shear Test of Soils Under Consolidated Drained Conditions AASHTO T 236	Lab Data Sheet	App. E, Fig. E4.10
Soils Laboratory		
Report of Test, Stabilized Mixture for Use in Foundation Course (Regular) AASHTO T 27 NDR T 99	Test Report	App. E, Fig. E3.13
Report of Test, General AASHTO T 27, T 88, T 89, T 90, T 100, T 248 NDR T 99	Test Report	App. E, Fig. E4.0
Sand Equivalent Test AASHTO T 176	Lab Worksheet	App. E, Fig. E3.24
Particle Size Analysis of Soils AASHTO T 88, T 100, T 265	Lab Worksheet	App. E, Fig. E4.1
Plasticity Index Summary Sheet AASHTO T 89, T 90	Lab Worksheet	App. E, Fig. E4.2
Liquid and Plastic Limits and Moisture Content AASHTO T 89, T 90, T 265	Lab Worksheet	App. E, Fig. E4.3
Moisture-Density Relations of Soils AASHTO T 99, T 180, T 265	Lab Worksheet	App. E, Fig. E4.4
Grain Size Accumulation Chart AASHTO T 88	Lab Worksheet	App. E, Fig. E4.5

DATE: 2-3-97 REVISED: 10-23-18

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

6. SAMPLE MANAGEMENT

6.1 Figure 6.1 describes the procedures to be used for sample identification, storage, retention and disposal of samples.

NOTE 2 – The term "storage" refers to what is done before testing. The term "retention" refers to what is done after testing.

DATE: 3-1-07 REVISED: 02-07-24

Figure 6.1 – Procedure for Sample Management

PROCESSING OF SAMPLES

Identification:

A AASHTOWare sample ID tag shall accompany each sample. The AASHTOWare ID tag gives that material its own unique ID number, provides a project number, contract number, project manager and the number of units. The sample identification form is kept with the sample or the sample is identified with an ID marking as long as it remains in the laboratory.

Storage:

After being logged in, samples are stored in the area of the laboratory in which testing is to be done. During storage, care is taken to avoid disturbance or contamination. Any AASHTO requirements for storage (e.g., the moist storage of Portland Cement concrete cylinders) are followed.

Retention:

Samples with acceptable test results are generally discarded when testing is completed. Those with failing results are retained until reviews of those results are completed. At that time the decision is made whether to discard, retest, or continue to retain the sample.

Disposal:

Laboratory personnel transport discarded non-hazardous materials to a holding area (loading dock area) where the materials remain until disposal occurs. Discarded hazardous materials (e.g., bituminous concrete extraction solution) are stored in proper containers in an isolated area of the laboratory. Disposal is arranged periodically by the NDOT Operations Division's Procurement Officer.

DATE: 2-3-97 REVISED: 10-23-18

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

7. DIAGNOSTIC AND CORRECTIVE ACTION

- 7.1 Proficiency Samples and On-Site Inspection Programs:
- 7.1.1 The NDOT Materials and Research Division Laboratory will participate, at routine intervals, in the proficiency sample and on-site inspection programs of AASHTO re:source and the Cement and Concrete Reference Laboratory (CCRL).
- 7.1.2 Figure 7.1 describes participation in AASHTO re:source and CCRL proficiency sample and on-site inspection programs,

methods used to identify poor results, and procedures to follow when poor results or deficiencies occur.

- 7.2 External Technical Complaints:
- 7.2.1 Figure 7.2 outlines the procedures to be used in responding to external technical complaints.
- 7.2.2 Retention of Records All reports or replies relating to an external technical complaint shall be retained for a minimum of three years in the office of the Materials and Research Engineer (Technical Manager).

DATE: 02-03-97 REVISED: 09-26-18

Figure 7.1 – Procedures Related to Proficiency Sample Testing and On-Site Inspections

GENERAL

When the NDOT Materials and Research Division receives reports pertaining to proficiency sample testing, on-site inspection, and quality system evaluation, they are forwarded to the Quality Coordinator for review.

It is the responsibility of the Quality Coordinator to review all reports and to bring poor results or deficiencies to the attention of the appropriate Laboratory Manager. It is the responsibility of the Laboratory Manager to ensure that corrective action is taken and documented. (In some cases, it may be necessary for the Quality Coordinator to take corrective action and prepare documentation relative to specific differences.)

The Materials and Research Division Engineer, Flexible Pavement & Quality Assurance Engineer, or Quality Coordinator shall report all actions taken to correct inspection deficiencies to the appropriate inspection agency within the specified time frame.

Reports covering the results of proficiency sample testing and on-site inspections and quality system evaluations, and memorandums summarizing investigations and any corrective action taken shall be maintained by the appropriate Laboratory Manager in the Laboratory Manager's office for a minimum of 5 years.

PROFICIENCY SAMPLE TESTING

Participation:

AMRL Soil Proficiency Sample Program

AMRL Coarse and Fine Aggregate Proficiency Sample Program

AMRL Asphalt Cement Proficiency Sample Program

AMRL Emulsified Asphalt Proficiency Sample Program

AMRL Bituminous Concrete Proficiency Sample Program

CCRL Concrete Proficiency Sample Program

CCRL Portland Cement Proficiency Sample Program (Physical and Chemical samples)

CCRL Blended Cement Proficiency Sample Program (Physical and Chemical samples)

CCRL Rebar Proficiency Sample Program

Identifying Poor Results:

A poor result is any result that is beyond two standard deviations from the average value. Procedures to Follow when Poor Results Occur:

- 1. Determine if the agency conducting the proficiency sample program correctly entered the data reported.
- 2. Determine if the test result obtained was properly transferred to the data sheet submitted.
- 3. Determine if all calculations leading to the test results obtained were correct.
- 4. Determine if the equipment used to perform the test meets specification requirements.

Figure 7.1 – Continued

- 5. Determine if the procedures followed when performing the test conformed to specification requirements.
- 6. Take corrective action to repair or take steps to replace defective equipment or instruct the technician of the correct procedure to follow.
- 7. Prepare a memorandum of record summarizing the results of the investigation, identifying the cause of the poor results, if determined, and describing any corrective action taken.

ON-SITE INSPECTIONS

Participation:

AMRL Soils Inspection Program

AMRL Aggregate Inspection Program

AMRL Asphalt Cement Inspection Program

AMRL Emulsified Asphalt Inspection Program

AMRL Bituminous Concrete Inspection Program

CCRL Portland Cement Concrete Inspection Program

CCRL Hydraulic Cement Inspection Program

Procedures to Follow when Deficiencies are Reported:

(Apparatus Deficiencies)

- 1. Determine if the equipment meets specification requirements.
- 2. If the equipment is found to be defective take necessary steps to repair or replace it.
- 3. Prepare a memorandum of record summarizing the results of the investigation and any corrective action taken.

(Procedural Deficiencies)

- 1. Discuss each procedural deficiency with the testing technician and review the proper procedure.
- Observe the technician perform the test properly.
- 3. Prepare a memorandum of record summarizing the action taken.

(Quality System Deficiencies)

- 1. The Quality Coordinator shall review each deficiency cited by the evaluator with the responsible employee.
- 2. Take appropriate action.
- 3. Prepare a memorandum of record summarizing the action taken.

DATE: 2-3-97 REVISED: 3-29-01

Figure 7.2 – Procedures for Handling Complaints

Upon receipt of a technical complaint, the following actions shall be taken:

- 1. The Materials and Research Engineer (Technical Manager) shall be notified.
- 2. The complaint is brought to the attention of the Laboratory Manager of the laboratory in question and the Laboratory Manager's immediate supervisor.
- 3. The Laboratory Manager contacts the complainant to verify all aspects of the complaint and establishes a resolution date (if necessary).
- 4. All reports, records and pertinent data shall be reviewed; and all calculations checked for accuracy.
- 5. The technician(s) performing the test is consulted by the Laboratory Manager to determine any unusual problems or circumstances involved.
- 6. The Laboratory Manager reports all information gathered to the Materials and Research Engineer and the Laboratory Manager's immediate supervisor.
- 7. The Materials and Research Engineer shall formulate an appropriate reply and issue same to the complainant.

DATE: 3-26-01 REVISED: 10-23-18

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

8. INTERNAL QUALITY SYSTEM REVIEW

- 8.1 Scope and Responsibility.
- 8.1.1 Figure 8.1 describes the scope of internal quality system reviews.
- 8.1.2 The Quality Coordinator (see Section 2.4.2) has overall responsibility for the review of the internal quality system. Equipment calibration, verification and inspection reviews are the responsibility of the Equipment Calibration/Verification Coordinator (see Section 2.4.3) who will work with the

Quality Coordinator in accomplishing the overall review of the internal quality system.

- 8.1.2.1 Figure 8.2 shows the form to be used by the Quality Coordinator and the Equipment Calibration/Verification Coordinator in conducting the quality system review of the individual testing laboratories.
- 8.2 Retention of Records—Internal quality system review reports shall be retained in the office of the Quality Coordinator for a minimum of five years.

DATE: 2-3-97 REVISED: 02-07-24

Figure 8.1 – Quality System Review Procedures

- 1. The Quality Coordinator shall review the following records, reports and associated documents every 12 months to ensure that established quality procedures are being followed:
 - a. Proficiency Sample Reports
 - b. On-Site Inspection Reports
 - External Quality System Evaluation Reports
 - d. Testing Technician Training Records
 - e. Testing Technician Evaluation Records
 - f. Major Equipment Inventory Records
- 2. The Equipment Calibration/Verification Coordinator shall review equipment calibration, verification and inspection records every 12 months to ensure that established quality procedures are being followed.
- 3. The results of the quality system review shall be recorded (satisfactory or unsatisfactory) for each item identified above. (See Figure 8.2 for the form to be used for recording the results of the quality system review.) Deficiencies shall be recorded in the comments section of the report form or on a separate sheet attached to the report form.
- 4. After the 12 month review the Quality Coordinator and/or the Equipment Calibration/Verification Coordinator shall discuss any deficiencies noted with the Laboratory Manager, make sure corrective action is taken and jointly prepare a memorandum identifying deficiencies and corrective action taken. Copies of the Quality System Review Report and the attached memorandum (if required) shall be forwarded to the Laboratory Manager, the Laboratory Manager's immediate supervisor and the Materials and Research Engineer.
- 5. A file containing all documents relating to the internal quality system review shall be maintained in the office of the Quality Coordinator.

DATE: 2-3-97 REVISED: 02-07-24

Figure 8.2 – Internal Quality System Review Report

INTERNAL QUALITY SYSTEM REVIEW REPORT

Laboratory:		
ltem	List Specific Record(s) Reviewed	Are records & corrective actions complete?
QMS policies and procedures, including document control		
Technician training records		
Technician competency evaluation records		
Previous internal audit findings		
Customer Complaints		
Records retention		
Equipment inventory list		
Equipment calibration, standardization, check and maintenance lists and records		
Test records and reports	I	
Proficiency sample reports	I	
On-site assessment reports		
Comments:		
	reviewed. Does the information accurately reflect current pract the preparation or revision date for each document correct? In	
List employees interviewed during the audit:		
List audit findings that require corrective	action:	
-		
Audit conducted by:		
Date:		

DATE: 2-3-97 REVISED: 10-23-18

NEBRASKA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION LABORATORY QUALITY SYSTEM MANUAL

9. SUBCONTRACTING

- 9.1 The NDOT Materials and Research Division Laboratory performs all testing covered by the scope of this manual in-house and does not engage subcontractors for testing purposes.
- 9.2 The NDOT Materials and Research Division uses outside agencies for calibration of compression machines, load cells, analytical scales and balances, autoclave valves, thermometers, calibration baths, and calibration weights used for tests covered by the scope of this manual. Figure 9.1 lists the outside contractors used for this purpose.

DATE: 6-1-07 REVISED: 10-17-22

Figure 9.1 – Outside Calibration Contractor List

The following outside contractors provide calibration services described in Paragraph 9.2.

Compression Machines, Load Cells (Maintenance includes lubrication of breaking heads and adjustment of fluids.) Calser Calibrations, LLC PO Box 91 St. Jacob, IL 62281 (618) 644-0329 Instron 825 University Ave. Norwood MA 02062 781-575-5420	Scales, Balances Alfie Packers, Inc. 8901 J street Suite 10 Omaha NE 68127 800-333-7845 402-592-9102 QA Balance Service 7201 Cedar Creek Cr. Lincoln NE 68516 402-420-2774
Autoclave Valves	Thermometers, Calibration Baths
Pioneer Industrial Corp. 36 Whse Hastings 113 S Lincoln Hastings NE 68901 Calibration Weights Nebraska Department of Agriculture Division of Weights and Measures 3271 West Cumming Street Lincoln NE 68524 402-471-2087	ThermoWorks Inc. 741 E. Utah Valley Dr. American Fork, UT 840003 801-756-7705 Vacuum & Pressure Gauge Interstate Industrial Instrumentation, Inc. 10424 J. Street. P.O. Box 27310 Omaha, NE 68127 402-331-3535 Fax 404-339-2445
Steel Rulers Cross Precision Measurement 10327 Chandler Circle, STE 100. LaVista NE Omaha Ph: 423-498-6276 712-256-2135	

Figure A.1 – Class Specification, Engineer VII

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA CLASS CODE: G55327
CLASS SPECIFICATION SALARY GRADE: 20
EST: 08/70 - REV: 11/97 OVERTIME STATUS: E

ENGINEER VII

<u>DESCRIPTION</u>: Performs highly responsible administrative and professional engineering work at the major division head or comparable organizational level; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Administers the total work of one of several major functional divisions such as roadway design, construction, maintenance, or materials and tests.

May coordinate the work of several major functional division.

Develops operational policies and procedures for a functional division.

<u>FULL PERFORMANCE KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance, and/or other evaluations.)

J<u>OB PREPARATION GUIDELINES</u>: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Post high school coursework/training in engineering AND experience in engineering related to agency function. Registration as a professional engineer in Nebraska is required.

Figure A.2 – Class Specification, Engineer III

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA

CLASS CODE: V55315

CLASS SPECIFICATION

EST: 08/70 - REV: 07/21

SALARY GRADE: 18

OVERTIME STATUS: E

ENGINEER III

<u>DESCRIPTION</u>: Performs administrative and professional engineering work at the division, district or section head or comparable organizational level; performs related work as required

EXAMPLES OF WORK: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Administers and coordinates all engineering and maintenance functions in an assigned minor geographic highway district.

Administers the total work of a functional division such as Urban and Secondary Roads, or Program and Planning.

Serves as principal assistant to the engineer in charge of highway design, construction, maintenance or materials.

Takes charge of major phases of highway planning or design, construction, maintenance or materials.

Supervises all engineering involved in watershed development, flood plain management and parks and recreation area development.

Directs major segments of a laboratory and/or field quality assurance program.

<u>FULL PERFORMANCE KNOWLEDGES, ABILITIES, AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

ENTRY KNOWLEDGES, ABILITIES, AND SKILLS REQUIRED: (Applicants will be screened for possession of these through written, oral, performance, and/or other evaluations.)

<u>JOB PREPARATON GUIDELINES</u>: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Post high school coursework/training in engineering AND experience in engineering related to agency function. Registration as a professional engineer in Nebraska required.

Figure A.3 - Class Specification, Engineer IV

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NERRASKA	CLASS CODE:	\/5531/
OTATE OF NEDITATION	OL/100 OODL.	7 0 0 0 1 7
CLASS SPECIFICATION	SALARY GRADE:	17
OLYGO OF LOW TO KITON	ONLY WITH ON VIDE.	- 17
EST: 08/70 - REV: 07/8/	OVERTIME STATUS	
LO1. 00/10 1 LLV. 01/07	OVERVIOLE OF A COLUMN TO THE C	

ENGINEER IV

<u>DESCRIPTION</u>: Performs highly technical and responsible supervisory work in engineering at the section, unit head or comparable organizational level; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Assists a district engineer with the general supervision and coordination of district engineering and maintenance functions within an assigned geographic district.

Serves as principal assistant to engineer in charge of bridge design traffic engineering, urban and secondary planning or program and planning.

Performs supervisory work in office divisions dealing with roadway design, maintenance, program and planning, and related functions.

Serves as consultant to field personnel.

Serves as the engineer in charge of investigations related to soil and water conservation and develops resulting plans.

Supervises and directs the work of designers and draftsmen in the preparation of complete plans for roads and bridges.

Supervises the preparation of preliminary estimates, specifications, special reports and statistical data.

Conducts corridor and design public hearings.

Provides technical assistance in the development and review of federal aid urban and rural projects.

<u>FULL PERFORMANCE KNOWLEDGES, ABILITIES, AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance and/or other evaluations.)

Figure A.3 – Continued

<u>JOB PREPARATION GUIDELINES</u>: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Post high school coursework/training in engineering AND experience in engineering related to agency function. Registration as a professional engineer in Nebraska required.

Figure A.4 - Class Specification, Engineer III

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NERRASKA	CLASS CODE:	V55313
OLAGO OPECIFICATION	0L/(00 00DL.	700010
CLASS SPECIFICATION	SALARY GRADE:	16
EST: 01/78 - REV: 07/8/	OVERTIME STATUS	·
LO1. 01/70 - INE V. 07/04	OVERTIME STATUS	

ENGINEER III

<u>DESCRIPTION</u>: This is complex professional engineering work. Employees in this class perform work of a complex nature under very general supervision with a wide latitude of decision making capabilities. Design engineers in this class can be distinguished by the complexity of the project assigned and the level of responsibility accompanying the more difficult projects which require a thorough understanding of highway design procedures. Employees in this class may be considered as a team leader responsible for the completion of projects and acting as a supervisor for paraprofessional and engineers in training or may be working alone on projects requiring advanced knowledge in the engineering discipline; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Supervises, assists and instructs project managers within an assigned geographic area in the prosecution of preliminary surveys and all phases of construction and may assist maintenance personnel in maintenance activities.

Supervises various phases of field survey work.

Serves as a supervisor in a materials testing laboratory.

Performs responsible engineering office work.

Designs or checks plans and directs the work of subordinates in the preparation of plans and estimates for complex projects.

Supervises the engineering, special studies and research in problems of park and recreational area development, airport planning and development and highway construction materials development.

Supervises technical work in connection with road inventory, traffic, financial and other planning survey.

Supervises analysis of traffic and economic data and preparation of related reports.

Makes traffic forecasts for highway program and planning.

Develops specifications; assists in the procurement, utilization, repair and disposal of equipment.

Develops and coordinates a statewide program of bridge maintenance.

Figure A.4 – Continued

<u>FULL PERFORMANCE KNOWLEDGES, ABILITIES, AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance, and/or other evaluations.)

Knowledge of: principles and practices of engineering; modern methods and techniques of highway construction, maintenance and materials.

Ability to: plan, assign and supervise the work of subordinates; communicate both orally and in writing.

Skill in: making complex engineering computations and in designing the most complex projects.

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Post high school coursework/training in engineering AND experience in engineering related to agency function. Registration as a professional engineer in Nebraska is required.

Figure A.5 – Class Specification, Engineering Unit Supervisor

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA CLASS CODE: V55236 CLASS SPECIFICATION SALARY GRADE: 13 EST: 07/89 - REV: 00/00 OVERTIME STATUS: N

ENGINEERING UNIT SUPERVISOR

<u>DESCRIPTION</u>: Under limited supervision, supervises a unit including Engineering Associate III's and/or Engineering Associate II's and performs the unit's most difficult advanced technical engineering work; responsible for the completion of assignments of a complex nature; work assignments are received with general instructions and objectives outlined by a professional engineer supervisor who reviews work for results obtained; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Plans, assigns, and supervises the work of subordinate Engineering Associates and other assigned classifications to achieve the unit's goals and to ensure the consistent applications of administrative and/or technical policies, procedures and standards.

Evaluates work performance of subordinates and recommends personnel actions including promotions, reassignments, status changes, disciplinary actions and the appointment of new employees.

Develops standard operating procedures to maintain consistency in application of regulations and program policies.

Instructs subordinates on the handling of operational matters when existing policies, procedures or guidelines do not cover the situations.

Performs the unit's most complex advanced para-professional engineering work (complex calculations, bridge inspection).

Functions as liaison with the public, local entities, employees, and other staff concerning unit activities.

Determines progress and priority schedules.

Assures consistency of work and coordinates deviations from procedures.

<u>FULL PERFORMANCE KNOWLEDGES, ABILITIES, AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

Figure A.5 – Continued

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance, and/or other evaluations.)

Knowledge of: methods, techniques, and practices used in the appropriate specialty; extensive knowledge of the para-professional engineering principles and practices in the specialty field.

Ability to: plan, organize, coordinate, supervise and evaluate the work of subordinate staff; communicate orally and in writing; read and interpret engineering plans, specifications, reports, manuals, drawings and other documents; establish and maintain effective working relationships with other work units, contractors, consultants and the public; prepare clear and concise reports.

Skill in: using the computer and other tools for data analysis and storage.

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Any combination of training and/or work experience that will enable the incumbent to possess the required knowledge, skills and abilities. A general qualification guideline is a high school education or equivalent plus ten years of para-professional engineering experience; graduation from a recognized two-year engineering school or other related post high school education may be substituted for work experience.

Figure A.6 – Class Specification, Highway Materials and Tests Technician III

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA CLASS CODE: M53633 CLASS SPECIFICATION SALARY GRADE: 212 EST: 12/95 - REV: 01/98 OVERTIME STATUS: N

HIGHWAY MATERIALS AND TESTS TECHNICIAN III

<u>DESCRIPTION</u>: Under limited supervision, independently plans, coordinates, directs and performs tests and/or inspections on location statewide and/or within the central laboratory; analyzes acquired data; coordinates laboratory and/or inspection unit activities; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Receives or initiates work assignments; schedules, assigns, coordinates, and guides the work of a unit's technicians in accordance with established requirements to assist supervisory staff in the timely accomplishment of the assigned workload.

Reviews and reports on the work performance of co-workers to determine overall conformity to established timetables and quality standards, and to document and communicate employee production levels and training needs.

Communicates with Nebraska Department of Roads (NDOR) field personnel, contractor personnel, and materials suppliers/producers regarding the use and/or sampling of construction materials.

Directs the NDOR pavement friction program to include operation, maintenance and calibration of the computer-controlled pavement friction tester; collection of pavement friction data on location statewide; preparation of pavement friction reports; and recommendations relating to pavement friction.

Performs inspection of steel bridges and miscellaneous fabricated metal products at fabrication facilities, both in-state and out-of-state, such as inspection of welding procedures, welding materials, dimensions, camber, sweep, accuracy of punched and drilled holes, painting operations, mill certifications, etc.

Directs and/or performs sampling, testing, inspection and evaluation of concrete pipe and precast concrete box culverts at concrete pipe plants statewide and directs and/or performs testing and analysis in the laboratory of steel and concrete materials used in concrete pipe and precuts concrete box culverts.

Inspects highway pavement scheduled for rehabilitation, evaluates the condition of the pavement, recommends corrective action such as joint repair, panel repair, bituminous patching and crack sealing, computes quantities and prepares specifications and estimates for pavement repair; recommends rehabilitation strategies on deteriorated pavement not scheduled for repairs.

Figure A.6 – Continued

Directs drilling operations to determine strength and consolidation characteristics of soils, determines and performs tests and analyzes test data, noting potential and unusual soil problems.

Certifies NDOR and contractor operators; certifies contractor profilographs; advises field personnel on profilograph operations and smoothness specifications.

Directs the installation of instrumentation to determine embankment settlement and stability, takes instrument readings and evaluates data noting unusual conditions.

Directs and/or performs environmental soil sampling activities to determine soil characteristics and status of soil contamination; prepares reports which advise and/or give guidance to appropriate personnel on specific subjects such as wetlands mitigation sites, leaking underground fuel storage tanks, electrical power sub-station contamination, and roadway subgrade and drainage problems.

Directs the removal of underground storage tanks and pipes to include obtaining required permits, field testing, obtaining solid and/or water samples, preparing closure assessment reports, and coordinating activities with appropriate state and local agencies and consultants involved in ground water remediation projects.

Directs and coordinates a program for the monitoring of drinking water and wastewater treatment facilities at rest areas.

<u>FULL PERFORMANCE KNOWLEDGE, ABILITIES AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

Knowledge of: the requirements and intent of applicable codes, standards, and specifications for materials used in the construction and maintenance of highways. The standards and specifications involved in the testing and inspection of materials used in the construction and maintenance of highways. Basic engineering principles and practices as applied to the use and production of materials used in the construction and maintenance of highways, geological surveys, in some positions.

Ability to: schedule, assign, guide, and evaluate the work of Materials and Tests Technicians; read and understand engineering blue prints; operate and evaluate various types of sampling, testing, and inspection equipment used in the materials analysis process; read, understand, and apply complex design plans, shop drawings, codes, standards, specifications, and guidelines in order to plan, direct, and enforce testing and inspection procedures; record and communicate data or observations; prepare technical recommendations.

Skill in: coordinating the work of others and maintaining an efficient work flow; communicating with a wide variety of department and non-department individuals; independently analyzing materials and conditions.

<u>ENTRY KNOWLEDGE</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance, and/or other evaluations.)

Figure A.6 – Continued

Knowledge of: the techniques and procedures, involved in the sampling, testing, and inspection of materials used in the construction and maintenance of highways; the occupational hazards and safety precautions applicable to the work such as the proper use of safety equipment, equipment operation, and materials handling; the use of commonly issued testing equipment, devices, scales, ovens, moisture chambers, and strain gauges; materials sampling techniques, terms, and symbols; surface geology and soil map, in some positions.

Ability to: set up and solve mathematical equations using addition, subtraction, multiplication and division; recognize test results outside of limits normally expected; perform basic scientific tests to determine the physical properties of materials used in the construction and maintenance of highways; convert standard weights and measures into units different from those given, including basic metric units; interpret road design plans, terminology and soils mapping data.

Skill in: assembling tools to perform a variety of tests, consecutively, with limited direction; the use of laboratory equipment and in performing laboratory tests. The use of sampling and testing equipment for materials testing and analysis.

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Any combination of training and/or experience that will enable the incumbent to possess the required knowledge, abilities and skills. A general qualification guideline for positions in this class is a high school education or the equivalent and experience in highway construction inspection or materials testing or other laboratory operations.

SPECIAL NOTE

Some positions may require the ability to lift 85 pounds.

Some positions may require overnight travel.

A valid drivers license may be required.

Some positions may require obtaining a Commercial Drivers License.

Figure A.7 – Class Specification, Highway Materials and Tests Technician II

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA CLASS CODE: M53632
CLASS SPECIFICATION SALARY GRADE: 210
EST: 08/95 - REV: 01/98 OVERTIME STATUS: N

HIGHWAY MATERIALS AND TESTS TECHNICIAN II

<u>DESCRIPTION</u>: Under general supervision, independently performs tests and/or inspections on location statewide and/or within the central laboratory; reviews and analyzes test results; identifies material properties; provides information to, and may make recommendations to, Nebraska Department of Roads (NDOR) personnel and to contractors/producers; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Determines the tests to be conducted, based on a review of contract provisions, and identifies acceptable standard deviations of test results.

Reviews routine test results to determine compliance with contract provisions/standard specifications; communicates nonconforming test results to appropriate contacts; distributes completed test results.

Analyzes test results and other collected data on material performance, noting inconsistencies or deficiencies; may maintain data files.

Trains Materials and Tests technicians, as directed, in specific task and job practices and procedures by demonstrating, explaining, evaluating, monitoring and reporting.

Trains contractor and NDOR field personnel in the use of equipment and proper test procedures such as nuclear gauges for density determination, asphalt concrete test procedures performed at construction site laboratories, profilograph operation, and similar training.

Calibrates and adjusts equipment to meet specification requirements.

Reviews, tests, inspects and evaluates new products and materials such as roadside delineators, barricade warning lights, epoxies, anchor bolt systems and reinforcing steel coupling devices by making comparisons to accepted NDOR standards and/or requirements established by other NDOR Divisions.

Performs quality control sampling, testing, inspection and evaluation, reviews bid proposals, and may write specifications for various manufactured products such as wire rope, log chains, aluminum sheeting and sign blanks, grader and plow blades, metal and wood posts, batteries and other similar items.

Makes recommendations to contractors to optimize rolling patterns on asphalt laydown.

Figure A.7 – Continued

Monitors, and recommends corrections, on-site, to the quarry's production testing and delivery to assure aggregates meet standards.

Calibrates, maintains repairs and/or arranges for repairs, and assigns to District personnel, all NDOR profilographs.

Directs and/or performs on-site soil surveys, to include identifying and logging of different soil horizon data, identifying and gathering all necessary soil samples, identifying water table locations and recognizing and noting any hazardous materials (information and locations); prepares soil data for inclusion into project plans.

Reviews concrete construction reports to determine if material quantities and quality comply with contract provisions and calculates routine pay deductions for deficient material.

Assures that proper proportions and mixing procedures are used in laboratory concrete mixes.

On location statewide, through the use of instrumentation and/or contacts with utilities, consultants and private individuals, identifies specific locations free of underground dangers for soil and water sampling.

Installs water monitoring wells to identify contaminated areas; gathers water samples from contaminated areas to identify changing levels and limits of contamination.

Directs bridge deck surveys statewide, including compiling inspection data and writing final reports.

Directs and/or performs concrete and asphalt pavement coring operations to include locating designated core sites and the drilling, measuring and marking of cores.

Operates a roughness surveyor to measure pavement roughness on location statewide, calculates a roughness index from raw data and maintains historical data files.

Maintains a pavement data file for the NDOR Pavement Management System by reviewing highway construction plans, editing pavement information and entering the information in computerized files.

Operates core drills and non-destructive testing equipment to investigate sub-standard non-pavement concrete placements, such as the vertical surface of an abutment backwell.

<u>FULL PERFORMANCE KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

Knowledge of: policies for sampling, testing, and inspection of materials used in the construction and maintenance of highways; the equipment and procedures used by materials producers in the manufacture, refinement, and/or fabrication of materials; commonly used terminology and certification requirements used in materials testing; the operating of commonly issued testing equipment; sampling and testing schedules.

Figure A.7 – Continued

Ability to: Perform mathematical calculations to verify information gathered, and accurately divide and separate materials samples; operate, maintain, and calibrate equipment used in the materials sampling and analysis process; receive, record, and communicate data or observations accurately and legibly; understand and apply detailed instructions; perform moderately difficult mathematical calculations according to standard formulae; interpret road design plans and materials location maps.

Skill in: applying construction principles to materials testing; assembling technical data for reports; operating specialized equipment used to perform non-routine materials tests.

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance and/or other evaluation.)

Knowledge of: the techniques and procedures, involved in the sampling, testing, and inspection of materials used in the construction and maintenance of highways; the occupational hazards and safety precautions applicable to the work such as the proper use of safety equipment, equipment operation, and materials handling; the use of commonly issued testing equipment, devices, scales, ovens, moisture chambers, and strain gauges, materials sampling techniques, terms, and symbols; surface geology and soil map, in some positions.

Ability to: set up and solve mathematical equations using addition, subtraction, multiplication and division; recognize test results outside of limits normally expected; perform basic scientific tests to determine the physical properties of materials used in the construction and maintenance of highways; convert standard weights and measures into units different from those given, including basic metric units; interpret road design plans, terminology and soils mapping data.

Skill in: assembling tools to perform a variety of tests, consecutively, with limited direction; the use of laboratory equipment and in performing laboratory tests. The use of sampling and testing equipment for materials testing and analysis.

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Any combination of training and/or experience that will enable the incumbent to possess the required knowledge, abilities and skills. A general qualification guideline for positions in this class is a high school education or the equivalent and experience in highway construction inspection or laboratory testing.

Figure A.7 – Continued

. SPECIAL NOTE

Some positions may require the ability to lift 85 pounds.

Some positions may require overnight travel.

A valid driver's license may be required.

Some positions may require obtaining a Commercial Driver's License.

Figure A.8 – Class Specification, Highway Materials and Tests Technician I

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA CLASS CODE: M53631
CLASS SPECIFICATION SALARY GRADE: 208
EST: 08/95 - REV: 10/99 OVERTIME STATUS: N

HIGHWAY MATERIALS AND TESTS TECHNICIAN I

<u>DESCRIPTION</u>: Under immediate to general supervision, performs routine tests on asphalt, concrete, aggregate and other construction materials following established procedures; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Performs AASHTO, ASTM, ANSI, IMSA and AISC tests on reinforcing steel, bolts, pre-stressed strand, electrical wire, pipe and drainage products, cast iron products, other construction materials and nondestructive testing such as coating, plating and ultrasonic thickness determinations.

Performs AASHTO and Nebraska Department of Roads (NDOR) tests on soils such as liquid limit, plastic limit, hydrometer analysis, sand equivalent, moisture density, and similar routine tests.

Performs AASHTO, ASTM and NDPR tests on cement, concrete, fly ash, concrete cores, curing materials, patching materials, and non-shrink grouts such as compression, autoclave expansion, air content, fineness, reflectivity, and similar routine tests.

Performs AASHTO and NDOR tests on aggregate such as sieve analysis, specific gravity, Los Angeles abrasion, freezing and thawing, soundness, sodium sulfate soundness, percent clay, shale and soft particles, and similar routine tests.

Performs AASHTO, NDOR and FHWA tests on oil, asphalt cement, emulsified asphalt, Performance Graded (PG) asphalt binder, diesel fuel, lube oils, hot joint sealers, gasohol, and grease, such as viscosities, penetration, distillations, evaporation, heat loss, flash point, specific gravities, and similar routine tests.

Performs AASHTO, ASTM and FHWA tests to determine the volumetric properties of asphalt concrete during design to include properties such as air voids, maximum specific gravity, voids in mineral aggregate, asphalt cement percentage, stability, flow values, "Superpave" requirements, etc.

Receives and inventories samples, prepares samples for testing, records test results, maintains lab and testing equipment, and cleans the lab.

Performs simple math (addition, subtraction, division, multiplication) functions to determine test results.

Figure A.8 – Continued

Demonstrates proper methods of performing assigned tests.

Measures final record pavement cores and records findings.

Assists with asphalt and concrete coring operations and bridge deck surveys by flagging traffic, loading/unloading equipment, measuring for coring locations, locating reinforcing steel for corrosion reading and samples, locating and identifying delaminated concrete, inventory of cores, filling holes, maintaining equipment, and similar tasks.

Installs as directed, reads and records data from field soil instruments such as inclinometers, piezometers, and settlement gauges.

Assists in on-site soil surveys including operating and maintaining soil survey equipment.

Prepares borrow pit sketches, updates soil reports and files.

Performs construction site nuclear density testing.

<u>FULL PERFORMANCE KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

Knowledge of: the techniques and procedures involved in the sampling, testing, and inspection of materials used in the construction and maintenance of highways; the occupational hazards and safety precautions applicable to the work, such as the proper use of safety equipment, equipment operation, and materials handling; the uses of commonly issued testing equipment, devices, scales, ovens, moisture chambers, and strain gauges; materials sampling techniques, terms, and symbols; surface geology and soil maps, in some positions.

Ability to: set up and solve mathematical equations using addition, subtraction, multiplication and division; recognize test results outside of limits normally expected; perform basic scientific tests to determine the physical properties of materials used in the construction and maintenance of highways; convert standard weights and measures into units different from those given, including basic metric units; interpret road design plans.

Skill in: assembling tools to perform a variety of tests, consecutively, with limited direction; the use of laboratory equipment and in performing laboratory tests. The use of sampling and testing equipment for materials testing and analysis.

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance and/or other evaluations.)

Knowledge of: highway construction materials and procedures; basic mathematics relating to the materials tests used in the Department.

Ability to: perform addition, subtraction, multiplication, and division; read and follow detailed test procedures; understand instructions and apply them to practical work situations; perform tasks repeatedly while maintaining integrity of results.

Figure A.8 – Continued

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Any combination of training and/or experience that will enable the incumbent to possess the required knowledge, abilities and skills. A general qualification guideline for positions in this class is a high school education or the equivalent.

SPECIAL NOTE

Some positions may require the ability to lift 85 pounds.

Some positions may require overnight travel.

A valid driver's license may be required.

Some positions may require obtaining a Commercial Driver's License.

Figure A.9 – Class Specification, Highway Materials and Tests Manager

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA

CLASS CODE: V55720

CLASS SPECIFICATION

SALARY GRADE: 16

EST: 05/96 - REV: 06/99

OVERTIME STATUS: E

HIGHWAY MATERIALS AND TESTS MANAGER

<u>DESCRIPTION</u>: Under limited supervision, performs complex engineering work for the Nebraska Department of Roads (NDOR) Materials and Tests Division with a wide latitude of decision-making capabilities related to highway design practice, development of specifications, resolution of construction problems, and analysis and evaluation of material used in highway construction; and providing quality assurance oversight for highway construction and branch laboratories; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Supervises materials design and manages the flow of projects within the Flexible Pavement Section.

Prepares project cost estimates for all base and surfacing related items prior to contract letting.

Supervises the complete design process for surface rehabilitation projects and Pavement Extension Program projects.

Performs on-site inspections of asphaltic concrete or base construction problems and recommends corrective action during construction.

Prepares preliminary project cost estimates for NDOR administration, Roadway Design, Transportation Planning, Materials and Tests Engineer and District Engineers.

Prepares preliminary project cost estimates for Roadway Design estimating staff pertaining to surface rehabilitation projects and Pavement Extension Program projects.

Monitors contractors' bids to insure accuracy of future estimates.

Writes and supervises the writing of specifications and contract special provisions.

Communicates with District Engineers, Project Managers, Roadway Design engineers and contractors and makes decisions concerning contract, design, or construction issues.

Communicates regularly with District Construction Engineers and District Maintenance Superintendents to improve future specifications.

Sets expectations for and evaluates work performance of the Flexible Pavement Section staff.

Figure A.9 – Continued

Performs field inspections and determines the surface repair or reconstruction schemes that will be required for future projects.

Supervises the distribution of material design information to Quality Assurance staff, District Engineers and Project Managers.

Establishes and/or recommends policy on material testing for the Physical Tests Laboratory.

Provides technical assistance and guidance to Materials and Tests, Bridge, Roadway Design, Construction, Traffic Engineering and Maintenance personnel on a wide variety of manufactured products; provides plan and specification review and development for these divisions.

Coordinates research activities including testing, evaluation, design and field site selection for various concrete, metal and plastic drainage products.

Identifies, investigates, develops solutions and writes reports relating to material problems encountered on highway and bridge construction projects and the maintenance of existing highway facilities.

Reviews correspondence from the Construction Division and from contractors in order to apply price deductions when deficiencies or improper materials have been incorporated into a project.

Provides analysis of failed structures, utilizing a full range of engineering applications and applied technology, such as conducting failure analysis on items such as bridge structural components, lighting and signal structures, culverts and foundations; recommendations for design, repair or retrofit, and replacement are common.

Uses engineering knowledge to design, manufacture and repair specialized equipment used for testing and research applications in the field, as well as in the laboratory.

Corresponds with other states' Departments of Transportation, engineering consultants, contractors and other testing agencies relating to the transfer of technical information, as well as testing and material selection for state, county and federal-aid projects.

Develops and provides training for field construction personnel at the project site, as well as presentations at seminars and Project Manager conferences.

Prepares an annual budget for the Physical Tests Laboratory.

Ensures that all material testing and certification requirements are met by preparing additional estimates for coordination with individual laboratories within the Materials and Tests Division.

Releases the final estimate on construction projects after receipt and verification of required material testing and certifications; determines if contractors are due interest on outstanding payments for the materials portion of the contract.

Figure A.9 – Continued

Prepares Required Documents List showing all materials required for highway construction projects for prime contractors and project managers.

Provides technical oversight of the four NDOR branch laboratories ensuring that adequate equipment is available and resolving day-to-day problems.

<u>FULL PERFORMANCE KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

Knowledge of: construction techniques; construction specifications; materials specifications and test methods; management techniques.

Ability to: plan, organize and coordinate activities of an engineering unit; read and interpret engineering plans and specifications; communicate technical engineering and/or construction materials information orally and in writing; resolve engineering and/or construction materials related problems.

Skill in: organization; the use of engineering and/or construction materials testing equipment; using software applications related to engineering and/or construction materials work.

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance and/or other evaluations.)

Knowledge of: civil engineering and/or construction materials principles and practices; engineering specifications; supervisory techniques; engineering and/or construction materials testing techniques.

Ability to: plan, organize and coordinate activities; read and interpret plans and specifications; communicate orally and in writing.

Skill in: utilizing engineering and/or construction materials testing principles; performing complex engineering and/or construction materials testing calculations; the use of computers.

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Any combination of training and/or experience that will enable the incumbent to possess the required knowledge, abilities and skills. A general qualification guideline for positions in this class is high school education or equivalent AND education or experience in a civil engineering related field or experience in highway construction or material testing and reporting.

SPECIAL NOTE

A valid driver's license is required.

Overnight travel may be required.

Figure A.10 – Class Specification, Highway Chemical Tests Manager

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA CLASS CODE: V53950
CLASS SPECIFICATION SALARY GRADE: 16
EST: 04/73 - REV: 05/86 OVERTIME STATUS: E

HIGHWAY CHEMICAL TESTS MANAGER

<u>DESCRIPTION</u>: Under administrative direction is responsible for managing the overall activities of the Chemical Tests Unit within the Department of Roads; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Directs special assignments as assigned by the Manager of the Soils, Chemical and Special Projects Section.

Coordinates the unit's research programs, special laboratory and field investigations, and cooperative test programs.

Oversees the sampling, testing, and reporting of construction and maintenance materials within the jurisdiction of the unit.

Prepares related specifications and special provisions of materials within the units.

Develops an operating budget for the unit.

Prepares manuals and guides on materials and test procedures relevant to the unit.

Monitors the composition of materials used in construction and maintenance.

<u>FULL PERFORMANCE KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

Knowledge of: chemical composition of highway construction materials; test and research methods; lab instrumentation usage; data processing.

Ability to: direct the work of subordinate personnel.

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance, and/or other evaluations.)

Knowledge of: highway construction materials; chemical testing procedures.

Ability to: exercise responsible scientific judgement in supervising quality control; communicate effectively both orally and in writing; maintain records and reports.

Figure A.10 – Continued

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may be acquired on the job and are needed to perform the work assigned.)

Any combination of education, training, and/or work experience that will enable the incumbent to effectively perform the required examples of work and demonstrate the necessary full performance knowledge and abilities required of the job.

Figure A.11 Class Specification, Chemist III

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA CLASS CODE: E53313
CLASS SPECIFICATION SALARY GRADE: 274
EST: 09/78 - REV: 08/97 OVERTIME STATUS: E

POSITION ELIMINATED 2007 CHEMIST III

<u>DESCRIPTION</u>: Performs responsible supervisory and scientific work in directing the activities of a large state laboratory or laboratories. Performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Supervises and participates in the chemical and/or physical testing and analysis of foods and/or materials such as feeds, fertilizers, agricultural chemicals, drugs, paints, petroleum products, metals, cements or concrete products.

Directs, supervises and participates in research programs.

Prepares or assists in the preparation of specifications for materials and equipment to be purchased by the state.

Develops new and improved testing procedures and apparatus.

Supervises the work of and makes work assignments for personnel of assigned laboratory or laboratories.

Directs and participates in in-service training programs.

Directs, prepares and maintains reports, records and correspondence related to assigned area.

May prepare manuals and guidelines on materials and test procedures.

May assist in preparation of the budget for assigned area.

May coordinate the work of outside agencies performing related testing for the state.

<u>FULL PERFORMANCE KNOWLEDGES, ABILITIES, AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance, and/or other evaluations.)

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Figure A.11 Continued

Bachelor's degree with major in chemistry plus seven to ten years experience in chemical testing and analysis including supervisory experience; or Master's degree in chemistry plus five to seven years experience in chemical test and analysis; or Doctorate in chemistry plus one to three years related experience; demonstrated excellence in supervisory and leadership capabilities.

Figure A.12 Class Specification, Scientist II

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA CLASS CODE: E53312
CLASS SPECIFICATION SALARY GRADE: 672
EST: 08/70 - REV: 07/21 OVERTIME STATUS: N

SCIENTIST II

<u>DESCRIPTION</u>: Under limited supervision, examines and analyzes organic and inorganic materials, substances, and compounds and trains, advises, and provides work guidance to other laboratory staff on chemical analysis procedures, standards, and findings; performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Analyzes samples and specimens in accordance with the principles of qualitative and quantitative analysis and agency protocol, to screen for, assay compare and/or identify inorganic materials and organic substances such as drugs, pesticides, antibodies, vitamins, or minerals; to assess the scope of any health or environmental chemical hazards; or to identify a common source.

Reviews and evaluates published chemical analytical procedures and methods to determine recommendations to laboratory supervisors regarding inclusion in official laboratory protocol and adaptations to current laboratory instrumentation.

Evaluates laboratory-related commercial products such as reagent test kits to determine conformance with agency product standards and to develop data for use in making purchasing decisions.

Advises laboratory staff and officials of other public and private agencies on test results and interpretation in chemical analysis specialties to explain and ensure the proper application of specific technical laboratory procedures.

Compiles and interprets chemical and/or physical data to develop conclusions on the structure, composition, and properties of materials and the significance of these characteristics.

Schedules, coordinates, distributes/balances, and guides the work assignments of other laboratory staff, in accordance with established work flow/assignment requirements, to assist in the accomplishment of the assigned workload.

Monitors, reviews, and reports the work performance of other laboratory staff to ensure effective and consistent application of chemical test and analysis procedures and standards, determine overall conformity to established timetables, and to document and communicate employee production levels and training needs.

Trains other laboratory staff engaged in conducting analyses to improve employee performance levels and to continue and improve the accuracy of analyses. Operates and/or calibrates

Figure A.12 – Continued

computerized instruments such as the gas chromatograph-mass spectrometer to perform multiple interactional analyses of samples.

Interprets read-outs, printouts, or other instrument data to determine or analyze results of chemical or physical tests and analyses.

Testifies at judicial and/or administrative hearings involving the consideration of chemical analyses to explain, interpret and provide information on the findings and conclusions of laboratory tests.

Writes and compiles laboratory reports, correspondence, or scientific papers to document significant analyses methods or findings.

Writes, constructs, and compiles laboratory notes, charts, quality control data, and graphs on test activities or analyses to summarize and document the results, conditions, and procedures of laboratory tests.

Operates, calibrates, and repairs laboratory instruments and equipment such as UV-visible and atomic absorption spectrophotometers, gas and liquid chromatographs, analytical balances, volumetric glassware, extraction apparatus, induction furnaces, reflex and flame photometers, phmeters, technician auto-analyzers, selective ion meters, conductivity meters and/or radiochemical analysis instruments, to test, analyze, or prepare samples.

<u>FULL PERFORMANCE KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

Knowledge of: state law and rules and agency policies, procedures, and standards governing the analysis of organic and inorganic materials; information sources and resource literature pertinent to agency chemical analysis functions; techniques of training and leading others.

Ability to: design and evaluate agency laboratory testing and analysis procedures, guidelines, and standards; compare the specifications of laboratory equipment, instruments, and materials to agency product standards; advise representatives of other organizations and local agencies on the technical practices and standards of a laboratory function; instruct other laboratory staff in the policies, procedures, and standards of a laboratory function.

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance, and/or other evaluations.)

Knowledge of: the principles, practices, and methods of chemistry and biochemistry and their application in a laboratory setting; the principles and practices of scientific methodology; the procedures, equipment, instruments, and facilities of laboratory testing; the hazards and safety precautions of laboratory testing activities; research literature in chemical analysis; chemical analysis techniques.

Figure A.12 – Continued

Ability to: operate computer operated/controlled laboratory instruments including interpretation of the resulting data; communicate orally and in writing to exchange technical and scientific information and to interact with other chemists, laboratory staff, and the public; comprehend and apply oral and written supervisory and administrative instructions, equipment operation manuals, and safety rules and instructions; calculate solutions to mathematical and statistical problems; use and maintain laboratory supplies, instruments, and apparatus; apply and modify laboratory testing and analysis procedures and methods; observe and identify characteristics or patterns in substances and compounds; extract and interpret findings from laboratory tests and analyses; summarize findings and conclusions of tests and analyses into technical laboratory reports; instruct other laboratory staff in the policies, procedures, and standards of laboratory testing and analysis; set personal work priorities and manage own work time.

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may be acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

Post high school coursework/training in chemistry or biochemistry AND experience in an applied testing laboratory with responsibility for chemical analysis.

Figure A.13 Class Specification, Highway Quality Assurance Manager

February 28, 2007 - State of Nebraska, Department of Administrative Services

STATE OF NEBRASKA CLASS CODE: V57550 CLASS SPECIFICATION SALARY GRADE: 14 EST: 09/78 - REV: 07/84 OVERTIME STATUS: N

HIGHWAY QUALITY ASSURANCE MANAGER

<u>DESCRIPTION</u>: Responsible for maintaining a standard of quality for materials used in the maintenance and construction of highways. Performs related work as required.

<u>EXAMPLES OF WORK</u>: (A position may not be assigned all the duties listed, nor do the listed examples include all the duties that may be assigned.)

Conducts a continuous surveillance of materials used in the maintenance and construction of highways.

Reviews progress of construction work and sampling requirements for field construction personnel.

Manages and directs the activities of a Branch Laboratory or the quality Assurance Records Section of Materials and Tests Division.

Reviews test reports; determines priority of sampling and testing; maintains complete files.

Assists and advises field personnel in establishing and maintaining field laboratories and in implementing the requirements of the Materials and Tests Division.

Checks and calibrates testing equipment used by the Materials and Tests Division.

May perform the documentation of quality assurance requirements for certification to the Federal Highway Administration.

May assist in budget preparation for an assigned section.

May direct the final record coring program.

May direct research on statistical quality assurance and the development of statistical based specifications.

May direct the sampling, inspection and testing of commercial aggregates for acceptance of certain sources of production.

May prepare materials manuals and specifications.

<u>FULL PERFORMANCE KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (These may be acquired on the job and are needed to perform the work assigned.)

Figure A.13 – Continued

<u>ENTRY KNOWLEDGES</u>, <u>ABILITIES</u>, <u>AND SKILLS REQUIRED</u>: (Applicants will be screened for possession of these through written, oral, performance, and/or other evaluations.)

Knowledge of: highway construction materials.

Ability to: exercise sound scientific judgement in supervising quality control and subordinates; to follow administrative direction; to communicate effectively both orally and in writing; to maintain records and reports.

JOB PREPARATION GUIDELINES: (Entry knowledge, abilities, and/or skills may acquired through, BUT ARE NOT LIMITED TO, the following coursework/training and/or experience.)

High school education plus ten years experience related to agency function; or Bachelor's degree in geology or related field plus five years experience related to agency function; or Bachelor's degree in engineering plus four years experience related to agency function. Registration as a Professional engineer in Nebraska desirable and may substitute for two years experience.

SPECIAL NOTE

Considerable driving of state vehicles.

DATE: 2-9-2024 REVISED:

Figure B.1 – Biographical Sketch (Materials & Research Engineer (Engineer VII)

NAME:		
Brendon Schmidt		

FORMAL EDUCATION:

Date	Degree	Discipline	College
12/2004	Bachelor of Science	Civil Engineering	University of Nebraska—Lincoln

PROFESSIONAL RECOGNITION:

THOTEOGRAPHICA.
Registered Professional Engineer, State of Nebraska E-14226

EXPERIENCE:

From	То	Description of Experience		
Date	Date			
8-2023	Present	Transportation Division Engineer—Materials and Research Division		
6-2017	8-2023	Transportation Division Engineer—Right of Way Division		
5-2016	6-2017	Assistant Roadway Design Engineer—Districts 1 and 7, Engineer V		
3-2015	5-2016	Roadway Design Expressways Section A-1, Engineer IV		
12- 2013	3-2015	Roadway Design Resurfacing Unit, Engineer IV		
6-2012	12- 2013	Roadway Design Expressways Section A-2, Engineer III		
12- 2011	6-2012	Roadway Design Expressways Section A-3, Engineer II		
1-2007	12- 2011	Roadway Design Expressways Section A-3, Highway Designer III		

CERTIFICATIONS AND RATINGS:

<u> </u>			
Date	Description of Certifications and Ratings		

TRAINING:

Date	Description of Training

DATE: 2-8-07 REVISED: 10-17-22

Figure B.2 – Biographical Sketch Engineer of Portland Cement & Concrete, Chemical Tests (Engineer III)

N	Λ	٨	Л		
IN	А	I١	И	_	3

Wally Heyen

FORMAL EDUCATION:

Date	Degree	Discipline	College
5/89	Bachelor of Science	Civil Engineering	North Dakota State University

PROFESSIONAL RECOGNITION: (Professional licenses, etc.)

Professional Civil Engineer		

EXPERIENCE:

From Date	To Date	Description of Experience		
3-06	Present	Portland Cement Concrete Engineer: Manage the Chemistry, Physical Tests and PCC Materials & Testing Laboratory in the Materials & Research Division. Writes specifications, Responds to questions from the districts, contractors, suppliers, other states and peers. Monitor AASHTO & ASTM Standards. Research concrete designs and properties.		
3/02	3/06	Signing and Pavement Marking Engineer: Manage Projects and delegate duties.		
6/94	3/02	Roadway Design Engineer / Squad Leader: Managed and designed highway projects using highway design criteria and standards.		
6/89	6/94	Project Engineer: Managed construction projects. Supervised team of employees.		

CERTIFICATIONS AND RATINGS:

Date	Description of Certifications and Ratings		

TRAINING:

Date	Description of Training

DATE:

REVISED: 10-17-22

Figure B.3 – Biographical Sketch Geotechnical Engineer (Engineer III)

NAME:								
Nikolas (Slennie							
ORMAI	. EDUCAT	ION:						
Date		Degree	Discipline	College				
5/2011	Bachelor	of Science	Civil Engineering	University of Nebraska-Lincolr				
DOEES	SIONAL E	RECOGNITION	l•					
		er - Nebraska	<u>. </u>					
. 10100010	mai Engine	or represent						
EXPERIE								
From	To		Description	of Experience				
Date 05/11	Date 04/14	Assistant bridg	e foundation engineer – N	•				
04/14	10/20		ion engineer – Nebraska I					
10/20	Present	Geotechnical e	engineer – Nebraska DOT					
10/20	1 1000110	Cooledinioare	rigineer Hebrasika Be i					
	•							
ERTIFIC	CATIONS	AND RATING						
Date			Description of Certification	ons and Ratings				
10/15	Professio	nal Engineer – S	State of Nebraska					
	<u> </u>							
CD A IN IIN I	G·							
RAININ	Description of Training							
TRAININ Date			2000ption of framing					
Date								

DATE: 10-10-08 REVISED: 10-17-22

Figure B.4 – Biographical Sketch Assistant M&R Engineer & Flexible Pavement Engineer (Engineer III)

NAME:

Robert Charles Rea

FORMAL EDUCATION:

Date	Degree	Discipline	College
5-1991	Bachelor of Science	Civil Engineering	University of Nebraska - Lincoln

PROFESSIONAL RECOGNITION:

Registered Professional Engineer, State of Nebraska, # E-8280
Engineer In Training (EIT), 1997
University of Nebraska – Lincoln Engineering Co-op Program Graduate

EXPERIENCE:

From Date	To Date	Description of Experience		
2008	Present	Flexible Pavements Engineer, M&R, Bituminous Laboratory, Bituminous Aggregate laboratory, QA Branch and Field Laboratories. NDOT		
2006	2008	Chief Operations Officer for Heavy Highway Construction Company		
1998	2006	Pavement Design Engineer, Research Engineer, Concrete Pavements Engineer, Management of Physical Testing laboratory, Chemical Testing Laboratory, Portland Cement Laboratory, Portland Cement Concrete Laboratory. NDOR		
1996	1998	Chief Engineer for Heavy Highway Construction Company		
1988	1996	Project Engineer, District Local Assistance Engineer NDOR – District One Construction Office		

CERTIFICATIONS AND RATINGS:

Date	Description of Certifications and Ratings			
	Minnesota DOT, Nebraska Department of Roads – Bituminous Technology IIA & IIB			
	NDOR - Hot Mix Asphalt Design			
	NDOR – Certified Profilograph Operator			
	NDOR – Principals of Construction of Hot Mix Asphalt			

TRAINING:

Date	Description of Training		
	Federal Highway Administration – Traffic Network Simulation		
	Iowa State University – Roadside Design Manual/Traffic Safety		
	National Asphalt Pavement Association – Middle Management		

DATE: 01-29-21 REVISED: 10-17-22

Figure B.5 – Biographical Sketch (Engineer III – Final Review and Physical Test Engineer)

	(Engineer III – Fina	Review and Phys	sical Test Engineer)	
NAME:					
Mark Fis	cher				
CODMAI	EDIICA:	FION.			
Date	_ EDUCA		Discipline	College	
5/2006	Bachelor	Degree	Civil Engineering	College University of Nebraska-Lincoln	
3/2000	Dacricio	<u>s</u>	Civil Engineering Oniversity of Nebraska-Lincoln		
PROFES	SIONAL	RECOGNITION:			
1 1101 20					
EXPERIE	ENCE:				
From	То		Description	of Experience	
Date	Date		<u> </u>		
2006	2013	Bridge Design Engineer-designed new and in-place structures over natural and man-made obstructions. Provided design checks and training to bridge designers.			
2013	2015	Roadway Design Engineer-Designed vertical, horizontal alignments as well as coordinated the design package with other divisions and turned into PS&E for letting.			
2015	2018	Project Delivery Engineer-Developed schedules for DOT construction projects. Worked with other divisions to make sure scope and schedule were met.			
2018	2019	Assistant Planning Engineer-Oversaw the Planning unit and Traffic Data unit			
2019	Present	Assistant Materials and Research Engineer-Oversee the Research, Final Review and Physical test lab.			
CERTIFIC	CATIONS	AND RATINGS:			
Date		Desci	ription of Certification	ons and Ratings	
6/2012	Certified	Professional Civil Eng		<u> </u>	
2/2014	Certified	Project Management	Professional (PMP)		
TRAININ	G:				
Date			Description of T	raining	
			•		

DATE: 2-3-97 REVISED: 01-29-21

Figure B.6 – Biographical Sketch PCC Materials & Laboratory Manager (Materials & Tests Manager)

NAME:

Tim A. Krason

FORMAL EDUCATION:

Date	Degree	Discipline	College
1985	A.A.S.	Drafting & Design	Mid-Plains – North Platte NE
1990	Bachelor of Science	Industrial Tech. Management	Kearney State – Kearney NE

PROFESSIONAL RECOGNITION:

EXPERIENCE:

From Date	To Date	Description of Experience	
2-2012	Present	M&T Manager. PCC Section Manager	
2008	2-2012	Hwy. Quality Assurance Manager. PCC Materials & Laboratory Manager. Quality Assurance Manual & Equipment Verification Coordinator for Central Labs. Supervise PCC Lab and coordinate research activities and troubleshoot concrete issues.	
2005	2008	Hwy. Quality Assurance Manager, PCC Materials, Materials and Research Division, Nebraska Department of Roads. Materials and Research equipment verification coordinator. Verification of accuracy and condition of branch laboratory equipment. Field concrete troubleshooting and M&R contact. Supervise concrete research conducted in laboratory and in the field.	
8/98	2005	Engineering Unit Supervisor, PCC Materials, Materials and Research Division, Nebraska Department of Roads. Materials and Research equipment verification coordinator. Verification of accuracy and condition of branch laboratory equipment. Field research and concrete inspector. Supervise concrete research conducted in laboratory.	
5/94	8/98	Laboratory Technician II, PCC Laboratory, Materials and Tests Division, Nebraska Department of Roads. Perform physical tests on cement and fly ash. Perform research on concrete materials.	
8/91	5/94	Senior Engineering Aide, District 4, Kearney NE, Nebraska Department of Roads. Perform construction inspections, preliminary and construction surveys.	

CERTIFICATIONS AND RATINGS:

Date	Description of Certifications and Ratings		
	American Concrete Institute (ACI) Concrete Field Testing Technician Grade 1		
	American Concrete Institute (ACI) Concrete Strength Testing Technician		
	American Concrete Institute (ACI) Concrete Plant Technician Level 2		
	Troxler Training & Certification		

Date	Description of Training		

DATE: 2-27-07 REVISED: 01-29-21

Figure B.7 – Biographical Sketch Chemical Laboratory Manager (Highway Chemical Tests Manager)

N	Λ	RЛ		
IN	А	IVI	_	Ξ

Jasmine Dondlinger

FORMAL EDUCATION:

Date	Degree	Discipline	College		
2006	Bachelor of Science	Chemistry	University of Nebraska - Lincoln		
2006	Minor	Math	University of Nebraska - Lincoln		

PROFES	PROFESSIONAL RECOGNITION:					
		_			_	•

EXPERIENCE:

EXTERIOL:				
From Date	To Date	Description of Experience		
2007	Present	Highway Chemical Tests Manager, Chemical Laboratory, Materials and Research Division, Nebraska Department of Roads. Management of Chemical Laboratory.		
2006	2007	Chemist II, Chemical Laboratory, Materials and Research Division, Nebraska Department of Roads. Perform chemical tests on various materials used by the Nebraska Department of Roads in highway construction.		

CERTIFICATIONS AND RATINGS:

Date	Description of Certifications and Ratings		

Date	Description of Training
2004	X-Ray Radiation Safety Course

DATE: 4-26-23

REVISED:

Figure B.8 – Biographical Sketch

	(Hwy. Quality Assurance Manager)
NAME:	

FORMAL EDUCATION:

Justin Steffensmeier

. •						
Date	Degree	Discipline	College			
2013	Associate's of Science	Turf Management	Northeast Community College			

PROFESSIONAL RECOGNITION:			

EXPERIENCE:

From Date	To Date	Description of Experience
2019	2023	Materials & Tests Tech III (Aggregate Lab) - Perform regular quality and verification tests on fine and coarse aggregate. Review/report results using SiteManager, OnBase, AASHTOWare Project.
2023	Present	Highway Quality Assurance Manager (Soils Lab), APL Coordinator – Collect and analyze soil samples. Test and report various soil tests results. Manage NDOT's Approved Products List as well as Build America, Buy America Certifications.

CERTIFICATIONS AND RATINGS:

OLIVIII IOATIONO AND IVATINGO.		
Date	Description of Certifications and Ratings	

Date	Description of Training	
5-20-20	DOT Hazardous Materials Training	

DATE: 05-15-17 REVISED: 01-29-21

> Figure B.9 – Biographical Sketch Bituminous Laboratory Manager (Hwy. Quality Assurance Manager)

NAME:

Asadullah Sahak

FORMAL EDUCATION:

· · · · · · · · · · · · · · · · · · ·			
Date	Degree	Discipline	College
06/01/1998	Certificate of Graduation	Ms. Office	Bakhtar Language & Computer Center
12/30/2001	Bachelors	Civil Engineering	Kabul University
12/30/2006	Diploma in Business Admin	Business Admin	Kardan University of Business Admin

PROFESSIONAL RECOGNITION:

N/A		

EXPERIENCE:

From	То	Description of Experience	
Date	Date	Description of Expendice	
03/1996	03/2008	Language Department Supervisor at Bakhtar Language and Computer School	
01/2002	03/2008	Linguist for US military in Afghanistan	
01/2003	12/2004	Senior Engineering linguist / Quality Control Engineer at Camp Eggers Kabul	
01/2003	12/2004	Afghanistan	
01/2005	01/2006	Monitoring and Evaluation Manager in Coordination of Humanitarian Assistance (NGO)	
01/2006	03/2008	QC Engineer at Afghan Dubai (Previously Known as Afghan Korea) Construction	
01/2000	03/2006	Company	
09/2008	11/2013	Taught Language to US Military through Several DoD Contractors	
11/2013	05/2017	Correctional Unit Case Worker for Nebraska Department of Corrections	
05/2017	03/2020	Hwy Materials & Tests Technician III NDOT	
03/2020	Present	Highways Quality Assurance Manager NDOT – Bituminous Laboratory	

CERTIFICATIONS AND RATINGS:

<u> </u>	
Date	Description of Certifications and Ratings
1/24/18	ACI Concrete Field-Testing Technician Grade I
2/5/18	ACI Concrete Strength Testing Technician

Date	Description of Training	
2005	I have participated and conducted several seminars of project management, gender, monitoring and evaluation of humanitarian projects, proposal writing and community developmental issues	
12/2019	Excel Advanced Formulas and Functions	
05/2020	Using a Rheometer to simplify tack testing	
12/2020	NDOT Hazardous Material Training	
12/2020	COE- CLSS Yellow Belt continued education	

DATE: 10-17-22 REVISED:

Figure B.10 – Biographical Sketch PCC Coring & Smoothness Testing Unit Manager (Hwy. Quality Assurance Manager)

	(Hwy. Quality Assurance Manager)	
NAME:		
Alex Johnson		

FORMAL EDUCATION:

Date	Degree	Discipline	College
12/2023	Bachelors	Criminal Justice	University of Nebraska-Lincoln

PROFESSIONAL RECOGNITION:		

EXPERIENCE:

From Date	To Date	Description of Experience
05/2020	08/15/2022	Construction Technician 1, 2, 3 for the Nebraska Department of Transportation. Oversee construction projects on the State Highway System, Oversee Concrete and asphalt plants during the Lincoln South Beltway.
08/15/2022	Present	Hwy. Quality Assurance Manager, PCC Coring & Smoothness Unit, Materials & Research Division, Nebraska Department of Transportation, Coordinate and test smoothness verification on the State Highway System, Supervise the Coring crew.

CERTIFICATIONS AND RATINGS:

Date	Description of Certifications and Ratings
01/18/2022	Railroad Education Training
02/02/2021	ACI Concrete Field Testing Technician – Grade 1
11/23/2020	NDOT Erosion and Sediment Control Installer certification
10/20/2020	NDOT Erosion and Sediment Control Inspector Certification

Date	Description of Training						
3-10-2022	Concrete Plant Class Technician Certification						

DATE: 10-27-2023

REVISED:

Figure B.11 – Biographical Sketch (Hwy Quality Assurance Manager)

NAME:

Jeff Gaston

FORMAL EDUCATION:

Date	Degree	Discipline	College		
2006	Certification	Professional Truck Driver Training	Southeast Community College, Lincoln		
2008	Associates of Applied Science	Nondestructive Testing Technologies	Southeast Community College, Milford		

PROFESSIONAL RECOGNITION:

EXPERIENCE:

From Date	To Date	Description of Experience
2008	2018	Managed new construction projects of high-pressure storage systems (tanks, spheres, refineries.) Projects lasted 8-24 months each. Trained new employees in advanced ultrasonics and other NDT inspection techniques (VT, PT, MT, RT, UTT, UTSW, UTPA) Typical schedule was 60-80 hrs & 2,500 miles of travel per week (driving) Obtained extensive amounts of environmental compliance and job safety training. Certified in manlift operation for all seven types of forklifts. Board of Directors member
2018	2023	Materials & Tests Tech III (Physical Tests) Perform tests (Both destructive & non) of reinforcing steel, high-strength bolts, and anchor rods, culverts, high mast light towers, and cantilever signs. Analyze and review data/certifications to ensure the materials submitted meet the pertinent material standards via AASHTOWare.
2023	Present	Highway Quality Assurance Manager (Physical Tests) Lab Supervisor, manage employees, & conduct final reviews. Ultrasonic inspection of steel highway products, as well as visual, PT, & MT. Procedure and specification review for new and current products used at NDOT.

CERTIFICATIONS AND RATINGS:

Date	Description of Certifications and Ratings
2006	Class A CDL, Tanker Endorsement
2008	Level II VT, MT, PT, UT, UTT, UTSW, UTPA, RT, ET Certification
2010	Forklift Certification & ISO9001 Auditor
2014	Manlift Certification

Date	Description of Training
2010	Six Sigma – Black Belt
2015	Advanced Phased Array Ultrasonics

DATE: 2/14/2024

REVISED:

Figure B.12 – Biographical Sketch

		(Hwy Q	uality Assurance N	lanager)							
NAME:											
Jacob R	eynolds										
	EDUCA	TION									
	_ EDUCA		Disciplina	Callan							
Date		Degree	Discipline	Colleg	е						
	•										
PROFES	SIONAL	RECOGNITION:									
EXPERIE	ENCE:										
From	То		Description of Experience								
Date	Date		Description	DI Experience							
Nov 2023	Present	Hwy Quality Assura	ance Manager, Manag	ing the Asphalt Mix Des	ign lab.						
July 2022	Nov 2023	Hwy Mat Test Tech	III, Testing concrete,	asphalt, and soils – D2	lab						
Dec 2021	July 2022	Hwy Mat Test Tech	ı III, Field quality assu	rance for D1							
May	Dec	_	III, testing asphalt for	D1 projects, approving	asphalt mixes						
2019	2021	statewide									
CERTIFI	CATIONS	S AND RATINGS:									
Date		Desc	ription of Certification	ons and Ratings							
		crete Field Testing Te									
		crete Strength Testing									
		a Asphalt Field Technician I/II									
	Nebrask	a Laboratory Testing	Technician								
TD A INIIN											
TRAININ	lG: ⊤		Description of T	rainina							
Date			Description of 1	ranning							
	1										

DATE: 10-23-18 REVISED: 01-29-21

Figure B.13 – Biographical Sketch Physical Tests Lab Manager

			Physical Tests Lab Ma	nager			
AME:							
Mark Bu	rham						
	- EDUCA						
Date		Degree	Discipline	College			
1980	B.S		Civil Engineering	University of Nebraska			
	CIONALI	DECOCNITIO	NI.				
KUFES	SIUNAL I	RECOGNITIO	N:				
EXPERIE	NCF:						
From	To						
Date	Date		Description	of Experience			
		Physical Test Lab Manager. Oversees testing of rebar, strand, wire, resin					
1980	Present	adhesives, etc.					
	CATIONS	AND RATING					
ERTIFI Date	CATIONS		GS: Description of Certificati	ons and Ratings			
	CATIONS			ons and Ratings			
	CATIONS			ons and Ratings			
	CATIONS			ons and Ratings			
	CATIONS			ons and Ratings			
Date				ons and Ratings			
Date TRAININ			Description of Certificati				
Date							
Date TRAININ			Description of Certificati				
Date TRAININ			Description of Certificati				
Date TRAININ			Description of Certificati				

DATE: 2-16-24 **REVISED**:

NAME: Scott Waddle FORMAL EDUCATION: Date Degree Discipline College PROFESSIONAL RECOGNITION: EXPERIENCE: From To Date Date Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Perform all the tests in the Physical Test Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings				ure B.14 – Biographica T Engineering Unit Su					
FORMAL EDUCATION: Date Degree Discipline College PROFESSIONAL RECOGNITION: EXPERIENCE: From To Date Date Date Solis Lab Mgr. 7-11-17 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:	NAMF:		(··· =gg					
FORMAL EDUCATION: Date Degree Discipline College PROFESSIONAL RECOGNITION: EXPERIENCE: From To Date Description of Experience 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings		ddle							
Date Degree Discipline College PROFESSIONAL RECOGNITION: EXPERIENCE: From To Date Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings									
PROFESSIONAL RECOGNITION: EXPERIENCE: From Date Date Description of Experience 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings	FORMAL	EDUCA1	ΓΙΟΝ:						
EXPERIENCE: From To Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings	Date	D	egree	Discipline	College				
EXPERIENCE: From Date Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings									
EXPERIENCE: From Date Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings									
EXPERIENCE: From To Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings									
EXPERIENCE: From To Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings									
From Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:	PROFES	SIONAL I	RECOGNITIO	N:					
From Date Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:									
From Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:									
From Date Date 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:									
Date Description of Experience 5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:	<u>EXPER</u> IE	NCE:							
5-15-23 Present Engineering Unit Supervisor - Soils Lab Mgr. 7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:	From	То		Description	of Experience				
7-11-17 5-15-23 M&T Tech III - Soils Lab Technician. Performed all the tests in the Soils Lab 11-8-93 7-11-17 M&T Tech III - Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:									
11-8-93 7-11-17 M&T Tech III – Perform all the tests in the Physical Test Lab 4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:									
4-1984 11-8-93 Construction Inspector with HWS Consulting Group CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:									
CERTIFICATIONS AND RATINGS: Date Description of Certifications and Ratings TRAINING:									
Date Description of Certifications and Ratings TRAINING:	4-1984	11-8-93	Construction I	nspector with HVVS Consu	iting Group				
Date Description of Certifications and Ratings TRAINING:									
Date Description of Certifications and Ratings TRAINING:									
Date Description of Certifications and Ratings TRAINING:	CERTIFIC	CATIONS	AND RATING	is.					
TRAINING:					ons and Ratings				
					ono ana raungo				
Date Description of Training	TRAININ	G:							
	Date			Description o	f Training				
	İ								

DATE: 03-10-06 REVISED: 01-29-21

Table C.1 – Major Equipment Inventory, Aggregates Laboratory

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.
Balance	1990	1990	New	Mettler	PE16		NDOR 024200 AMRL 444G
Balance	1994	1994	New	A and D	EP-12KA		NDOR 041793
Balance	1989	1989	New	Mettler	PM-11		NDOR 023499 AMRL 115E
Balance	2015	2015	New	Mettler Toledo	JS3002G		NDOR 40098
Balance	2004	2004	New	A&D	FP-12K	6503840	NDOR 048112
Balance	1950	1950	New	Toledo	31-1821D	749061	NDOR 022508
Crusher, Chipmonk	1985	1985	New	Bico		67083	NDOR 024201
Fine Aggregate Angularity Device	1997	1997	New	Humbolt	H-4940.6		A1400
Los Angeles Machine	1990	1990	New	Gilson	HM-70	CA139	NDOR 033847 AMRL 114E
Oven	1998	1998	New	Despatch			NDOR 045874
Oven	1960	1960	New	Despatch		61020	AMRL 791B
Oven	1948	1948	New	Despatch		25275	AMRL 189B
Oven Removed 2020	1978	1978	New	Despatch			AMRL 190B
Oven	2020	2020	New	Despatch	LBB1-69-3	197544	
Shaker	1960	1960	New	Fisher Wheeler			NDOR 022532
Shaker	1960	1960	New	Fisher Wheeler			NDOR 022533
Shaker	1960	1960	New	Fisher Wheeler			NDOR 022534
Shaker	2018	2018	New	Gilson			27MR50916
Shaker	2018	2018	New	Gilson			27MR50915
Shaker, Mary Ann Rem. 2020	1994	1994	New	Rainhart	637		NDOR 042020
Shaker, Mary Ann Rem. 2020	1994	1994	New	Rainhart	637		NDOR 042021
Shaker, Mary Ann	1978	1978	New	Rainhart	635		NDOR 022528
Splitter, Mechanical	1970	1970	New	NDOR			NDOR 023859

Table C.1 - Continued

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.
Splitter (3/4")	1970	1970	New	Soiltest	CL-283A		NDOR 023855
Splitter (3/4")	1995	1995	New	Soiltest	CL 283		NDOR 042404
Splitter (1/4")	1970	1970	New	Soiltest	CL-244A		NDOR 023857
Stirring Apparatus (Mixer)	1970	1970	New	Hamilton Beach	936		NDOR 023854

DATE: 10-12-07 REVISED: 07-20-23

Table C.2 – Major Equipment Inventory, Bituminous Laboratory

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.
Balance Removed from service 6-8-2023	1988	1988	New	Ohaus	E 4000	1780	NDOR 024227
Balance	1994	1994	New	A and D	FA-200	5023759	NDOR 041910
Balance Removed from service 6-8-2023	1983	1983	New	American Scientific	TL4100	001047	NDOR 019995
Balance Removed from service 6-8-2023	2014		New	A and D	EJ-4100	5A2837016	
Bending Beam Rheometer Removed from service 7-1-2022	1-28-08	1-28-08	New	Cannon	TE-BBR	3459-A408	NDOR 048229
Centrifuge	1984	1984	New	Simm			NDOR 023865
Circulator	1996	1996	New	PolyScience	7305		NDOR 043574
Emulsion Distillation Appar.	8-28-96	8-28-96	New	Humboldt	H-2285		NDOR 043980
Ductility Machine	2000	2000	New	Humboldt			NDOR 047943
Dynamic Shear Rheometer Removed from service 7-31-17	1999	1999	New	TA	CSA 500	9F1482	NDOR 046099
Flash Apparatus (Still have, but discontinued use.)	1947	1947	New	Pensky-Martens	1737		NDOR 023907
Flash Apparatus	1983	1983	New	Precision Scientific		10AM/11	NDOR 023885
Oil Bath (275°F)	1972	1972	New	Cannon	H1	1070	NDOR 023891
Oven (Not in use. Loaned to UNL)	?	?	?	Blue M	SW-17TA	S4-3946	
Oven	4/15/19	4/15/19	New	Despatch	LBB1-69-2	195518	27MR50919
Oven (160°F)	3-1-05	3-11-05	New	Blue M	G013 10A	018P-504 348-OP	
Oven, Cleaning	10-10-97	12-1-97	New	Tempyrox	3-AB	9443	NDOR 044583
Oven, Rolling Thin Film Removed from Service 7/20/23	4-4-97	11-1-97	New	Despatch	Roll. Thin	158617	NDOR 044398
Oven, Thin Film (325°F)	1989	1989	New	Blue M			NDOR 0031157
Oven, Vacuum Degassing	4-26-01	5-1-01	New	Prentex	9900E1	99137	NDOR 047820
Penetrometer	1996	1996	New	Precision Scientific		BE-1	NDOR 043573
Pressurized Aging Vessel Removed from Service 7/20/23	12-95	10-97	New	Applied Test Systems	504B	N950910-28	

Freezer Removed from service 10-1-2021	2013	4-29-13	New	JRV Inc.	34-09A	S8005242	NDOR 048411
Silverson Shear Mixer	2002	5-02	New	Silverson Machines	L4R	14517	NDOR 047997

Table C.2 - Continued

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.
Refrigerated Water Bath Circulator	7-16-98	7-23-98	New	Fisher Scientific	1016D	198077018	NDOR 045708
Rotational Viscometer	5-13-02	Not verified.	New	Bohlin	Visco2000		NDOR 048001
Viscometer, Saybolt	8-14-96	8-14-96	New	Precision Scientific		10BD-4	NDOR 043753
Viscometer, Saybolt	10-21-03	3-1-04	New	Precision Scientific	74965		NDOR 048081
Water Bath (100°F)	1947	1947	New	NDOR			NDOR 023875
Water Bath (77°F)	1947	1947	New	NDOR			NDOR 023881
Water Bath (140°F) (Inactive)	1966	1966	New	Cannon	H1	1175	NDOR 023892
Water Bath (180°F)	1977	1977	New	Cannon	M1	2384	NDOR 023889
Water Bath (140°F) (Inactive)	1972	1972	New	Cannon	M1	2119	NDOR 023890
Water Bath (40°C)	1975	1975	New	Cannon	M1	2383	
Water Bath (100°C) (Inactive)	1975	1975	New	Cannon	M1	2118	
Viscosity Bath	5-24-07	6-1-07	New	Koehler	KV3000		NDOR 048205
Dynamic Shear Rheometer	10-11-06	11-1-06	New	TA	AR2000	6H3143	NDOR 048616
Dynamic Shear Rheometer	10-15-07	12-1-07	New	TA	AR1500	7H3490	NDOR 048221
Rotational Evaporator	2015	2015	New	BUCHI	300 Series		NDOR 049042
Pressurized Aging Vessel	2017	8-1-17	New	Applied Test Systems	PAV-3	17-16186-1	
Rolling Thin Film Oven	2017	8-1-17	New	Applied Test Systems	RTFO-Touch	17-16185-1	
Dynamic Shear Rheometer	1-2018	5-2018	New	KINEXUS		MAL1170319	27MR49530
Dynamic Shear Rheometer	1-2018	5-2018	New	KINEXUS		MAL1168233	27MR50769
Balance	2021	2-21-2021	New	Sartorious	BCE224-1S	38704011	
Freezer	2021	2021	New	Scientemp Corp	34-15A	S8009341	27MR51453
Bending Beam Rheometer	5-15-22	6-7-2022	New	Cannon	TE-BBR	3459-A408	27MR51491
Balance	2022	6-8-2023	New	OHAUS	SPX6201	24278	

DATE: 03-10-06 REVISED: 09-26-18

Table C.3 – Major Equipment Inventory, Bituminous Aggregate Laboratory

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.
Balance	1986	1986	New	Mettler	6000		NDOR 022901
Balance	1990	1990	New	Mettler	PJ 6000	J97752	NDOR 032516
Balance			New	Mettler	PE24Kg		NDOR 24247
Balance			New	AND	HP40K	13002542	NDOR 43752
Balance	1988	1988	New	Sartorius	E-12000 S		NDOR 024231
Compactor, Gyratory	1995	1995	New	Troxler	D-4843-01- 00	05-95-140063-3	NDOR 5388
Compactor, Manual	Unknown	Unknown	Unknown				DSH 5290
Compactor, Triple Hammer	1993	1993	New	Humboldt	H-1338B		NDOR 039659
Counter, Automatic	1994	1994	New	Humboldt	H-1332		NDOR 042023
Manometer	1998?	1998?	New	Princo Instruments Inc			NDOR 042013
Manometer	1998?	1998?	New	Princo Instruments Inc			NDOR 042115
Mixer	1993	1993	New	Blakeslee	B-20T	63-61658DCB	NDOR 040026
NCAT Asphalt Content Tester	1999	1999	New	Thermolyne	F85938	1087990271761	NDOR 046035
NCAT Asphalt Content Tester	8-6-98	10-22-98	New	Barnstead/Thermolyne	F85930	1087980711910	NDOR 045873
Oven	1994	1994	New	Despatch	LAD	2-24-3	NDOR 041445
Oven	2003	2003	New	Despatch	LBB-1-69A-1	170740	NDOR 48080
Recorder, Marshall	7-03	7-03	New	Pine	AF850T	1200	NDOR 048082
Shaker, Sieve	1997	1997	New	Rainhart	TA-566A	30204	NDOR 44547
Shaker, Sieve	1997	1997	New	Rainhart	TA-566A	30204	NDOR 44548
Shaker, Sieve	1997	1997	New	Rainhart	TA-566A	30204	NDOR 44549
Splitter, Hand	1969	1969	New	Soiltest	CL-283A		NDOR 023925

Table C.3 - Continued

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.
Vacuum Pump	6-12-01	6-12-01	New	Welsh Thomas	2560B-01	099900000238	None
Vacuum Pump	6-12-01	6-12-01	New	Welsh Thomas	2560B-01	099900000241	None
Vacuum Pycnometer	1993	1993	New	Humboldt	H-1750		NDOR 039773
Vacuum Pycnometer	1993	1993	New	Humboldt	H-1750		NDOR 039774
Water Bath	2000	2000	New	Blue M	MW-1120A-1	13709	NDOR 4645
Water Bath	2000	2000	New	Lindberg/Blue M	WG-1120A-1	X27J-460361YJ	NDOR 47713
Water Bath (Inactive)	1972	1972	New	Blue M	MW-1130A-1	MOS-16145	NDOR 023954
Multispeed Compression Tester	2017	2018	New	Controls	1650286001	16001476	NDOR49091
Manometer			New	EXTECH	407910	H166437	
Core Lok Vacuum Bagger	2000	2000	New	Instrotek	1225	1254	
Core Dry				Instrotek		353W	NDOR48168

DATE: 3-10-06 REVISED: 01-29-21

Table C.4 – Major Equipment Inventory, Chemical Laboratory

Major Equpiment Inventory, Chemistry Laboratory

Equipment	Date Received	Date in Service	Condition (When Received)	Condition (Now)	Manufacturer	Model No.	Serial No.	Ident. No.
Furnace, Muffle	1978	Sep-78	New	Fair	Lindberg	51442	787081	NDOT 23807
Furnace, Muffle	2011	Jun-11	New	Excellent	Thermo Scientific	F6020C	59858	NDOT 48928
X-Ray Fluorescence Spectrometer	2019	Jun-19	New	Excellent	Bruker	S8 Tiger	214119	NDOT 51176
Briquetting Press	1992	Nov-92	New	Fair	Angstrom, Inc.	4451A	4600-68	NDOT 38356
Vibratory Ring Pulverizer	1992	Nov-92	New	Fair	TM Engineering Ltd.	TM/STLX	None	NDOT 38356
Refrigerated Water Circulator - Chiller for X-Ray Spectrometer	2019	Jun-19	New	Excellent	Haskris Co.	INDOOR	HB36133	NDOT 51176
Analytical Balance	1993	Feb-93	New	Poor	A & D	ER-182A	4704934	NDOT 40292
Analytical Balance	2013 ••	Jun-13	New	Excellent	Sartorius	Quintix 224-1S	29004147	NDOT 48442
Analytical Balance	2017 .	Apr-17	New	Excellent	Sartorius	Quintix 224-15	34950140	NDOT 49508
Atomic Spectrometer	2014	Apr-14	New	Excellent	Perkin-Elmer	Aanalyst 200	200514012101	NDOT 48510
Flame Photometer	2004	Jul-04	New	Excellent	Cole-Parmer	2655-10	15540	NDOT 48107
Viscometer	2019	Apr-19	New	Excellent	Brookfield	KU3ASTKB0	86004211	NDOT 51143
Retroreflectometer	1998	Apr-98	New	Fair	ART	Mirolux 30	1417	NDOT 45145
Freezer	1988	Jun-88	New	Fair	Revco	ULT 1740	OX 62226-4A	NDOT 24240
Color Spectrometer MiniScan EZ	2009	Apr-09	New	Excellent	HunterLab	45/O-LAV	MSEZ0102	NDOT 48940
Microscope	2004	Jul-04	New	Excellent	Motic	SM 168TL	560232	NDOT 48108
Freezing Point Apparatus	2008	Nov-08	New	Excellent	Koehler	K29750	R62870027	NDOT 48311
Wrist Action Shaker	2012	12-Jun	New	Excellent	Burrell Scientific	75 - 17931	183072098	NDOT 48390
Automatic Titrator	2013	Jul-13	New	Excellent	Mettler-Toledo	T50	B320339505	NDOT 48455
Colorimeter	2013	Nov-13	New	Excellent	Hach	DR 890	130490C94565	N/A
Mixer Mill	2014	Aug-14	New	Excellent	Premier Lab Supply	M400	1214180712G	NDOT 48563
Camsizer	2015	Jul-15	New	Excellent	Horiba	100.0002	E140213	NDOT 48834
Fusion	2017	Sep-17	New	Excellent	Premier Lab Supply	PM-6000-VFD/M	1558	NDOT 49531

DATE: 05-19-23 REVISED: 11-16-23

Table C.5 – Major Equipment Inventory, PCC Laboratory

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.	DATE CALIB.	NEXT CALIB.
			CEME	NT AND FLY ASH TES	TING				
Air Permeability (Blaine)	1975	1975	New	Humboldt			NDOR 023710	CCRL	CCRL
Autoclave Scrapped 2-28-23	2021	2022	New	Boekel	3598	20009-16	27MR51417		
Autoclave Scrapped 2-28-23	2009	2009	New	Boekel	3L09	6545-11	27MR48938		
Balance	1999	1999	New	AND	EK-4000H	K9206205	46154	4-21-23	4-21-24
Balance	1980	1980	New	Mettler	PC 4000	B45646	NDOR 022443 CCRL R-37	4-21-23	4-21-24
Analytical Balance	2004	2004	New	AND	HR-200	12315466	12315466	6-8-22	6-2023
Flow Table	1999	1999	New	Humboldt	H3614		NDOR 047688	CCRL	CCRL
Length Comparator	1988	1988	New	Humboldt	H3250			CCRL	CCRL
Length Comparator	1988	1988	New	Humboldt	H3250			CCRL	CCRL
Mixer, Mechanical	7-16-97	7-16-97	New	Hobart	N-50	51-1113508	NDOR 044519	CCRL	CCRL
Mixer, Mechanical	6-26-01	6-26-01	New	Hobart	N-50	31-1235-778	NDOR 047946	CCRL	CCRL
Wet Sieving Apparatus	Unknown	Unknown	Unknown	Marsh	30 PSI			CCRL	CCRL
Vicat Apparatus	Unknown	Unknown	Unknown	Humboldt			CCRL B9999	CCRL	CCRL
Vicat Apparatus	Unknown	Unknown	Unknown	Forney			CCRL S4770	CCRL	CCRL
400 ml Cup	Unknown	Unknown	New	Humboldt			No.1	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2376	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2377	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2387	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2385	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2388	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2382	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2391	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2375	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2380	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2392	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2384	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2386	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2379	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2381	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2387	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Humboldt			T2393	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9980	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9999	CCRL	CCRL

Table C.5 – Continued

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.	DATE CALIB.	NEXT CALIB.
		•	CEMENT	AND FLY ASH TESTING	G (Cont.)			•	
Cube Molds 2x2	Unknown	Unknown	New	Forney	<u> </u>		B9994	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9990	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9989	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9988	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9992	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9987	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9983	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9996	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9982	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9995	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9985	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9997	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			B9984	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			A708	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			A707	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			U3079	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			U3081	CCRL	CCRL
Cube Molds 2x2	Unknown	Unknown	New	Forney			U3080	CCRL	CCRL
Digital Caliper	Unknown	Unknown	New	Fowler		13513		4-21-23	4-2024
Moist Room Recorder	Unknown	1995	New	Johnson Control Sys.	Metasys				
Dostmann Dig. Ref. Therm.	2012		New	Dostmann Electronic	650	65009010827		12-28-22	12-2023
Dostmann Dig. Ref. Therm.	2013		New	Dostmann Electronic	750	75513040151		12-28-22	12-2023
Unbonded Cap Retainers	Unknown	Unknown	New	Gilson Co.	4"	Set 1 – 1	Machine 93080	4-19-23	4-19-24
Unbonded Cap Retainers	Unknown	Unknown	New	Gilson Co.	4"	Set 1 – 2	Machine 93080	4-19-23	4-19-24
Unbonded Cap Retainers	Unknown	Unknown	New	Gilson Co.	4"	Set 2 - 1	Machine 93080	4-19-23	4-19-24
Unbonded Cap Retainers	Unknown	Unknown	New	Gilson Co.	4"	Set 2 – 2	Machine 93080	4-19-23	4-19-24
Unbonded Cap Retainers	Unknown	Unknown	New	Gilson Co.	4"	Set 3 – 1	Machine 93080	4-19-23	4-19-24
Unbonded Cap Retainers	Unknown	Unknown	New	Gilson Co.	4"	Set 3 - 2	Machine 93080	4-19-23	4-19-24

Table C.5 – Continued

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.	DATE CALIB.	NEXT CALIB.
				CONCRETE TESTING					
Compression Test Machine	1994	1994	New	Forney	F-250C-LC1	94041	NDOR 042083	5-1-23	4-2024
Compression Test Machine (Updated w/ Forney Retropak)	1994(2021)	1994(2022)	New	Forney (Forney Retropak)	F-500C-LC1	93080	NDOR 042084	5-1-23	4-2024
Compression Test Machine		2012	New	Test Mark (Truck)	CM-2500-DB	18502H		5-1-23	4-2024
Balance (Removed 5-1-19)	Unknown	Unknown	New	AN D	HW-150K	J4800133	NDOR 042468		
Balance	Unknown	Unknown	New	AN D	FG-150K	57511	NDOR 57571	4-21-23	4-21-24
Scale	11-2019	11-2019	New	Brecknell	S100		2019S100	4-21-23	4-21-24
Concrete Mixer, Drum	1995	1995	New	Gilson	HM-224		NDOR 043854		
Concrete Mixer, Tub	1944	1944	New	Lancaster	713-7595	A-8876	NDOR 023693		
Concrete Mixer (Cures)			New	Hobart	A120	31-1235-829	047947		
Concrete Vibrator, Electric	600	600	New	Oztec	1.2	P28177			
Curing Compound Test Cabinet (Removed 9-2023)	5-23-00	6-1-00	New	Lunaire Ltd.	CE0932W-3	27478-08	NDOR 047930		
Curing Compound Test Cabinet	11/2/23	11/16/23	New	Lunaire. Thermal Products Solutions (TPS)	CEO-916-4- B-F4T	166049	27MR58681		
Shaker	1991	1991	New	Gilson	TS-2	11620	NDOR 036286		
Ultrasonic	2007	2007	New	Sonic Wise			048218		
End Grinder	2008	2008	New	Marui Company	MIC-196-1-30	FO7G13			
Environmental Chamber	2005	2005	New	Caron	6030	042205-6030- 35	27MR48110		
Environmental Chamber	2008	2009	New	Caron	6010-1	102808-6010- 1-94	27MR48282		
Environmental Chamber	10-2009	2010	New	Assoc. Enviro. Systems	ZSHD-525	8369	27MR48962		
Environmental Chamber	10-2009	2010	New	Assoc. Enviro. Systems	ZSHD-525	8370	27MR48961		
Water Chamber		1996	New	M&R Shop Fabricated	3.5' x 2.25'		None		
Water Chamber		2009	New	M&R Shop Fabricated	4.75' x 2.5'		None		
Volumetric Air Meter		1999	New	Forney	LA-0306		024238	5-4-22	5-2023
Volumetric Air Meter			New	Forney	LA-0306		047724	5-4-22	5-2023
Pressure Air Meter	1988	1988	New	Forney	LA-0306		NDOR 3213	5-19-23	8-2023
Pressure Air Meter	2009	2009	New	Humboldt	H-2786p		NDOR Y648	5-19-23	8-2023
Slump Cone			New	Forney	286		1	8-19-22	8-2023
Slump Cone			New	Forney	286		2	8-19-22	8-2023
Unit Weight Bucket			New	Humboldt	.5 CUFT		1	4-18-23	4-2024

DATE: 3-10-06 REVISED: 09-29-17

Table C.6 – Major Equipment Inventory, Soil Mechanics Laboratory

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.
Balance	1988	1988	New	A and D	FX-6000	5403005	NDOR 024252
Direct Shear Apparatus	4/4/05	2005	New	Geocomp	Sheartrac II		NDOR 048654
Consolidation App.	7/17/03	2003	New	Geocomp	Loadtrac II		NDOR 048109
Triaxial App.	7/17/03	2003	New	Geocomp	Loadtrac II		NDOR 048074
Consolidation App.	10/1/03	2003	New	Geocomp	Loadtrac II		NDOR 048079
Consolidation App.	12/22/04	2004	New	Geocomp	Loadtrac II		NDOR 048660
CPT Probe	4/9/05	2005	New	Geotech	031-28-9920		NDOR 048655
Tri-Flex one cell	3/1/97	1997	New	Ele	Tri-Flex II		NDOR 047718
Oven	1978	1978	New	Despatch	DO-7	62869	
Flow Trac II	10-7-07	2007	New	Geocomp	Triaxial Shear		NDOR 048222
Oven	7-29-16	2016	New	Despatch	LBB2-12-2	191536	

DATE: 02-03-97 REVISED: 01-29-21

Table C.7 – Major Equipment Inventory, Soils Laboratory

EQUIPMENT	DATE REC'D	DATE IN SERVICE	CONDITION (When Rec'd)	MANUFACTURER	MODEL NO.	SERIAL NO.	IDENT. NO.
Balance	1994	1994	New	A and D	EP-12KA		NDOR 041792
Balance Removed 2020	1987	1987	New	Denver Scientific	Z-12000	25323	NDOR 024217 AMRL 113E
Balance	1985	1985	New	Mettler	PE-600	D39983	NDOR 024039 AMRL 242C
Balance	1990	1990	New	A and D	EP-20KB		NDOR 034415 AMRL 111E
Balance	2017	2017	New	Ohaus	FD6	B722180769	
Barrel Machine	1970	1970	New	NDOR			NDOR 023828
Compactor, Mechanical	1970	1970	New	Soiltest	CN-4230	199	NDOR 023835
Liquid Limit Device	Unknown	Unknown	New	NDOR			
Liquid Limit Device	Unknown	Unknown	New	NDOR			
Mixer	1970	1970	New	Hobart	A-120	929519	NDOR 023836
Muller, Mechanical Rubber- Covered	1970	1970	New	Craftsman			NDOR 023827
Oven	1977			Despatch		32002	
Oven	1999		New	Despatch	LAC2-18-5	164598	NDOR 047714
Oven	1977	1977	New	Despatch	V-SP	29055	AMRL 407C
Oven	1993	1993	New	Cole/Parmer	05015-50		
Splitter, Riffle (1/2")	1970	1970	New	Soiltest			NDOR 023824
Splitter, Riffle (1 1/2")	Unknown	Unknown	New	NDOR			
Splitter, Riffle (3/4")	1970	1970	New	Soiltest	CL-283A		NDOR 023823
Splitter, Riffle(1/2")	Unknown	Unknown	Unknown	Soiltest	CL-260A		
Splitter (1/4")	1970	1970	New	Soiltest	CL-244A		NDOR 023857
Shaker, Mechanical (SE)	1970	1970	New	Soiltest	CL-232		NDOR 023833
Shaker, Mary Ann	1978	1978	New	Rainhart	635		NDOR 022527
Shaker, Mary Ann	1978	1978	New	Rainhart	635		NDOR 022529
Shaker, Mary Ann	2009	2009	New	Rainhart	637		27MR48941
Stirring Apparatus	1993	1993	New	Hamilton Beach	936-2		NDOR 038961
Water Bath	1970	1970	New	Soiltest	CL-278E		NDOR 023830

DATE: 2-3-97 REVISED: 02-14-11

Figure D.1 – Procedure for Verifying Ovens In-House Procedure No. 1

Equipment Checked: DRYING OVENS

Purpose:

This method provides instructions for checking drying ovens used in the laboratory.

Inspection Equipment Required:

- 1. A calibrated thermometer either Fahrenheit or Celsius graduated in 1.0° increments having a range which includes the temperature range to be checked.
- 2. A thermometer well to retain heat while the oven door is open.
- 3. A clothes pin to hold thermometer in such a manner as to enable the operator to read the scale easily.

Tolerance:

Drying ovens shall be capable of maintaining a constant temperature range listed in the appropriate test methods.

Procedure:

- 1. Place the thermometer inside the well with the clothes pin attached to the thermometer. Position the thermometer on the shelf where the samples are normally dried.
- 2. Take the first reading at least 1 hour after closing the oven (oven should remain undisturbed).
- 3. Take as many readings as necessary to determine if the temperature range is within the specified tolerance (three consecutive readings, taken no less than 1/2 hr. apart, within the tolerance allowed are adequate).
- 4. Adjust the temperature of the oven if an observed temperature reading is outside the tolerance specified (allow at least 1/2 hr. for the temperature to stabilize between each adjustment). Return to step 3.

Verification Interval:

12 months

Report:

Send a copy of the results of each oven checked to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE:

2-3-97

REVISED:

Figure D.2 – Procedure for Verifying Compaction Molds In-House Procedure No. 2

Equipment Checked: COMPACTION MOLDS (AASHTO T 99)

Purpose:

This procedure provides instructions for checking the critical dimensions of the molds used in this test.

Inspection Equipment Required:

- 1. Calipers capable of measuring an inside diameter of 4 in. and readable to 0.001 in.
- 2. Calipers capable of measuring an outside height of 6 in. and readable to 0.001 in.

Tolerance:

Molds shall meet all dimension requirements set forth in the applicable test method listed above.

Procedure:

- 1. Measure and record the inside diameter of the mold to nearest 0.001 in. Rotate the mold 90 degrees and repeat the procedure. Turn the mold over and repeat.
- 2. Measure and record the height of the mold less its collar to the nearest 0.001 in. Repeat this procedure at intervals of 90 degrees around the mold and record.

Verification Interval:

12 months

Report:

Send a copy of the results of each mold checked to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE: 2-3-97

REVISED: 3-26-21 Removed from AASHTO certification 11/18/16

Figure D.3 – Procedure for Verifying Marshall Molds In-House Procedure No. 3

Equipment Checked: MARSHALL MOLDS (AASHTO T 245)

Purpose:

This procedure provides instructions for checking the critical dimensions of the molds used in this test method.

Inspection Equipment Required:

1. Calipers capable of measuring an inside diameter of 4 in. and readable to 0.001 in.

Tolerance:

The diameter of the molds checked shall meet the dimensional tolerances specified in the applicable test method listed above.

Procedure:

- 1. Measure and record the inside diameter of the mold to the nearest 0.001 in. Rotate the mold 90 degrees and measure and record the inside diameter again.
- 2. Turn the mold over and repeat Step 1.
- 3. Measure and record the height of the mold less its collar to the nearest 0.1 in. Repeat this procedure at intervals of 90 degrees around the mold and record.

Verification Interval:

12 months

Report

Send a copy of the results of each mold checked to the In-House Inspection Team for verification an issuance of a Certificate of Verification.

DATE: 2-3-97 REVISED: 2-13-13

Figure D.4 – Procedure for Verifying Timers In-House Procedure No. 4

Equipment Checked: TIMERS

Purpose:

This method provides instructions for checking timers being used in the laboratory.

<u>Inspection Equipment Required:</u>

1. Timer readable to 0.1 sec. having an accuracy within the tolerance of the test method in which the timer is used.

Procedure:

- 1. Start the lab timer with one hand and simultaneously start the inspection timer.
- 2. Allow the timers to run for at least 15 min., then stop the timers simultaneously. Record the time indicated on both timers.
- 3. Record the difference between the two timers. Calculate and record the percent accuracy.
- 4. This procedure will be performed by the In-House Inspection Team.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the timer is located.

DATE: 2-3-97 REVISED: 2-28-05

Figure D.5 – Procedure for Verifying Manual Compaction Hammers In-House Procedure No. 5

Equipment Checked: MANUAL HAMMER (AASHTO T 99) (AASHTO T 180)

Purpose:

This method provides instructions for checking the critical dimensions of the proctor hammer.

Inspection Equipment Required:

- 1. Calipers readable to 0.001 inch.
- 2. Tape measure readable to 1/16 inch.
- 3. Balance, capacity 5 kg, readable to 1 g.

Tolerance:

Equipment shall meet the dimensional tolerances specified in the above test method.

Procedure:

- 1. Measure and record the diameter of the rammer face determined by taking two readings 90 degrees apart using the calipers.
- 2. Pull up the handle, measure and record the drop height of the hammer. Determine this height inside the guide sleeve using the tape measure.
- 3. Remove the hammer from the guide sleeve. Determine and record its mass to the nearest 1 g.
- 4. Measure and record the diameters of the vent holes near the end of the hammer.
- 5. This procedure will be performed by the In-House Inspection Team.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the unit is located.

DATE: 3-16-05

REVISED: 3-26-21 Removed from AASHTO certification 11/18/16

Figure D.6 – Procedure for Verifying the Rammer Weight and Drop Height of Manual and Mechanical Compactors In-House Procedure No. 6

Equipment Checked: MANUAL AND MECHANICAL COMPACTORS (AASHTO T 245)

Purpose:

This method provides instructions for checking the rammer weight and drop height of the manual and mechanical compactors.

<u>Inspection Equipment Required:</u>

- 1. Hammer and punch for removing the spring pins which hold the upper collar on the rammer guide rod.
- 2. Wrench for removing the upper guide rod holder.
- 3. Balance, capacity of 10 kg and readable to the nearest 1 g.
- 4. Ruler capable of measurement to the nearest 1 mm.

Tolerance:

The mass and drop height of the rammer shall meet the requirements set forth in test method AASHTO T 245.

Procedure:

- 1. Measure and record the rammer drop height to the nearest 1 mm.
- 2. Using the required tools remove the hammer from its guide rod.
- 3. Weigh only the rammer and record the weight to the nearest gram.
- 4. On multiple rammer type compactors mark each rammer with some form of identification for future inspections.
- 5. Record the rammer identification and its weight.
- 6. This procedure will be performed by the In-House Inspection Team.

Maintenance:

Clean and lubricate. Check pins and other parts for wear and replace if necessary.

Verification Interval:

12 months manual

36 months mechanical

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the unit is located.

DATE: 5-20-97

REVISED: 3-26-21 Removed from AASHTO certification 11/18/16

Figure D.6A – Procedure for Calibration of Mechanical Compactors In-House Procedure No. 6A

Equipment Checked: MECHANICAL COMPACTOR (AASHTO T 245)

Purpose:

This method provides instructions for checking the calibration of the mechanical compactor.

Inspection Equipment Required:

- 1. Scale conforming to the requirements of AASHTO M 231 and equipped with a suspension apparatus and water bath for weighing a specimen in water and air.
- 2. Oven or hot plate for heating the specimen prior to compacting.
- 3. Mixing equipment and support equipment for blending all of the components of the test mix.
- 4. Hand compaction hammer meeting the requirements set forth in AASHTO T 245.

Procedure:

- 1. Mix a 3/4" to 3/8" nominal size asphaltic concrete batch of 7400 g minimum.
- 2. Produce three compacted specimens following the procedure set forth in AASHTO T 245 using the mechanical compactor.
- 3. Produce three compacted specimens following the procedure set forth in AASHTO T 245 using the manual hammer.
- 4. Determine the bulk specific gravity of each compacted specimen per AASHTO T 166 and record the results.
- 5. Average the three specific gravity results from the manual compactor and the mechanical compactor. Record the two averages.
- 6. Determine if the average bulk specific gravity from the mechanical compacted specimens is within ± 5% of the average bulk specific gravity obtained from the manual compacted specimens.

Verification Interval:

36 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the unit is located.

DATE: 10-14-08 REVISED: 1-27-12

Figure D.7 – Procedure for Verifying L. A. Abrasion Machine In-House Procedure No. 7

Equipment Checked:

L. A. ABRASION MACHINE (AASHTO T 96)

Purpose:

This method provides instructions for checking the critical dimensions and general operating condition of the L. A. Abrasion Machine and the mass of the spheres used as the test charge

<u>Inspection Equipment Required:</u>

- 1. Steel rule readable to 1/16 inch.
- 2. Stopwatch readable to 0.1 sec.
- 3. Balance with a minimum capacity of 6 kg, readable to 1 g.
- 4. Tape measure readable to 1/16 in.

Tolerance:

The L. A. machine shall meet the dimensional tolerances specified in the applicable test method listed above and shall be in good operating condition. The steel spheres used to charge the L. A. machine shall meet the mass tolerances specified in the applicable test method listed above.

Procedure:

(L. A. Machine)

- 1. Measure and record the inside diameter of the drum at the left and right edges to the nearest 1/16 in.
- 2. Measure and record the width and height of the opening to the nearest 1/16 in.
- 3. Measure and record the wall thickness at the left and right edge to the nearest 1/16 in.
- 4. Determine if the cylinder is horizontal using a steel ball to check left to right roll.
- 5. Measure and record the shelf width and length inside the drum to the nearest 1/16 in.
- 6. Measure and record the distance from the shelf to the opening in the direction of rotation.
- 7. Using the stopwatch, determine the RPM to the nearest whole number over a 5-minute period. Record the RPM.
- 8. Check that the number of revolutions is 500 by looking at the counter on the machine.

(Steel Spheres)

- 1. Determine and record the mass of each individual sphere to the nearest 1 g.
- 2. Determine and record the mass of the collective charge to the nearest 1 g.

Maintenance:

L. A. Machine - Grease fittings. Visually & physically check for worn or loose parts.

Verification Interval:

L. A. Machine - 24 months

Steel spheres - 12 months

Report:

Send inspection results to the In-House Inspection Team for issuance of a Certificate of Verification.

DATE: 2-3-97

REVISED:

Figure D.8 – Procedure for Verifying Scales and Balances In-House Procedure No. 8

Equipment Checked: SCALES AND BALANCES (AASHTO M 231)

Purpose:

This method provides instructions for checking the accuracy sensitivity of Scales and Balances used in all labs.

Inspection Equipment Required:

- 1. S-1 and Class 4 masses
- 2. Powder free gloves designed for handling these weights.

Tolerance:

All tests requiring the use of scales and or balances have in their procedures a list of the requirements for the weighing devices. It will be up to the inspector to check these requirements when checking and verifying this equipment.

Procedure:

All scales and balances will be checked and verified by the In-House Inspection Team. The team will adhere strictly to the guidelines set forth in AASHTO M 231. Upon completing the verification and acceptance of a scale or balance the inspection team shall mark the scale or balance with a tag containing the inspectors name and date of the inspection. A Certificate of Verification will be sent to the supervisor of the lab in which the scale or balance is located for their records.

Analytical Balances:

Analytical Balances in Classes "A" and "B" in Table 1 of the AASHTO Designation M 231 will be verified by an outside contractor. The In-House Inspection Team shall be responsible for seeing that this is accomplished at the proper times. A Certificate of Verification will be sent to the supervisor of the lab in which the balance is located for their records.

Inspection Interval:

DATE: 2-3-97

REVISED:

Figure D.9 – Procedure for Verifying Conical Molds and Tampers In-House Procedure No. 9

Equipment Checked: CONICAL MOLDS AND TAMPERS (AASHTO T 84)

Purpose:

This method provides instructions for checking the critical dimensions of the conical mold and mass of the tamper used in this test procedure.

Inspection Equipment Required:

- 1. A scale or balance capable of weighing to 500 grams and readable to the nearest gram.
- 2. A caliper for measuring the inside diameter of the top and bottom of the cone and measuring the outside diameter of the tamper face. The caliper should be able to read to the nearest 0.1 mm.
- 3. A ruler for measuring the height of the cone and readable to the nearest 1.0 mm.

Procedure:

Using the requirements set forth in the AASHTO test method, check each of the dimensions of the cone and the mass of the tamper. The In-House Inspection Team shall perform this task at the appointed time and will issue a Certificate of Verification to the Laboratory Supervisor.

Verification Interval:

DATE: 2-3-97 REVISED: 2-25-05

Figure D.10 – Procedure for Verifying Flash Cups In-House Procedure No. 10

Equipment Checked: FLASH CUPS (AASHTO T 48)

Purpose:

This method provides instructions for checking and reporting the critical dimensions of the flash cups used in this test method.

<u>Inspection Equipment Required:</u>

- 1. Calipers and micrometers capable of measuring up to 4 inches and readable to the nearest 0.01" (0.1 mm).
- 2. Certified flash point reference material.
- 3. Testing apparatus as illustrated in Figures 1, 2 & 3 of the AASHTO test method.

Tolerance:

All dimensions are found in the AASHTO test method and should be adhered to. AASHTO test method repeatability of certified reference material is the certified flash point +/- 8 Degrees C.

Procedure:

Measure and record all of the dimensions listed in the AASHTO manual for this test.

Perform the flash point test as per the AASHTO T48 procedure, using a certified flash point reference material.

Record the known reference flash point and the flash point obtained.

Submit a Certificate of Verification to the Laboratory Supervisor.

Note: The In-House Inspection Team shall perform this inspection at the required time intervals.

Verification Interval:

DATE: 07-28-17 REVISED: 09-26-18

Figure D.11 – Procedure for Verifying Bearing Blocks and Retainers In-House Procedure No. 11

Equipment Checked: BEARING BLOCKS (ASTM C 39) RETAINERS (ASTM C 1231)

Purpose:

This method provides instructions for checking the planeness of the bearing blocks of the compression testing machine as described in ASTM C 39 & C 1231.

Inspection Equipment Required:

- 1. Steel Rule
- 2. Feeler Gauges. .001" and .002"

Tolerance:

The critical dimensions shall meet the requirements set forth in ASTM C 39 & C 1231.

Procedure:

The units shall be checked by in house personnel and the results shall be reported to the Laboratory Supervisor. Any deviation from the requirements shall be repaired prior to placing the unit back in service.

Verification Interval:

DATE: 4-10-07 REVISED: 2-13-12

Figure D.12 – Procedure for Verifying Penetrometers and Water Baths In-House Procedure No. 12

Equipment Checked:

PENETROMETER AND WATER BATH (AASHTO T 49)

Purpose:

This method provides instructions for checking the accuracy of the dial and timer, and the needle verification. It also covers the checking of the water bath dimensions and temperature.

Inspection Equipment Required:

- 1. Support block, 10. mm metal block, and 25.4 mm metal block
- 2. Engineering thickness gauge
- 3. Certified stop watch
- 4. Certified thermometer
- 5. Certified balance (0.01 resolution)
- Certified Micrometer
- 7. Optical magnification device, 10x
- 8. Ruler, 1mm increments

Tolerance:

The accuracy of the dial, timer, and the water bath shall meet the requirements set forth in AASHTO Test Method T 49.

Procedure:

- 1. Remove the needle from the penetrometer.
- 2. Place the support block on the lower surface of the penetrometer device and rest the needle chuck against the support block. Take an initial reading of the dial and record.
- 3. Using the thickness gauges and metal blocks, take the required readings and record each.
- 4. Verify the weight of the spindle, and the 50g and 100g weights.
- 5. Check the timer by comparing readings against the stop watch and record the results.
- 6. Check the condition of the needles (at least three) visually to verify if straight.
- 7. Weigh the needles (at least three) on a balance and record weights.
- 8. Verify and record needle diameter, ferrule diameter, and ferrule length of at least three needles with a micrometer.
- 9. Using optics of 10x, inspect needles (at least three) for burrs and verify that the ferrule base is flat.
- 10. Verify water bath operating temperature with certified thermometer.
- 11. Using ruler, measure the perforated support shelf depth from bottom, and from surface, and the depth the thermometer is immersed.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

DATE: 2-3-97
REVISED: VOID – DO NOT USE

Figure D.13 – Procedure for Verifying Thin Film Ovens In-House Procedure No. 13

Equipment Checked: THIN FILM OVEN (AASHTO T 179)
<u>Purpose:</u> This method provides instructions for checking the oven use in this test method.
Inspection Equipment Required:
1. Certified stop watch.
— 2. An ASTM 13° C thermometer.
Tolerance: The operating temperature and rotating shelf speed shall meet the requirements set forth in AASHTO T 179.
Procedure:
1. Using the stop watch check the rpm of the rotating shelf and record the result.
 After allowing sufficient time for the temperature of the oven to stabilize note the temperature and record.
3. After recording the operating temperature place two sample pans into the oven. Note — the time required to recover to 162 degrees C, and record.
4. This procedure will be performed by the In-House Inspection Team.
Verification Interval: —— 12 months
Report:
The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

DATE: 2-3-97

REVISED:

Figure D.14 – Procedure for Verifying Bearing Blocks In-House Procedure No. 14

Equipment Checked: BEARING BLOCKS (ASTM C 109)

Purpose:

This method provides instructions for checking the planeness of the bearing blocks of the compression testing machine as described in ASTM C 109.

Tolerance:

The critical dimensions shall meet the requirements set forth in ASTM C 109.

Procedure:

The units shall be checked by the Maintenance Shop and the results shall be reported to the Laboratory Supervisor. Any deviation from the requirements shall be repaired prior to placing the unit back in service

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

REVISED:

Figure D.15 – Procedure for Verifying Capping Plates and Alignment In-House Procedure No. 15

Equipment Checked: CAPPING PLATES AND ALIGNMENT (ASTM C 617)

Purpose:

This method provides instructions for checking the capping plates and alignment devices as described in ASTM C 617.

Tolerance:

The critical dimensions shall meet the requirements set forth in ASTM C 617.

Procedure:

The units shall be checked by the Maintenance Shop and the results shall be reported to the Laboratory Supervisor. Any deviation from the requirements shall be repaired prior to placing the unit back in service

Verification Interval:

3 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

REVISED:

Figure D.16 – Procedure for Verifying Spray Nozzles In-House Procedure No. 16

Equipment Checked: SPRAY NOZZLE (ASTM C 430)

Purpose:

This method provides instructions for checking the spray nozzle flow rate as described in ASTM C 430.

Tolerance:

The flow rate shall be between 1500 and 3000 g/min at 10 ± 0.4 psi.

Procedure:

Use a water tight container with a volume of 3500 cc minimum. Tare the container prior to using. Turn on the spray nozzle and adjust the pressure to 10 psi. Place the container under the flow from the nozzle for 1 minute. At the end of 1 minute weigh the container with the water, subtract the weight of the container and report the weight of the water to the nearest gram.

Verification Interval:

6 months

Report:

Send a copy of the results to the In-House Inspection Team for a Certificate of Verification.

REVISED:

Figure D.17 – Procedure for Verifying Mechanical Mixers and Cups In-House Procedure No. 17

Equipment Checked: MECHANICAL MIXER AND CUP (AASHTO T 88)

Purpose:

This method provides instructions for checking the mixer and cup used for particle size analysis of soils.

Inspection Equipment Required:

- 1. A hand held tachometer for checking the mixer speed.
- 2. A steel machinist rule for measuring the cup.

Procedure:

- 1. To check the speed of the mixer it is necessary to use the tachometer with the blue drive wheel. Set the tachometer on the 1000 to 4000 rpm range.
- 2. Turn on the mixer and place the edge of the blue drive wheel against the shaft of the mixer and note the reading on the tachometer.
- 3. Take the tachometer reading and multiply this by 5 to get the speed of the mixer.
- 4. Measure the cup using the steel ruler. Note that all of the measurements are approximate and should not be taken as exact.
- 5. Check the baffle rods to make sure that they are not loose. If any of the rods are loose the cup must be repaired.
- 6. This procedure shall be performed by the In-House Inspection Team.

Verification Interval:

24 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

DATE: 3-7-97 REVISED: 02-14-11

Figure D.17A – Procedure for Verifying Hydrometers (AASHTO T 88) In-House Procedure No. 17A

Equipment Checked: HYDROMETER (AASHTO T 88)

Purpose:

This method provides instruction for checking the hydrometer used in performing AASHTO T 88.

Tolerance:

The hydrometer shall conform to the requirements set forth in ASTM E 100.

Procedure:

- 1. All measurements for dimension shall be made using a rule capable of being read to the nearest 0.1 cm.
- 2. It will be necessary to measure the body of the hydrometer using a caliper and or a "go-no-go" gage made of some rigid material.
- 3. Using a beaker containing distilled water maintained at 20° C, place the hydrometer in the water and allow it to float free and note the reading.

Verification Interval:

24 months

Report:

A Certificate of Verification will be issued to the lab from the In-House Inspection Team.

DATE: 2-3-97 REVISED: 3-12-01

Figure D.18 – Procedure for Verifying Liquid Limit Devices and Grooving Tools In-House Procedure No. 18

Equipment Checked: LIQUID LIMIT DEVICE AND GROOVING TOOL (AASHTO T 89)

Purpose:

This method provides instructions for checking the liquid limit device and grooving tool used in this test.

Inspection Equipment Required:

- 1. Caliper capable of reading to nearest 0.01 mm.
- 2. Dial micrometer.

Tolerance:

The critical dimensions shall meet the requirements set forth in AASHTO T 89.

Procedure:

- 1. Check all the critical dimensions for the liquid limit device's brass cup and the grooving tool. A picture of the apparatus and the necessary points to measure with the tolerances are printed in the AASHTO test procedure T89.
- 2. Where the cup comes in contact with the base, a small indention will be made.

 Measure the depth of this indention using the vertical dial micrometer to the nearest 0.01 in
- 3. Check the rim of the cup for excessive wear, which will cause it to become sharp rather than a milled flat surface. Rejection is at the inspector's judgment.
- 4. Turn the crank slowly and note if the cup wobbles on the rise. Also check that the cup is fastened to the cam follower with mechanical rather than a welded connector.
- 5. Check the inside of the cup for excessive wear, which will create a groove in the cup. Rejection is based on the judgment of the inspector.
- 6. This inspection will be performed by the In-House Inspection Team.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

DATE: 4-12-07 REVISED: 10-17-08

Figure D.19 – Procedure for Verifying Straightedges In-House Procedure No. 19

Equipment Checked: STRAIGHTEDGE (AASHTO T 99, T 180)

Purpose:

This method provides instructions for checking the steel straightedge used in AASHTO Test Methods T 99 and T 180.

Inspection Equipment Required:

- 1. Ruler.
- 2. Feeler gauge.

Tolerance:

The critical dimensions shall meet the requirements set forth in AASHTO T 99 and T 180.

Procedure:

- 1. Measure the length with a ruler and record.
- 2. Place the straightedge so that the beveled edge is down on a flat surface and using a 0.01 in. thickness gage, try to pass the gage between the edge of the unit and the flat surface. If the gage can be slipped between the unit and the flat surface the straightedge shall have to be repaired
- 3. This verification may be performed by either the Maintenance Shop or the In-House Inspection Team.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

DATE: 2-3-97 REVISED: 4-12-07

Figure D.20 – Procedure for Verifying Weighted Foot Assemblies In-House Procedure No. 20

Equipment Checked: WEIGHTED FOOT ASSEMBLY (AASHTO T 176)

Purpose:

This method provides instructions for checking the mass and dimensions of the weighted foot assembly as described in AASHTO Test Method T 176

Inspection equipment Required:

1. Balance

Tolerance:

The mass and dimensions of this assembly shall meet the requirements set forth in AASHTO T 176.

Procedure:

Weigh the entire assembly as follows: Place the unit on a scale with the weight down and the rod standing upright. Carefully hold the guide sleeve so that its weight is not included in the total weight.

Measure the physical dimensions of the unit as described in AASHTO Test Method T 176. Report the weight and dimensions to the In-House Inspection Team.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which this equipment is located.

REVISED: 3-26-21 Removed from AASHTO certification

Figure D.21 – Procedure for Verifying An Asphalt Extraction Apparatus In-House Procedure No. 21

Equipment Checked: ASPHALT EXTRACTION APPARATUS (AASHTO T 164)

Purpose:

This method provides instructions for checking the centrifuge and bowls used for the extraction of bitumen from bituminous paving mixtures.

Inspection Equipment Required:

- 1. A handheld tachometer for checking the speed of the centrifuge.
- 2. A steel rule for measuring the bowl and lid dimensions.
- 3. A caliper for measuring the thickness of the bowl lid.

Procedure:

- 1. To check the speed of the centrifuge, place the pointed drive end on the tachometer and press this against the center of the centrifuge shaft. Turn the centrifuge on to maximum speed and record the rpm.
- 2. Measure the bowl's inside and outside diameters using the steel rule. Record the dimensions.
- 3. Measure the thickness of the lid with a caliper and record this dimension.
- 4. The In-House Inspection Team will perform this procedure.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which this equipment is located.

DATE: 3-1-05 REVISED: 8-27-09

Figure D.22 – Procedure for Verifying Mechanical Soil Rammers In-House Procedure No. 22

Equipment Checked: MECHANICAL SOIL RAMMER (AASHTO T 99) (AASHTO T 180)

Purpose:

This method provides instructions for checking the critical dimensions and masses required in the test method for this piece of equipment.

Inspection Equipment Required:

- 1. Outside caliper with a 2 in. capacity readable to 0.001 in.
- 2. A hand rammer meeting the requirements of the AASHTO Test Method being checked (T 99 or T180).
- 3. A scale meeting AASHTO M 231 for Class G-2 and Class G-20.
- 4. A drying oven capable of maintaining a temperature not to exceed 140° F.

Tolerance:

The dimensions and masses shall meet the requirements set forth in the AASHTO Test Method being checked (T 99 or T 180).

Procedure:

- 1. Use the caliper to measure the diameter of the rammer face at two locations 90 degrees apart and record.
- 2. Using the edge of the ruler check to see if the face of the rammer is flat and record.
- 3. Calibrate the mechanical rammer by using the procedure set forth in ASTM D 2168.

Maintenance:

Clean and lubricate all moving parts. Inspect chain links, pins, rollers, drop rammers, etc. for wear.

Verification Interval:

12 months

Report:

The In-House Inspection Team shall issue a Certificate of Verification to the laboratory in which this equipment is located.

DATE: 2-3-97 REVISED: 5-20-97

Figure D.23 – Procedure for Verifying Vacuum System Pressure In-House Procedure No. 23

Equipment Checked: VACUUM SYSTEM

Purpose:

This method provides instructions for checking the pressure developed by vacuum pumps.

Procedure:

- 1. Connect the vacuum pump to the vacuum chamber.
- 2. Place a manometer in series between the pump and the vacuum chamber being sure all connections are tight.
- 3. Start the pump and allow it to run for at least 5 minutes to allow the system to stabilize.
- 4. Record the vacuum attained and the serial numbers of pump and manometer being used.

Verification Interval:

12 months

Report:

It will be necessary for the lab supervisor to send the results to the In-House Inspection Team for issuance of a Certificate of Verification.

DATE: 3-7-97

REVISED:

Figure D.24 – Procedure for Verifying Sulfate Soundness Containers In-House Procedure No. 24

Equipment Checked: SULFATE SOUNDNESS SAMPLE CONTAINERS (AASHTO T 104)

Purpose:

This method provides instructions for checking the containers used to hold the samples during the test.

Procedure:

It will be necessary for the inspector to visually note the physical condition of the containers. Check to be sure that there are no holes in the screens or broken joints which might allow any portion of the sample to escape.

Verification Interval:

12 months

Report:

It will be necessary for the lab supervisor to send the results to the In-House Inspection Team for issuance of a Certificate of Verification.

DATE: 3-7-97

REVISED:

Figure D.24A – Procedure for Verifying Hydrometers (AASHTO T 104) In-House Procedure No. 24A

Equipment Checked: HYDROMETER (AASHTO T 104)

Purpose:

This method provides instruction for checking the hydrometer used in performing AASHTO T 104.

Tolerance:

The hydrometer shall conform to the requirements set forth in ASTM E 100.

Procedure:

- 1. All measurements for dimension shall be made using a rule capable of being read to the nearest 0.5 mm.
- 2. It will be necessary to measure the body of the hydrometer using a caliper and or a "go-no-go" gage made of some rigid material.
- 3. Using a beaker containing distilled water maintained at 60° F, place the hydrometer in the water and allow it to float free and note the reading which should be 0.

Verification Interval:

12 months

Report:

A Certificate of Verification will be issued to the lab from the In-House Inspection Team.

DATE: 4-12-07 REVISED: 6-30-08

Figure D.24B – Procedure for Verifying Sulfate Ovens In-House Procedure No. 24B

Equipment Checked: SULFATE OVEN (AASHTO T 104)

Purpose:

This method provides instruction for checking the rate of evaporation for the oven used in this test procedure.

<u>Inspection Equipment Required:</u>

- 1. Balance readable to 0.1 g.
- 2. Thermometer.

Tolerance:

The oven shall conform to the requirements set forth in AASHTO T 104, Section 3.6.

Procedure:

- 1. Oven temperature must be maintained continuously at $230^{\circ} \pm 9^{\circ}$ F or $110^{\circ} \pm 5^{\circ}$ C.
- 2. Using 1-liter Griffin low-form beakers, each initially containing 500 g of water at a temperature of 70° ± 3° F or 21° ± 2° C, place one beaker at each corner and one in the center of the oven. Leave the beakers in the preheated oven for 4 hours. The loss of water through evaporation should be at least 25 g/h. Record the loss for each beaker.

Verification Interval:

12 months

Report:

A Certificate of Verification will be issued by the In-House Inspection Team.

DATE: 3-7-97 REVISED: 2-13-12

Figure D.25 – Procedure for Verifying Sieves In-House Procedure No. 25

Equipment Checked: SIEVES

Purpose:

This method provides instruction for checking sieves used in the laboratory.

Inspection Equipment Required:

- 1. A caliper capable of reading to the nearest 0.01 mm.
- 2. A method for providing a lighted background when viewing the sieve screen.
- 3. A magnifier for close examination of the sieve screen.

Tolerance:

The sieves examined shall meet the requirements set forth in AASHTO M 92.

Procedure:

- 1. Check each sieve tag for the proper designation and standard opening size. This designation shall be in metric dimensions and in the case of older sieves the English and metric dimensions shall both be on the tag.
- 2. Check the frame for excessive wear along the rim and for looseness between the top and bottom halves.
- 3. Check the screen for loose wires, bowed screens, torn screens, creases in the screen, broken screen wires, and deformation of the screen openings. These items are normally visible with the naked eye when viewed against a lighted background. The use of a magnifier will aid when viewing the finer screens.
- 4. A detailed inspection will be made by measuring the screen with a caliper. When doing this type of inspection, measure both the X and Y direction of the wires. On the screens having larger openings, it may be necessary to measure all of the full size openings. It will be necessary to record all of the opening dimensions when doing this type of check, and comparing these readings with Table 1 in AASHTO M 92.

Verification Interval:

12 months

Report:

All inspection results shall be sent to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE: 3-7-97

REVISED:

Figure D.26 – Procedure for Determining the volume of Unit Weight Measures In-House Procedure No. 26

Equipment Checked: UNIT WEIGHT MEASURE

Purpose:

This directive gives guidance for the calibration of unit weight measures used in Aggregate and Portland Cement Concrete Labs

<u>Inspection Equipment Required:</u>

- 1. A thermometer capable of being read to the nearest 1.0 degree F.
- 2. A piece of glass large enough to cover the entire top of the measure being calibrated.
- 3. A scale capable of weighing the yield measure, glass, and the water within to the nearest 0.01 lbs.

Procedure:

Follow the procedure set forth in ASTM C 29, Section 8.

Verification Interval:

12 months

Report:

A Certificate of Verification will be issued by the In-House Inspection Team to the lab in which the measure is used.

DATE: 3-7-97 REVISED: 8-24-09

Figure D.27 – Procedure for Verifying Mechanical Sieve Shakers In-House Procedure No. 27

Equipment Checked: MECHANICAL SIEVE SHAKER (AASHTO T 27)

Purpose:

This method provides instructions for checking the sieving efficiency of mechanical sieve shakers.

Inspection Equipment Required:

- 1. A scale capable of weighing to the nearest 0.1 gm.
- 2. An oven for drying the sample to a constant weight.
- 3. Sieves of sufficient diameter and screen openings so as not to cause overloading of any one screen.
- 4. Sample splitter.

Procedure:

- 1. Dry the sample to a constant weight.
- 2. Split the dried sample so as to provide at least 500 gm of fine aggregate or 2500 gm of coarse aggregate
- 3. Place the prepared and weighed sample in the sieve nest and place on the shaker.
- 4. Shake the sample for 5 minutes and remove.
- 5. Hand shake each sieve over a pan for one minute and weigh the material passing and record the weight.
- 6. Total the weight of the material passing for all of sieves in the nest and record. The total passing from hand shaking shall not exceed one-half of one percent of the total weight of the sample used.
- 7. If the weight exceeds the requirement in #6, increase the time on the shaker and repeat the test until the requirement is met.
- 8. When checking shakers which have adjustable shaking speeds it may be necessary to adjust the speed as well as the time in order to meet the requirements.

Maintenance:

Visually inspect hammers and the hose supporting the nest for wear. Replace parts as needed.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

DATE: 4-7-97

REVISED: 3-26-21 Removed from AASHTO certification 11/18/16

Figure D.28 – Procedure for Verifying Breaking Heads In-House Procedure No. 28

Equipment Checked: BREAKING HEAD (AASHTO T 245)

Purpose:

This procedure provides instructions for checking the critical dimensions of the breaking head used in this test method.

Inspection Equipment Required:

- 1. Steel rule capable of measuring to the nearest 1/16".
- 2. A steel straightedge at least 6" in length.
- 3. A round disk with a diameter of 4.0"

Procedure:

- 1. Place the steel straightedge across the flats of the breaking head and use the steel rule to measure the height of the bevel and the overall height of each half of the breaking head. All other dimensions can be accomplished with the rule with exception of the radius of the head.
- 2. To check the radius of the breaking head place the round disk on edge in the lower half of the head and place the top half on the disk. Note the fit of the two halves to the disk and also measure the gap between the two halves.
- 3. Record all dimensions on the worksheet as well as the condition of the unit.

Verification Interval:

12 months

Report:

A Certificate of Verification will be issued by the In-House Inspection Team.

DATE:

5-20-97

REVISED:

Figure D.29 – Procedure for Calibration of Flow Meters In-House Procedure No. 29

Equipment Checked: FLOW METER (AASHTO T 170)

Purpose:

This procedure provides instructions for gas flow calibration of the flow meter used in this test method.

Inspection Equipment Required:

- 1. One liter calibrated cylinder.
- 2. Laboratory stand and ring clamp.
- 3. Stop watch.

Procedure:

- 1. Fill laboratory sink 3/4 full of water.
- 2. Mount ring clamp on stand approximately 18" above top of lab table.
- 3. Fill calibrated cylinder full of water.
- 4. Place hand over end of cylinder and turn upside down through ring clamp and release under level of water in sink.
- 5. Place hose connected to flow meter under cylinder and collect CO₂ bubbles for one minute at 100 ml/min. and 900 ml/min. flow rate settings on flow meter.
- 6. Read initial and final meniscus readings before and after one minute flow period. Record readings on worksheet and calculate flow volume.
- 7. Note flow meter settings, make adjustments and repeat tests as necessary to determine correlation between flow meter settings and observed flow volume.

Verification Interval:

12 months

Report:

A Certificate of Verification will be issued by the In-House Inspection Team.

DATE:

5-10-99

REVISED:

Figure D.30 – Procedure for Verifying Rolling Thin Film Ovens In-House Procedure No. 30

Equipment Checked:

ROLLING THIN FILM OVEN (AASHTO T 240)

Purpose:

This method provides instructions for checking the components of a rolling thin film oven.

<u>Inspection Equipment Required:</u>

- 1. Certified stop watch.
- 2. ASTM certified thermometer.
- 3. Ruler, readable to 1/8 in.

Tolerance:

The equipment shall meet the tolerances specified in AASHTO Test Method T 240

Procedure:

- 1. Measure and record the distance from the thermometer to the right side of the oven. Measure and record the distance from the thermometer bulb to the horizontal axis running through the center of the carriage.
- 2. Perform the test according to T 240. After placing the test samples in the oven, record the time needed for the oven to recover to test temperature.
- 3. Record the number of carriage rotations in one minute.
- 4. Record the oven temperature at half-hour intervals until the test is complete.
- 5. This procedure shall be performed by the In-House Inspection Team.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

DATE: 08-01-17 REVISED: 09-26-18

Figure D.31 – Procedure for Verifying Pressurized Aging Vessels (PAV) In-House Procedure No. 31

Equipment Checked: PRESSURIZED AGING VESSELS (AASHTO R 28)

Purpose:

This method provides instructions for checking the components of the pressurized aging vessel.

Inspection Equipment Required:

- 1. ASTM certified thermometer.
- 2. Circulating water bath.
- 3. Certified pressure-measuring device.

Tolerance:

The equipment shall meet the tolerances specified in AASHTO Test Method R 28.

Procedure:

- 1. Attach the calibrated thermometer to the thermistor with a rubber band or O-ring in the
- 2. Allow the temperature of the PAV to stabilize.
- 3. After verifying the accuracy of the thermistor and its meter, hook up the pressure gauge to the PAV. (Pressure gauge shall be calibrated once every 3 years by a commercial vendor).
- 4. Load the vessel with the pan rack and empty pans and secure the top. Run the PAV through a complete cycle and record the pressure and temperature readings.

Verification Interval:

6 months

Report:

Send a copy of the results to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE: 5-10-99

REVISED:

Figure D.32 – Procedure for Verifying Pycnometers and Stoppers In-House Procedure No. 32

Equipment Checked: PYCNOMETERS AND STOPPERS (AASHTO T 228)

Purpose:

This method provides instructions for checking the critical dimensions of the pycnometers and stoppers used in this test procedure.

<u>Inspection Equipment Required:</u>

- 1. Caliper readable to the nearest 0.1 mm.
- 2. Balance capable of reading to the nearest 1 mg.

Tolerance:

The equipment shall meet the tolerances specified in AASHTO Test Method T 228.

Procedure:

- 1. Check all critical dimension of the pycnometer and stopper set forth in the AASHTO test method.
- 2. Determine the capacity of the stoppered pycnometer and overall weight of the pycnometer following the procedure set forth in the AASHTO test method.
- 3. Visually inspect the condition of the pycnometer and stopper.

Verification Interval:

12 months

Report:

Send a copy of the results to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE: 3-12-01 REVISED: 7-8-04

Figure D.33 – Procedure for Calibration of Flow Meters In-House Procedure No. 33

Equipment Checked: GAS FLOW METER (AASHTO T 240)

Purpose:

This procedure provides instructions for gas flow calibration of the flow meter used in this test method.

Inspection Equipment Required:

- 1. One liter calibrated cylinder.
- 2. Laboratory stand and ring clamp.
- 3. Stop watch.

Procedure:

- 1. Fill laboratory sink 3/4 full of water.
- 2. Mount ring clamp on stand approximately 18" above top of lab table.
- 3. Fill calibrated cylinder full of water.
- 4. Place hand over end of cylinder and turn upside down through ring clamp and release under level of water in sink.
- 5. Place hose connected to flow meter under cylinder and collect compressed air bubbles for 15 seconds at 4000 ml/min. flow rate setting on flow meter.
- 6. Read initial and final meniscus readings before and after 15 seconds flow period. Record readings on worksheet and calculate flow volume.
- 7. Note flow meter settings, make adjustments and repeat tests as necessary to determine correlation between flow meter settings and observed flow volume.

Verification Interval:

12 months

Report:

A Certificate of Verification will be issued by the In-House Inspection Team.

DATE: 5-28-08 REVISED: 10-22-08

Figure D.34 – Procedure for Verifying Muffle Furnaces In-House Procedure No. 34

Equipment Checked: MUFFLE FURNACE (AASHTO T 105)

Purpose:

This procedure provides instruction for checking the temperature accuracy of the furnace in the laboratory.

Inspection Equipment required

- 1. Orton Self-Supporting Pyrometric Cones: 06,07,08,09
- 2. Measuring Template for Standard Pyrometric Cones.

Tolerance:

The equipment shall meet the tolerances specified in test method AASHTO T 105.

Procedure:

- 1. Place one cone each of cones numbered 06, 07, 08, 09 on a slab made of asbestos or ceramic
- 2. Heat the muffle furnace to 950° C and hold at that temperature for one hour.
- 3. Once the furnace is cooled, take the cone that is only curved slightly to measure the angle against a measuring template.
- 4. Use the cone calculation computer program to input the heating rate, cone being measured, and the hold time at temperature. This program will give the equivalent temperature of the muffle furnace.

Verification Interval:

12 months

Report:

A Certificate of Verification will be issued by the In-House Inspection Team.

DATE: 3-15-01 REVISED: 3-27-03

Figure D.35 – Procedure for Verifying Funnel Stand Apparatus and 100 ml Cylindrical Measure In-House Procedure No. 35

Equipment Checked: FUNNEL STAND APPARATUS AND 100 ml CYLINDRICAL MEASURE (AASHTO T 304)

Purpose:

This procedure provides instructions for checking the volume of the cylindrical measure and the critical dimensions of the funnel stand apparatus used in this test method.

Inspection Equipment required

- 1. Caliper
- 2. Balance
- 3. Thermometer
- 4. Glass plate and grease

Tolerance:

The equipment shall meet the tolerances specified in test method AASHTO T 304-96.

Procedure:

The first step is to calibrate the cylindrical measure. Apply a light coat of grease to the top edge of the dry empty cylinder measure. Weight the measure, grease, and glass plate. Fill the measure with deionized water at the temperature of 18 to 24 C (64.4 to 75.2 F). Record the temperature of the water. Place the glass plate on the measure, being sure no air bubbles remain. Dry the outside of the measure and weigh the measure with the water and glass plate on top. Calculate the volume of the measure on the worksheet.

After calibrating the measure, place the measure on the funnel stand apparatus and check the critical dimensions. Check the dimensions with the tolerances specified in AASHTO T 304 test procedure.

Verification Interval:

12 months

Report:

Send a copy of the results to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE: 2-3-03 REVISED: 3-26-21

Figure D.36 – Procedure for Verifying Gyratory Molds and Ram Heads In-House Procedure No. 36

Equipment Checked: GYRATORY MOLDS AND RAM HEADS (AASHTO T312)

Purpose:

This procedure provides instructions for checking the critical dimensions of the molds and heads used in this test method.

Inspection Equipment Required:

- 1. Calipers or steel rule capable of measuring to hundredths of millimeters.
- 2. Surface Comparator.
- 3. Rockwell Hardness Tester.
- 4. S-22 Microfinish Comparator Surface Finish Scale.
- 5. Mitutoyo 12" Digital Caliper #1031225 Calibrated.
- 6. MTI Digimatic Holtest Model HTD-6" R Digital 3 Point Bore Gauge
- 7. Calibrated Master Ring Issue #11G14017

Procedure:

- 1. Procedure for measuring the molds use Annex A of AASHTO T312.
- 2. Check the smoothness of the molds and bottom plate surfaces that are in contact with the specimen. Use a surface comparator. (Follow owners manual).
- 3. Check the Rockwell Hardness of the molds and bottom plates with a Rockwell Hardness tester. (Follow owners manual)
 Note: Only new molds need the hardness tested.

Verification Interval:

12 months

Report:

Send a copy of the results to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE: 8-26-09 REVISED: 3-26-21

Figure D.37 – Procedure for Verifying Gyratory Compactors In-House Procedure No. 37

Equipment Checked: GYRATORY COMPACTOR (AASHTO T 312)

Purpose:

This procedure provides instructions for calibrating the gyratory ram pressure, angle of gyration, gyration frequency, and LVDT.

Inspection Equipment Required:

- 1. Calibration kit, including equipment to verify and calibrate the pressure and angle.
- 2. Dynamic Angle Validation Kit (DAVII-HMS)

Tolerance:

The equipment checked shall meet the tolerances specified in the equipment owners manual.

Procedure:

- 1. The procedure for calibrating the gyratory compactor is located in the Manual of Operation and Maintenance for Model 4140 Gyratory Compactor. Follow the manual's procedures for calibration.
- 2. Manual procedure for DAVII-HMS

Maintenance:

Follow manufacturers recommended schedule of maintenance. (Includes vacuuming, degreasing, lubricating and inspecting for loose or worn parts)

Verification Interval:

12 months

Report:

Send a copy of the print out results to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE: 3-13-01 REVISED: 5-16-01

Figure D.38 – Procedure for Verifying Ignition Ovens In-House Procedure No. 38

Equipment Checked: IGNITION OVEN (AASHTO T 308)

Purpose:

This procedure provides instructions for calibrating the ignition oven balance.

Inspection Equipment Required:

1. 8000 g calibration mass.

Tolerance:

The equipment checked shall meet the tolerances specified in the test method listed above.

Procedure:

1. For calibrating the ignition oven balance, follow the Preventive Maintenance and Servicing Manual procedure.

Verification Interval:

12 months

Report:

Send a copy of the results to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE: 4-10-07 REVISED: 02-14-11

Figure D.39 – Procedure for Verifying Ductilometers In-House Procedure No. 39

Equipment Checked: Ductilometer (AASHTO T 51 and T 301)

Purpose:

This procedure provides instructions for calibrating a Ductilometer, which is used for testing ductility.

Inspection Equipment Required:

- 1. Stopwatch.
- 2. Calipers.
- 3. ASTM calibrated thermometer, No. 63.
- 4. Measuring tape or Ruler (in centimeters).

Tolerance:

The equipment checked shall meet the tolerances specified in the test method listed above.

Procedure:

- 1. Measure dimensions of molds in accordance with AASHTO T 51 and T 301, Figure 1.
- 2. Check temperature of bath with thermometer in 3 different locations in the bath.
- 3. Determine speed by measuring mm/min.
- 4. Verify that bath ruler is flat, and verify markings with reference tape or ruler.

Maintenance:

Check oil level.

Verification Interval:

12 months

Report:

DATE: 3-14-01 REVISED: 3-26-21

Figure D.40 – Procedure for Verifying Dynamic Shear Rheometers In-House Procedure No. 40

Equipment Checked: DYNAMIC SHEAR RHEOMETER (AASHTO T 315)

Purpose:

This procedure provides instructions for calibrating a Dynamic Shear Rheometer.

Inspection Equipment Required:

- 1. Voltmeter
- 2. Calibration standard.
- 3. Temperature Thermistor (Wafer).
- 4. Micrometer

Tolerance:

The equipment checked shall meet the tolerances specified in the test method listed above.

Procedure:

- 1. Calibrate temperature transducer of DSR using the voltmeter and thermistor by following procedures of the DSR software.
- 2. Following DSR software procedures, load calibration standard and allow 2 to 4 minutes for sample to heat to purge air bubbles..
- 3. Following DSR software procedures, verify torque transducer.
- 4. Use micrometer to verify 25 mm and 8 mm plate diameters. Enter smaller diameter of both sets into DSR software.

Verification Interval:

6 months.

Report:

DATE:

2-3-03

REVISED:

Figure D.41 – Procedure for Verifying Vacuum Degassing Oven In-House Procedure No. 41

Equipment Checked: VACUUM DEGASSING OVEN

Purpose:

This procedure provides instructions for calibrating a Vacuum Degassing Oven

Inspection Equipment Required:

- 1. Calibrated temperature device
- 2. Calibrated vacuum pressure gauge
- 3. Stop watch

Tolerance:

The equipment checked shall meet the tolerances specified in the test method listed above.

Procedure:

Temperature

- 1. Pre-heat the Vacuum Degassing Oven.
- 2. After it has reached the degassing temperature, attach the calibrated temperature device in the oven.
- 3. Take readings at 5 minutes, 15 minutes and 30 minutes of the temperature device and the display on the oven, and record.
- 4. Determine offset by averaging the 3 differences and adjust the temperature of the oven to reflect the determined offset.

Vacuum

- 1. Attach a calibrated vacuum pressure gauge.
- 2. Pre-heat the Vacuum Degassing Oven.
- 3. Once the oven has been preheated, apply the vacuum. After the vacuum has stabilized, take an initial reading. Take readings after the initial reading at 15 minutes of the 30-minute cycle of the oven.
- 4. Compare the readings when they are taken to the gauge on the oven and record. Determine the offset by averaging the 2 differences and apply necessary adjustments to the metering valve.

Verification Interval:

12 months for the Vacuum Degassing Oven

36 months for the calibrated vacuum pressure gauge

Report:

DATE: 4-12-07 REVISED: 5-22-08

Figure D.42 – Procedure for Verifying Bending Beam Rheometer In-House Procedure No. 42

Equipment Checked: Bending Beam Rheometer (AASHTO T 313)

Purpose:

This procedure provides instructions for verifying masses and beam dimensions for a Bending Beam Rheometer.

<u>Inspection Equipment Required:</u>

- 1. Outside measurement calipers or micrometer capable of measuring up to 130 mm to the nearest 0.01 mm.
- 2. Standardized weights and certified Balance capable of weighing 100 grams to the nearest 0.1 gram.

Tolerance:

The equipment checked shall meet the tolerances specified in the test method listed above.

Procedure:

- 1. Use calipers or micrometer to measure the thickness, width and length of the non-compliance beam.
- 2. Use calipers or micrometer to measure the thickness, width and length of the confidence beam.
- 3. Verify that the measurements are within the specified tolerances.
- 4. Enter dimensions of confidence beam into the instrument software.
- 5. In-House Inspection team will verify all masses with standardized weights.

Verification Interval:

12 months

Report:

DATE: 3-2-05 REVISED: 2-15-08

Figure D.43 – Procedure for Verifying Soil Compression or Loading Devices In-House Procedure No. 43

Equipment Checked: LOAD TRAC II AUTOMATED SOIL COMPRESSION AND LOADING UNITS (AASHTO T 208, T 216, T 236, T 296 and T 297)

Purpose:

This procedure provides instructions for calibration of the Load Trac II Automated soil compression strength and soil consolidation testing units.

Inspection Equipment Required:

- 1. Calibration weights for incremental loading of testing units.
- 2. Verified scale (AASHTO M 231) for determining accurate weight of calibration weights.
- 3. Displacement gauge test blocks with thicknesses of 0.80mm, 1.60mm, and 3.20mm.
- 4. Incompressible dummy test specimens.

Tolerance:

The equipment shall meet the tolerances specified in the test methods listed above.

Force Transducer Calibration Procedure:

- 1. Obtain and record weight of calibration weights on scale (State ID 046037, Model HP-30K, manufacturer AND).
- 2. Load the Load Trac II software for test application and follow manufacturer's force transducer calibration procedure.

Displacement Transducer Calibration Procedure

- 1. Obtain displacement gauge blocks with thicknesses of 0.80 mm, 1.60 mm, and 3.20 mm
- 2. Load the Load Trac II software for test application and follow manufacturer's displacement transducer calibration procedure.

Machine Compressibility Calibration Procedure

- 1. The machine compressibility calibration is run like a standard consolidation test except an incompressible dummy replaces the soil specimen.
- 2. Load the Load Trac II software for test application and follow manufacturer's machine compressibility calibration procedure.

Verification Interval:

12 months

Report:

Send a copy of the results to the In-House Inspection Team for verification and issuance of a Certificate of Verification.

DATE: 3-27-07

REVISED:

Figure D.44 – Procedure for Verifying Softening Point of Bitumen Ring and Ball Apparatus In-House Procedure No. 44

Equipment Checked: RINGS, RINGHOLDER, BALLS, AND ASSEMBLAGE (AASHTO T 53)

Purpose:

This method provides instructions for verifying the rings, balls, and ring holder assembly used in the determination of Softening Point.

Inspection Equipment Required:

- 1. Micrometer
- 2. Balance (0.01g resolution)

Tolerance:

The equipment checked shall meet the tolerances specified in the test method listed above.

Procedure:

- 1. Using a micrometer, measure and record the dimensions of the shouldered rings to 0.1mm.
- 2. Using a balance, record the weights of the steel balls to 0.01g.
- 3. Using a micrometer, measure and record the diameter of the steel balls to 0.1mm.
- 4. Using a micrometer, verify that the dimensions of the Ball Centering Guides resemble Figure 1 in the procedure.
- 5. Using a micrometer, verify that the dimensions of the Ring Holder resemble Figure 1 in the procedure, and that it is adjusted in the assembly correctly.

Verification Interval:

12 months

Report:

The In-House Inspection Team will issue a Certificate of Verification to the laboratory in which the equipment is located.

DATE: 7-7-09

REVISED:

Figure D.45 – Procedure for Verifying Calipers In-House Procedure No. 45

Equipment Checked: CALIPERS

Purpose:

This method provides instructions for verifying the accuracy of calipers.

Tolerance:

The accuracy shall meet the manufacturer's technical specifications.

Inspection Equipment Required:

1. Caliper Gage Block

Procedure:

- 1. Wipe clean all the measuring faces and caliper bar.
- 2. Check to see if all the buttons, switches and LCD display respond well.
- 3. Verify the outside jaws in 1" increments the full range of the caliper up to 6".
- 4. Verify the inside jaws in 1" increments starting at .5". Check the full range up to 4.5".

Outside Calipers tend to wear more on the outer edge where they get more use. If you can see daylight through the jaws when completely closed this does not mean the calipers are necessarily unusable. The outer edge may be out of spec. but the inner jaw is still within tolerance and could be used. Any deviation from the requirements shall be reported to the lab supervisor prior to use.

Verification Interval:

12 months

Report:

The In-House Inspection Team will keep the original records on file and give a copy to the laboratory in which the equipment is located.

DATE: 8-13-09

REVISED:

Figure D.46 – Procedure for Calibration of Force, Displacement, & Pressure
Transducers for Load Trac and Shear Trac II Units
In-House Procedure No. 46

Equipment Checked: LOAD TRAC II TEST EQUIPMENT, (AASHTO T 208, T 216, T 236, T 265, T 296)

Purpose:

This method provides instructions for calibration of the load cells and displacement sensors used in the laboratory equipment (Load Trac II and Shear Trac II) for testing AASHTO T208, T216, T236, T265, and T296.

Inspection Equipment Required:

- 1. Independently calibrated Proving Ring or Load Cell
- 2. Gauge Blocks
- 3. Independently calibrated pressure transducer or pressure gage.

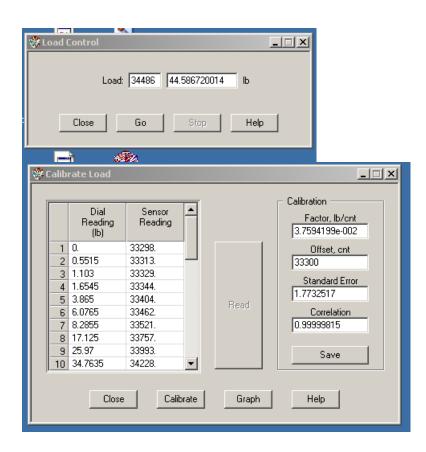
Tolerance:

The accuracy shall meet the manufacturer's technical specifications.

Procedure (General):

The Calibration Summary Table from the Geocomp, Inc. testing software contains calibration factors and offsets for the conversion of displacement, force, and pressure transducer readings from counts to engineering units using the following equation:

Sensor Reading in Engineering Unit =

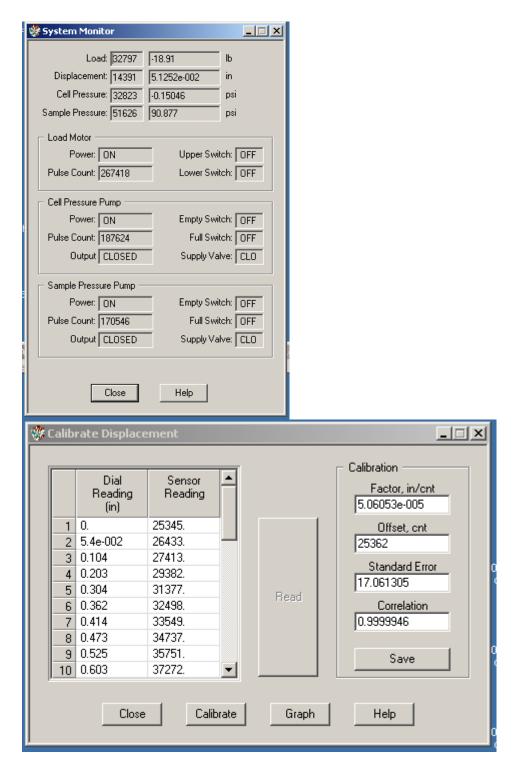

Calibration Factor x (Sensor Reading in Analog Units – Offset Value)

The control software performs the conversion by first subtracting the offset (in counts) from the transducer reading (in counts) and then multiplying the result by the conversion factor. This displacement offset is the displacement is the displacement transducer reading at the beginning of the test. The force offset corresponds to the load cell reading under zero load condition. The pressure offset corresponds to the pressure transducer reading at atmospheric pressure.

The calibration factor will depend on the unit system being used. The factor will automatically adjust if a new unit system is selected.

Procedure (Force Transducer):

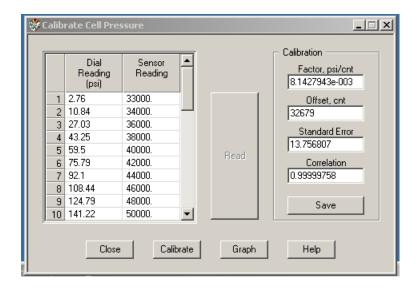
- 1. Using the keypad on the Load Trac II or Shear Trac II, move the platen all the way to the bottom position.
- 2. Place the independently calibrated load cell or proving ring onto the platen and center it under the extension rod of the load cell on the load frame.
- 3. Open up the Geocomp Software template used for the appropriate Test. Pull down the Control menu and click Load. This opens the Load Control Window. Position the Load Control window on the side of the computer screen.
- 4. Pull down the Calibrate menu and click the Load option. This will open the Calibrate Load window. Position this window so both the Load Control and Calibrate Load windows can be seen on the screen.



- 5. On the Load Control window, enter a load value. The value is entered as a value in the units you have chosen.
- 6. Click the Go button. The platen will move up until the reading from the system load cell matches (as per the previous calibration) the force value entered. When the platen stops, read the forced produced on the calibrated load cell or proving ring and enter it in the Dial Reading column of the Calibrate Load Window.
- 7. On the Calibrate Load window click the Read button. A value will appear in the sensor reading column.
- 8. Repeat this procedure for a series of load values that covers the range of the system load cell.
- 9. When all the data needed for the calibration has been collected, click the Calibrate button on the Calibrate Load window. The factor (calibration factor or slope of units per count) and offset of a best-fit line will be displayed in the upper right of the screen together with the correlation coefficient.
- 10. If the Correlation Coefficient is less than 0.999 there is a bad reading and the calibration process needs to be repeated.
- 11. Once a calibration is greater than 0.999, write down the calibration factor and offset. Open the Calibration Summary menu and compare the factor and offset to those shown. If they are more than 5% different, there is an error somewhere or the equipment has changed significantly since the last calibration.
- 12. To save the calibration results, click the Save button. If you close the window, the calibration results will not be saved, but they won't be removed from the window. If you close the window before saving just reopen the window and save the results. Saving the calibration results will replace the values shown on the Calibration Summary Window.
- 13. Save the file template using the clicking File, Save As. Name as appropriate for the new calibration year.

Procedure (Displacement Transducer):

- 1. Locate the stem of the displacement transducer which presses against the under side of the load platen (Load Trac II) or to the right of the Shear Mold (Shear Trac II).
- 2. For a stack of gauge blocks of thicknesses of 0.025, .050, and 0.125 inches to form a stack of 0.2 inches.
- 3. Gently push the stem down and place the stack between the displacement transducer stem and the platen (or shear mold).
- 4. Release the stem so that it holds the gauge blocks against the under side of the platen (or shear mold). The stem should now be 0.2 inches lower than when you started.
- 5. Open up the Geocomp Software template used for the appropriate Test. Pull down the View menu and click System. This opens the System Monitor Window. Position the System Monitor window on the side of the computer screen.
- 6. Pull down the Calibrate menu and click the Displacement option. This will open the Calibrate Displacement window. Position this window so both the System Monitor and Calibrate Displacement windows can be seen on the screen.


7. You will observe a count reading for displacement on the System Monitor window in the left box of the row labeled Displacement. Use the keypad on the front panel of the Load Trac II or Shear Trac II to move the platen or shear mold, respectively. Move the platen or shear mold until the displayed count number for displacement is about 40,000.

- 8. The column headed Dial Reading in the Calibrate Displacement window is for the thickness values established by the gauge block stack. Because the count reading from the transducer increases as the shaft moves up, it is best to start this column with 0 and have the thickness value increase. Then the entry for each row corresponds to the thickness change rather than the actual thickness.
- 9. On the Calibrate Displacement window, enter a displacement value of 0 in the first column of row 1. Then click the Read button. A value will appear in the Sensor Reading column.
- 10. Move the cursor down one row and enter 0.025 in the Dial Reading column. Remove the smallest gauge block, reducing the thickness by 0.025 inches and moves the transducer up 0.025 inches. Click the Read button and move the cursor down one row.
- 11. Enter 0.050, remove the 0.50 inch block and replace the 0.025 inch block to move the shaft up 0.050 inches. Click the Read button.
- 12. Continue entering numbers in increments of 0.025, appropriately adjusting the gauge block stack and clicking the Read button until you have reached 0.20 inches.
- 13. When finished click the Calibrate button on the Calibrate Displacement window. The factor (calibration factor or slope of units per count) and offset of a best-fit line will be displayed in the upper right of the screen together with the correlation coefficient.
- 14. If the Correlation Coefficient is less than 0.999 there is a bad reading and the calibration process needs to be repeated.
- 15. Once a calibration is greater than 0.999, write down the calibration factor and offset. Open the Calibration Summary menu and compare the factor and offset to those shown. If they are more than 5% different, there is an error somewhere or the equipment has changed significantly since the last calibration.
- 16. To save the calibration results, click the Save button. If you close the window, the calibration results will not be saved, but they won't be removed from the window. If you close the window before saving just reopen the window and save the results. Saving the calibration results will replace the values shown on the Calibration Summary Window.
- 17. Save the file template using the clicking File, Save As. Name as appropriate for the new calibration year.

Procedure (Pressure Transducer):

- 1. Use tubing and a "T" fitting to connect the independently calibrated pressure measuring device with the Pressure Transducer, and an external source of pressure to apply pressure increments.
- 2. Open up the Geocomp Software template used for the appropriate Test. Pull down the Calibrate menu and click the Cell Pressure option. This will open the Calibrate Cell Pressure window.

- 3. Apply a pressure using the external pressure source and let it stabilize.
- 4. Read the pressure produced on the calibrated pressure-measuring device and enter it in the Dial Reading column of the Calibrate Pressure window.
- 5. Click the Read Button on the Calibrate Pressure window. A value will appear in the Sensor Reading column
- 6. Repeat this procedure for a series of pressure values that covers the range of the sample pressure transducer.
- 7. When all the data is collected for the calibration, click the Calibrate button on the Calibrate Pressure window. The factor (calibration factor or slope in psi per count) and offset of a best-fit line will be displayed in the upper right of the screen together with the correlation coefficient. If the calibration coefficient is less than 0.999 there is a bad reading and the calibration process will need to be repeated.
- 8. Once a calibration is greater than 0.999, write down the calibration factor and offset. Open the Calibration Summary menu and compare the factor and offset to those shown. If they are more than 5% different, there is an error somewhere or the equipment has changed significantly since the last calibration.
- 9. To save the calibration results, click the Save button. If you close the window, the calibration results will not be saved, but they won't be removed from the window. If you close the window before saving just reopen the window and save the results. Saving the calibration results will replace the values shown on the Calibration Summary Window.
- 10. Save the file template using the clicking File, Save As. Name as appropriate for the new calibration year.

Note:

 Once calibrations are finished for all transducers/ sensors, save the appropriate calibration factors and offsets on a new test software template for each individual machine.

- If a machine (load trac II) runs more than one type of test, the calibration factors and offsets values can be copied into each different software and saved.
- After calibration, be sure to manually enter the calibration factor and offset for each machine unit by pressing 4 setup, 5 calibration, channel 1, 2, or 3 for force, displacement, and pressure, respectively. After entering the factors and offsets, turn off the load trac II or shear trac II for 1 minute and turn back on. The settings are now saved.

<u>Verification Interval:</u>

12 months

Report:

An Outside Contractor will perform the calibrations and issue a Certificate of Verification to the laboratory in which the equipment is located.

DATE: 11-28-11 REVISED: 2-13-12

Figure D.47 – Procedure for Verifying Thermometers & Thermocouples In-House Procedure No. 47

Equipment Checked: Thermometers & Thermocouples (ASTM E77 & E220)

Purpose:

This method provides instructions for checking the accuracy of Thermometers and Thermocouples used in all labs.

Inspection Equipment:

- 1. Liquid Bath, Dry Well Calibrator
- 2. Calibrated Reference Thermometer, Calibrated Reference Thermocouple

Tolerance:

Tolerance for mercury filled thermometers is \pm one scale division. Tolerance for spirit filled thermometers is \pm 1 % of the total range for that thermometer. Tolerance for dial thermometers is \pm one scale division. Digital thermometers such as Oaktrons & Taylors that are used most commonly in water baths and in ovens shall meet the manufacturer's tolerance specs. Digital thermometers and thermocouples used for laboratory testing shall meet the same requirements as those of mercury thermometers used for that test method.

Procedure:

All temperature measuring devices will be checked and verified by the In-House Inspection Team. Check each device at a minimum of two points. A laboratory may specify at which points to check the device, based on its use or test method it is used for. A liquid bath or dry well calibrator or combination of both may be used to verify the devices at determined points. The laboratory device being verified is done so against a calibrated reference thermometer or thermocouple. Readings are taken once the temperature has stabilized for approximately 5 minutes. The use of binder clips or paper clips may be needed to hold the devices being checked in place in the bath or dry well.

Inspection Interval:

12 months

Report:

Upon completing the verification, a worksheet and Certificate of Verification will be saved electronically in the laboratory folder.

DATE: 05-16-17

REVISED:

Figure D.48 - Procedure for Equipment Calibration, Check and Maintenance Records for Sodium Bath. In House Procedure No. 48

Equipment Checked: Sodium Solution Bath (AASHTO T 104)

Purpose:

This method provides instructions for checking the accuracy of the built in temperature thermostat, check and maintenance records.

Inspection Equipment:

- 1. Sodium Sulfate Bath
- 2. Calibrated Reference Thermometer
- 3. OM-CP Data Logger

Tolerance:

Temperature tolerance for sodium sulfate bath is 21 +/- 1 degree C (70 +/- 2 F). Sp. Gravity range 1.151 to 1.174.

Procedure:

- 1. Sodium sulfate bath temperature will be checked and verified by the In-House Inspection Team using calibrated thermometers and referenced against the Omega Engineering OM-CP Data Logger.
- 2. Temperatures will be checked three times on a 30 minute interval and crossed referenced with the Omega Data Logger temperature log to insure accurate temperature readings.

Inspection Interval:

12 months

Report:

Upon completing the verification, a worksheet and Certificate of Verification will be saved electronically in the laboratory folder.

Figure E1.1 – Lab Worksheet Penetration of Bituminous Materials

ATE OF NE	BRASKA OF ROADS		Penetratio	on of Bitumi	nous Materia ation: T 49	nis	
Sample #	Type of Material	Penetrat	ion 1/10 mn	n Division	Average	Specification Range	Technician
		20					
					-		
						H	
						1.	

Figure E1.2 – Lab Worksheet Emulsified Asphalt Residue by Distillation

Laboratory: Bituminous **Test Methods:** AASHTO T 59

Nebraska Department of Roads Materials and Tests Division **Lab Worksheet**

Emulsified Asphalt Residue by Distillation

Test Method: AASHTO Designation: T 59

Date →			
Technician			
Sample #			
Weight of still			
+ 200 grams of sample			
TOTAL			
Weight of still & residue			
+ 1.5 grams*			
TOTAL			
Weight of still & 200 gram sample			
- Weight of still residue & 1.5 grams			
= Weight of water			
200 grams of sample			
- Weight of water			
+ Total residue			
Divided by 2 = % residue			
Oil distillate			

^{*}Heat Correction

DR Form 408b, Aug 07

Figure E1.3 – Lab Worksheet Distillation of Cut-Back Asphaltic (Bituminous) Products

						ELB
					-	
STATE OF NEBRAS DEPARTMENT OF R	KA ROADS		n of Cut-Back Aspluminous) Products			
		AASHTO	Designation: T 7	8	1	
)ate Technician	<u> </u>		 			
			-		-	
ab I.D. AO					-	
Refiner					-	
60/60 F						
Velght of 200 ml						
Velght of Flask		**				
otal Weight						
В. Р.						, , , , , , , , , , , , , , , , , , , ,
emp. F td. Local	Volume ml	% of Total Dist. to 680 F	Volume ml	% of Total Dist to 680 F	Volume ml	% of Total Dist to 680 F
74 371				•		
37 434	* * * * * * * * * * * * * * * * * * * *		1.1			
00 497 '.	1.337		A tary paried		+	
o 597			TANAGESTIS.	. 4		
80 676						
esidue From	ml /	2=	ml	12=	ml	12=
4			+			
					+ .	
*		1	+			
		W 20 10				
				30	11 +	

Figure E1.4 – Lab Worksheet Kinematic Viscosity of Asphalts (Viscosity at 135° C)

Carrier and a second							
OF NEBRAS	SKA ROADS		Kinematic Visco AASHTO I	sity of As Designation	phalts (Bitumens) on: T 201		
Sample #	Grade	Tube #	Tube Factor	Time	Viscosity (135 ° C)	Date	Technician
		*					
*							
-							
		,					
-							-
							-
					*		
	-						
					1		
			a ere render				
	_						
		A.					
							· ·
					-		

Figure E1.5 – Lab Worksheet Viscosity of Asphalt by Vacuum Capillary Viscometer (Viscosity at 60° C)

							. 2 1
STATE OF NE	EBRASKA IT OF ROAL	os	Viscosity of Asp AAS	halts by Va HTO Desig	cuum Capillary Viscon nation: T 202	neter	
Sample #	Grade	Tube #	Tube Factor	Time	Viscosity (60° C)	Date	Technician

Figure E1.6 – Lab Worksheet Rolling Thin Film Oven (RTFO) Test

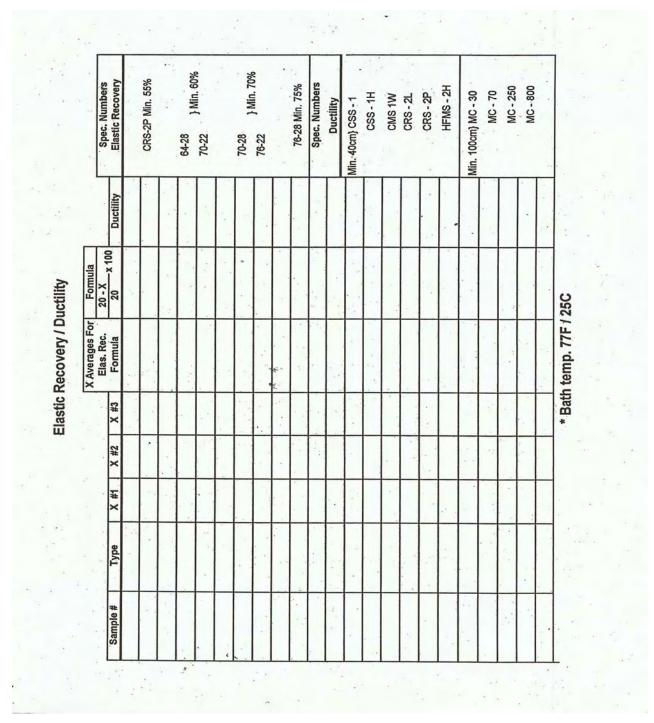

6 PG 58-28, PG 64-22, PG 64-24, PG 70-16, PG 70-22, PG 7	Complete? √	
6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7	Lab Ident.	
6 PG 58-28, PG 64-22, PG 64-24, PG 70-16, PG 70-22, PG 7	Grade of Binder	
6 6 6 6 4 2 8, PG 6 4 2 4, PG 70-16, PG 70-22, PG 70-22, PG 76-22	Original Binder	Specifications
6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 0 16, PG 70-22, PG 70-22, PG 76-22 PG 76-28	Phase Angle 58-28	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Phase Angle 64-22	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Phase Angle 64-28	Max 77 degrees
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase Angle 64-34	Max 75 degrees
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase Angle 70-16	
6 6 6 6 4 2 8, PG 64 2 8, PG 70 - 16, PG 70 - 22, PG 70 - 28, PG 76 - 28	Phase Angle 70-22	Max 77 degrees
6 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Phase Angle 70-28	Max 75 degrees
5 5 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	Phase Angle 76-22	Max 75 degrees
5 PG 58-28, PG 64-22, PG 64-34, PG 70-16, PG 70-22, PG 76-28	Phase Angle 76-28	Max 70 degrees
6 6 6 6 4 - 22, PG 6 4 - 34, PG 70 - 16, PG 70 - 22, PG 76 - 22, PG 76 - 28	Rotational Viscosity	Max 3.0 Pa @135C
6 PG 58-28, PG 64-22, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-28	Dynamic Shear G*/sinō	Min of 1.00 kPa
DG 58-28, PG 64-22, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-22	% Solubility	Min 99.00
DG 58-28, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-28	Flash Point, °C	Min 230
5 PG 58-28, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 70-28, PG 76-22, PG 7	RTFO Residue	
5 PG 58-28, PG 64-28, PG 64-34, PG 70-16, PG 70-28, PG 76-22, PG 76-22, PG 76-22, PG 76-22, PG 76-22, PG 76-28	Elastic Recovery % 64-28	Win 60%
DG 58-28, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-22	Elastic Recovery % 64-34	Min 70%
DG 58-28, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-28, PG 76-	Elastic Recovery % 70-22	Min 60%
DG 58-28, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-28, PG 76-	Elastic Recovery % 70-28	Min 70%
DG 58-28, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 70-28, PG 76-22, PG 76-22	Elastic Recovery % 76-22	Min 70%
DG 58-28, PG 64-28, PG 64-34, PG 70-16, PG 70-28, PG 76-22, PG 76-22	Elastic Recovery % 76-28	Min 75%
PG 58-28, PG 64-22, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-28	Dynamic Shear G*/sinō	Minimum of 2.2 kPa
PG 58-28, PG 64-22, PG 64-28, PG 70-16, PG 70-22, PG 76-22, PG 76-28	% Mass Change	+/- 1.00 Max.
PG 58-28, PG 64-22, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-28	PAV Material	
PG 58-28, PG 64-22, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-28	Dynamic Shear G*sinō	Max of 5000 kPa
PG 58-28, PG 64-22, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-28	BBR Creep Stiffness	Max of 300 mPa
PG 58-28, PG 64-22, PG 64-34, PG 70-16, PG 70-22, PG 76-22, PG 76-28	BBR m - Value	Minimum of 0.300
PG 58-28, PG 64-22,	Direct Tension Failure Strain	Minimum of 1.0%
	Types:	22, PG 76-28
	Comments:	

Figure E1.7 – Lab Worksheet Softening Point

	Emu	sified Aspha	It Test Data	a - 2008	
Lab Ident. EA-					T
Туре					
Viscosity, S.F.S. @ 77F or 50C					
% Residue by Distillation or Evap.					
Penetration, 77F					
Residue Viscosity, S.F.S., Cannon Manning @ 140F HFE-500 & 1000					
Residue Viscosity, S.F.S., Kinematic Conversion, 180F CMS-1 & 1W					
Kinematic Viscosity @ 140F, all MC					
Elastic Recovery, 77F (25C) CRS2P					-
Ductility, 77F (25C)	-				-
Softening Point, R&B CSS-1H Micro					-
Notes					
Notes					
Date Tested					
Lab Ident, EA-					T
Туре					
Viscosity, S.F.S. @ 77F or 50C					
% Residue by Distillation or Evap.					
Penetration, 77F					
Residue Viscosity, S.F.S., Cannon					
Manning @ 140F HFE-500 & 1000				±.	
Residue Viscosity, S.F.S., Kinematic					
Conversion, 180F CMS-1 & 1W					
Kinematic Viscosity @ 140F, all MC					
Elastic Recovery, 77F (25C) CRS2P					
Ductility, 77F (25C)					
Softening Point, R&B CSS-1H Micro					
Notes					
Date Tested					
Lab Ident. EA-					T
Туре					
Viscosity, S.F.S. @ 77F or 50C					
% Residue by Distillation or Evap.					
Penetration, 77F					
Residue Viscosity, S.F.S., Cannon					
Manning @ 140F HFE-500 & 1000					
Residue Viscosity, S.F.S., Kinematic					
Conversion, 180F CMS-1 & 1W					
Kinematic Viscosity @ 140F, all MC					1
Elastic Recovery, 77F (25C) CRS2P					1
Ductility, 77F (25C)					1
Softening Point, R&B CSS-1H Micro					1
Notes					

DATE: 8-29-97 REVISED: 3-31-08

Figure E1.8 – Lab Worksheet Elastic Recovery of Bituminous Materials by Ductilometer

REVISED: 3-31-08

Figure E1.9 - Lab Worksheet Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)

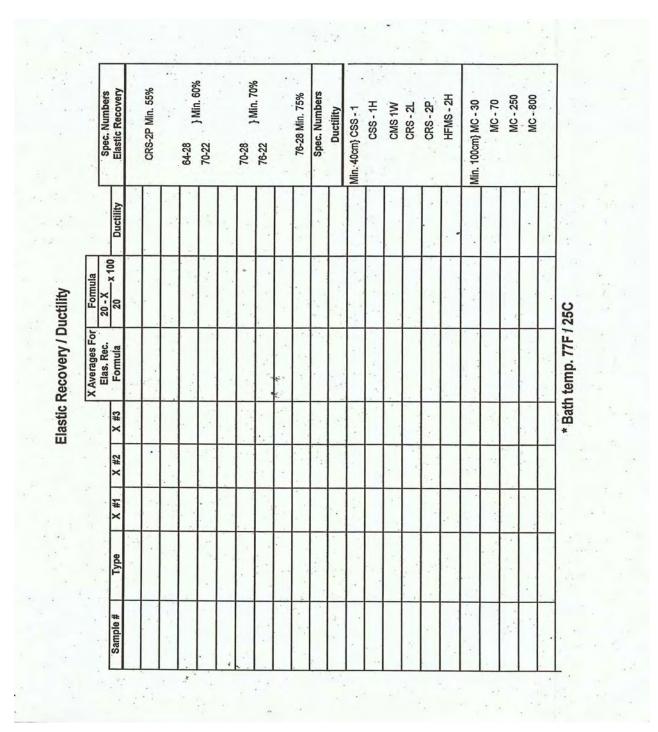
Lab Ident. Grade of Binder		
Grade of Binder		
Original Binder		Specifications
Phase Angle 58-28		
Phase Angle 64-22		
Phase Angle 64-28		Max 77 degrees
Phase Angle 64-34		Max 75 degrees
Phase Angle 70-16		
Phase Angle 70-22		Max 77 degrees
Phase Angle 70-28		Max 75 degrees
Phase Angle 76-22		Max 75 degrees
Phase Angle 76-28		Max 70 degrees
Rotational Viscosity		Max 3.0 Pa @135C
Dynamic Shear G*/sinð		Min of 1.00 kPa
% Solubility		Min 99.00
Flash Point, °C		Min 230
RTFO Residue		
Elastic Recovery % 64-28		Min 60%
Elastic Recovery % 64-34		Min 70%
Elastic Recovery % 70-22		Min 60%
Elastic Recovery % 70-28		Min 70%
Elastic Recovery % 76-22		Min 70%
Elastic Recovery % 76-28		Min 75%
Dynamic Shear G*/sinō		Minimum of 2.2 kPa
% Mass Change		+/- 1.00 Max.
PAV Material		
Dynamic Shear G*sinō		Max of 5000 kPa
BBR Creep Stiffness		Max of 300 mPa
BBR m - Value		Minimum of 0.300
Direct Tension Failure Strain		Minimum of 1.0%
Types: PG	PG 58-28, PG 64-22, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 70-28, PG 76-22, PG 76-28	
Comments:		

REVISED: 3-31-08

Figure E1.10 - Lab Worksheet Determining Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer

Specifications Specifications Max 77 degrees Max 70 degrees Max 3.0 Pa @135C Min of 1.00 kPa Min 99.00 Min 230
Specifications Max 77 degrees Max 77 degrees Max 75 degrees Max 75 degrees Max 75 degrees Max 76 degrees Max 30 Pa @135C Min of 1.00 kPa Min 99.00 Min 230
Specifications Max 77 degrees Max 75 degrees Max 76 degrees Max 30 Pa @135C Min of 1.00 kPa Min 230 Min 230
Max 77 degrees Max 77 degrees Max 77 degrees Max 75 degrees Max 75 degrees Max 30 Pa @135C Min 99.00 Min 230
Max 77 degrees Max 75 degrees Max 77 degrees Max 77 degrees Max 75 degrees Max 76 degrees Max 30 Pa @135C Min 99.00 Min 230
Max 77 degrees Max 75 degrees Max 77 degrees Max 75 degrees Max 75 degrees Max 75 degrees Max 70 degrees Max 30 Pa @135C Min of 1.00 kPa Min 99.00 Min 230
Max 75 degrees Max 77 degrees Max 75 degrees Max 75 degrees Max 75 degrees Max 76 degrees Max 30 Pa @135C Min of 1.00 kPa Min 230
Max 77 degrees Max 75 degrees Max 75 degrees Max 70 degrees Max 30 Pa @135C Min of 1.00 kPa Min 99.00 Min 230
Max 77 degrees Max 75 degrees Max 75 degrees Max 30 degrees Max 30 Pa @135C Min of 1.00 kPa Min 230 Min 230
Max 75 degrees Max 75 degrees Max 70 degrees Max 30 Pa @13C Min 99.00 Min 230
Max 75 degrees Max 70 degrees Max 30 Pa @135C Min 09.00 Min 230
Max 70 degrees Max 30 Pa @135C Min of 1.00 kPa Min 99.00 Min 230
Max 3.0 Pa @135C Min of 1.00 kPa Min 99.00 Min 230
Min of 1.00 kPa Min 99.00 Min 230
Min 99.00
Min 230
AND THE
7000 -: 11
Win 60%
Min 70%
Min 60%
Min 70%
Min 70%
Min 75%
Minimum of 2.2 kPa
+/- 1.00 Max.
Max of 5000 kPa
Max of 300 mPa
Minimum of 0.300
Minimum of 1.0%
PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 70-28, PG 76-22, PG 76-28

REVISED: 3-31-08

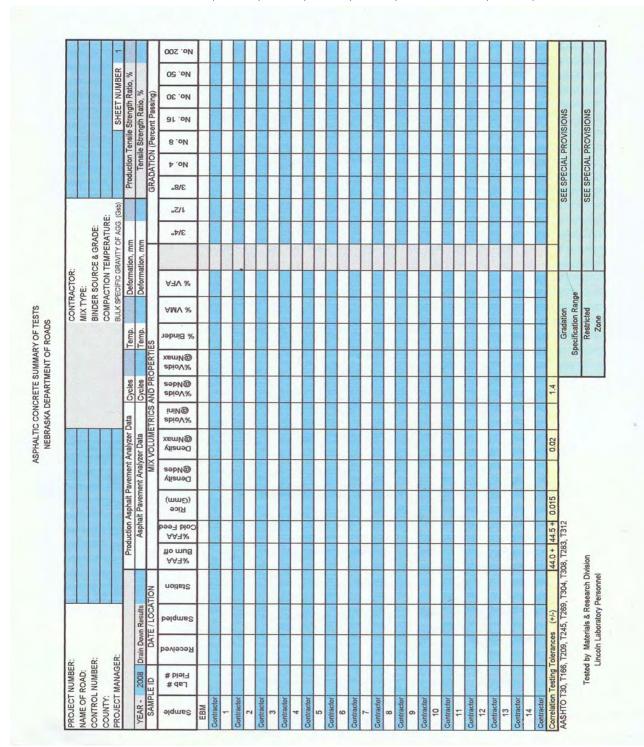

Figure E1.11 - Lab Worksheet Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV)

Lab Ident. Grade of Binder		
Grade of Binder		
Original Binder		Specifications
Phase Angle 58-28		
Phase Angle 64-22		
Phase Angle 64-28		Max 77 degrees
Phase Angle 64-34		Max 75 degrees
Phase Angle 70-16		
Phase Angle 70-22		Max 77 degrees
Phase Angle 70-28		Max 75 degrees
Phase Angle 76-22		Max 75 degrees
Phase Angle 76-28		Max 70 degrees
Rotational Viscosity		Max 3.0 Pa @135C
Dynamic Shear G*/sinð		Min of 1.00 kPa
% Solubility		Min 99.00
Flash Point, °C		Min 230
RTFO Residue		
Elastic Recovery % 64-28		Min 60%
Elastic Recovery % 64-34		Min 70%
Elastic Recovery % 70-22		Min 60%
Elastic Recovery % 70-28		Min 70%
Elastic Recovery % 76-22		Min 70%
Elastic Recovery % 76-28		Min 75%
Dynamic Shear G*/sinō		Minimum of 2.2 kPa
% Mass Change		+/- 1.00 Max.
PAV Material		
Dynamic Shear G*sinō		Max of 5000 kPa
BBR Creep Stiffness		Max of 300 mPa
BBR m - Value		Minimum of 0.300
Direct Tension Failure Strain		Minimum of 1.0%
Types: PG	PG 58-28, PG 64-22, PG 64-28, PG 64-34, PG 70-16, PG 70-22, PG 70-28, PG 76-22, PG 76-28	
Comments:		

3-31-08

REVISED:

Figure E1.12 – Lab Worksheet Ductility of Bituminous Mixtures

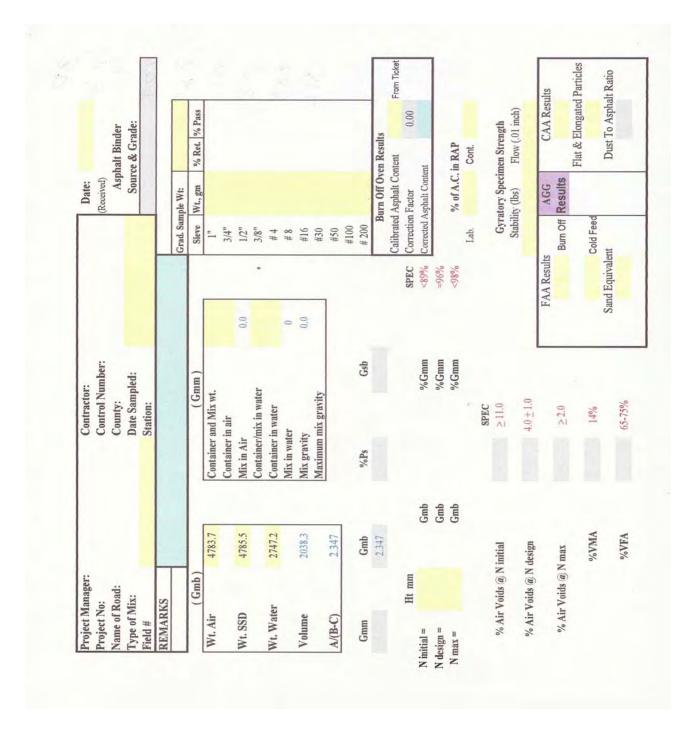


DATE: 2-6-03 REVISED: 4-11-08

Figure E2.1 – Test Report Asphaltic Concrete Summary of Tests

Laboratory: Bituminous Aggregate

Test Methods: AASHTO T 30, T 166, T 209, T 245, T 269, T 283. T 304, T 308, T 312



DATE: 8-29-97 REVISED: 4-11-08

Figure E2.2– Lab Worksheet Report of Test Data – Collected Data Creates the Summary of Test Report for Asphaltic Concrete Mixtures

Laboratory: Bituminous Aggregate

Test Method: AASHTO T 30, T 166, T 209, T 245, T 269, T 283, T 304, T 308, T 312

DATE: 2-3-97 REVISED: 2-6-03

Figure E2.3 – Lab Worksheet Superpave Mechanical Analysis of Extracted Aggregates

Laboratory: Bituminous Aggregate

Test Methods: AASHTO T 30

Nebraska Department of Roads Materials and Tests Division Lab Worksheet

Laboratory Identification	
BA	
EBM	
Sample Wt.	

Superpave Mechanical Analysis of Extracted Aggregate Test Method: AASHTO T 30

Sample Wt. After Wash/Dry =

Sieve Size	Tota	al Passing (Water Was	h)
	Weight, gm	* Percent Retained	** Percent Passing
1 Inch			
3/4 Inch			
1/2 Inch			
3/8 Inch			
No. 4	·		
No. 8			
No. 16			
No. 30			
No. 50			
No. 100			
No. 200			
Passing No. 200			

^{*} Weight, gm/Sample Weight X 100 = Percent Retained

Tested by:	Date Tested:

^{** 100 - %} Retained = Percent Passing

DATE: 8-29-97 REVISED: 4-11-08

Figure E2.4 – Lab Worksheet Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens

Laboratory: Bituminous Aggregate

Test Method: AASHTO T 166

Nebraska Department of Roads Materials and Research Division Lab Worksheet

Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface - Dry Specimens

Test Method: AASHTO T 166

Sample No.	Dry Weight in Air gm	S.S.D. Weight in Air gm	Saturated Weight in Water gm	Volume	Density gm/cc	Average	Correction Factor	Date	Technician
						-			
									-
			,						

DR Form 72b, Aug 97

printed on recycled paper

DATE: 8-29-97 REVISED: 4-11-08

Figure E2.5 – Lab Worksheet Maximum Specific Gravity of Bituminous Paving Mixtures

Laboratory: Bituminous Aggregate

Test Method: AASHTO T 209

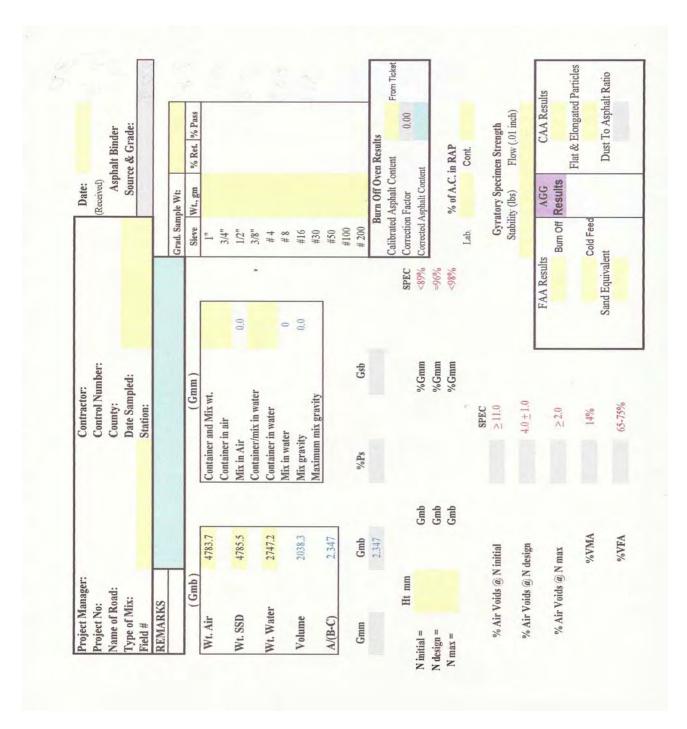
Nebraska Department of Roads Materials and Tests Division Lab Worksheet

Maximum Specific Gravity of Bituminous Paving Mixtures

Test Method: AASHTO T 209

		Weight of Ja	ar & Material	Weight of	Volume of			
Sample No.	Jar No.	In Air gm	In Water gm	Material gm	Material cc	Density	Date	Technician
								
							·	
						-		
						~		
				-				
	-		-					
				-				

DR Form 72a, Aug 97

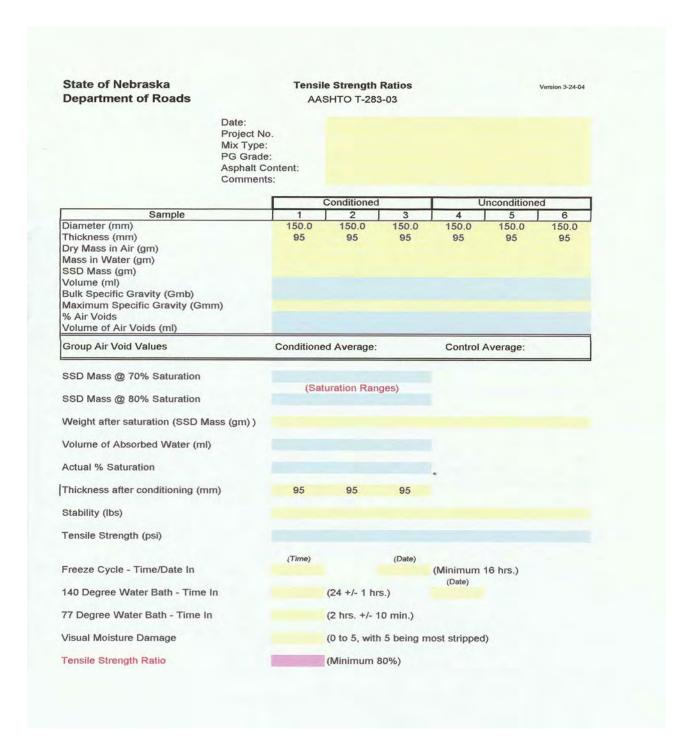

printed on recycled paper

DATE: 8-29-07 REVISED: 4-11-08

Figure E2.6 – Lab Worksheet Percent Air Voids in Compacted Dense and Open Asphalt Mix

Laboratory: Bituminous Aggregate

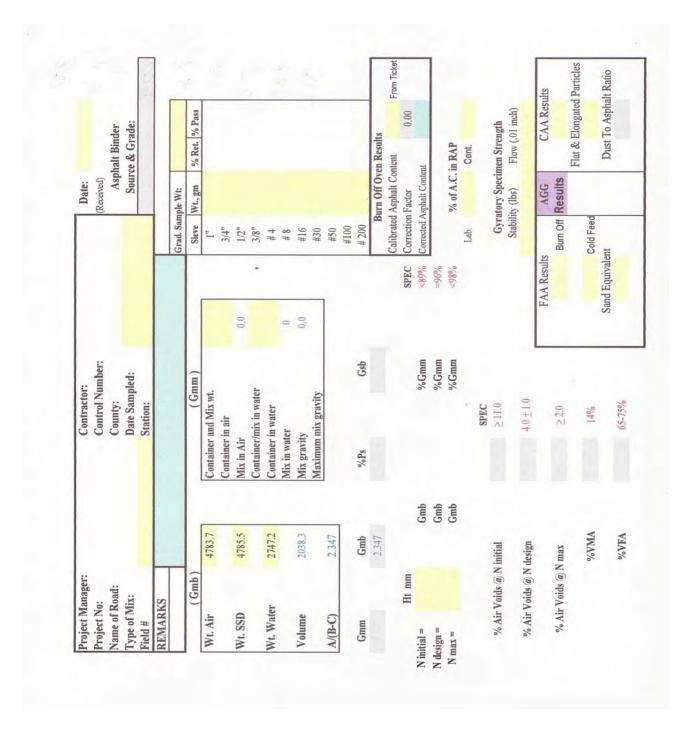
Test Method: AASHTO T 269


4-11-08

REVISED:

Figure E2.7– Lab Worksheet Resistance of Compacted Hot Mix Asphalt to Moisture-Induced Damage

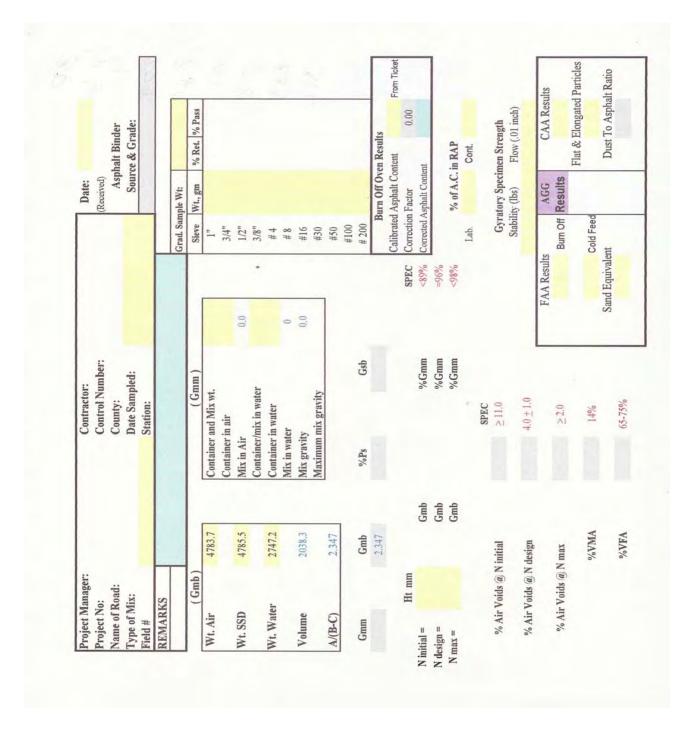
Laboratory: Bituminous Aggregate


Test Method: AASHTO T 269

DATE: 4-11-08 REVISED:

Figure E2.8 - Lab Worksheet Determining the Asphalt Binder Content of Hot-Mix Asphalt by the Ignition Oven Method

Laboratory: Bituminous Aggregate **Test Method:** AASHTO T 308



DATE: 4-11-08 REVISED:

Figure E2.9 - Lab Worksheet
Density of Hot-Mix Asphalt Specimens by Means of the Superpave
Gyratory Compactor

Laboratory: Bituminous Aggregate

Test Method: AASHTO T 312

11-29-11

REVISED:

Figure E2.10 – Test Report Asphalt Concrete Density Correlation Summary

Laboratory: Bituminous Aggregate

Test Method: AASHTO T 166

														•			
						Asph	alt C	onci	efe !	Sue	ity Cc	Asphalt Concrete Density Correlation	tion				
Name of Road:									Sum	Summary		5		Control Number:	umber:		
Project Manager:								Z	DOR La	borator				County;			- Vertice description
						EBM Number	mper	Mix	Mix Type	Core Diameter	lameter	Page N	Page Number				
ĵol	×	DATE	TE 2040		1	유	Location				CAGTIA	Field Core Density Samples	e Densi	ty Sampl	98		
qn	2	١	3	2		-			Ī	3	MIKAC	5		NOON		a	
de ra Lot & Si Numb	Cored	Contracto Tested	Received	NDOR Tested	Station	ŧ	Lane	Thickness	Distance From Edge	Rice (Gmm)	Bulk Density (Gmb)	% Density sealbiov to	Rice (Gmm)	Bulk Density (Gmb)	% Density of Voidless	Density Difference (Gmb)	Remarks
1						_											
			T			1											
			1	1													- Children Children
				1		1											
				1													
						\Box					ž						
			10												. 15		
														1000			
				1 1								¥					
											9						
		v .															
				1													
		ë.															
													is .				
														20			
															,		
											3 0		3.				
					-	-				100	The state of the s					-	

11-29-11

REVISED:

Figure E2.11 – Lab Worksheet Asphalt Concrete Design

Laboratory:

Bituminous Aggregate

Test Method:

AASHTO T 84, T 85, T 176, T 283, T 304, ASTM D 5821, D 4791

State of Nebraska

Department of Roads Asphalt Concrete Design

Project Manager:

Project No:

Date:

Name of Road:

Type of Asphalt Concrete:

Design No:

ASPHALT CEMENT

Source:

Grade:

GRADATION OF	MATERIAL	S PROPOS	SED					SIE	VE AN	ALYSIS	(WAS	H)		
MATERIAL		PIT LO	CATION	1		19.0	12.5	9.50	4.75	2.36	1.18	600	300	75
	%	1/4	SEC	T	R	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#200
	+					-								-
			1								<u> </u>			-
		COMBI	NED GF	RADATI	ON	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		SPECII	FICATIO	ON RAN	GE									

LAI	BORATO	DRY MIXE	S
Mix	1	2	3
EBM#			
% TOTAL			
% BURN			

CONSENSUS PROPERTI	ES FAA SP. GR
FAA Results	
CAA Results	
Sand Equivalent	
F & E Particles	
Móisture Sensitivity	
Dust to Asphalt Ratio	
Design Gsb	

Plasticity index of material passing the #200 sieve: NR

Combined mineral aggregate samples for plasticity index are not required.

*Note: One percent Hydrated Lime, by weight of virgin aggregate, will be added during construction of this design.

The Target asphalt content is 5.30% (By weight of mix)

APA F	Results
Strokes	Rut Depth
Time(Min.)	•

This constitutes verification of the job-mix gradation and superpave criteria values proposed by the contractor. If it is necessary to change the job mix either before or after the job starts, including the asphalt binder %, the contractor shall notify the P.E. / P.M.

Remarks:

cc:

Validated by Robert C. Rea & Materials and Research Div. Fax (402) 479 - 3882

A.Dearmont L.Koves R.Rea File DATE: 2-14-97 REVISED: 4-3-01

> Figure E3.1 – Test Report Report of Test – Crushed Rock

Laboratory: Aggregates, Soils

Test Methods: AASHTO T 27, T 84, T 85, T 89, T 90, T 96, T 104 NDR T103, T 504

roject man	ager: (Name &	Address)		Name of	Road:					1	Project P	lo.:												_	
										IJ ^¹	Name of	Materie	" Cr	ushe	d Roc	k						Cont	trol No.:		
County:		······································									For Use	ln:													_
	Number, Name	& Addressal									Bource:													—	
											Producer														
									_		aborato	ry:										Benc	ort No.:		
		1		DATE	_															-			JI 190.:	_	
LAB	FIELD		\vdash	, ,	4		(Space	Sieve	NALY s Wei ent Pa	e Use	d)			 .	ğ	LA ABRASION GRADING & % LOSS	% CLAY LUMPS &	2	TOTAL CLAY, SHALE & SOFT PARTICLES, %	SOUN	DNESS ISS		XDEX	
IDENT.	IDENT.	ITEM	9	RECEIVED	11/2	1	%	1/2	3/4	4	10	20	50	200	BULK SPECIFIC GRAVITY	* ABSORPTION	ABRA 4G & 3	ALE &	* SOFT PARTICLES	A SE	H≥	a Ľ	LIQUID LIMIT	PLASTICITY MDEX	WT.CU. FT.
CR		3	SAMPLED	35 A	37.5 mm		19.0 mm	12.5 mm	9.50 mm	4.75 mm	2.00	850 µm	300	75 µm		*	ŽŽ	유	**	TA P	FREEZE & THAW	SODYUM	3	Z.	¥
					1						••••	-	-	· paris	<u> </u>	\vdash				= "	 		-		t
					T												<u> </u>	l		-			-	-	t
													-			-				-		_			t
																				l				\vdash	t
																								Г	t
					1	1																			T
					<u> </u>	_																			Γ
				_																					Γ
					ļ	l																			
	-	ļ			↓												ļ								
					-	<u> </u>		_															L.,		L
		I	_		\vdash	ļ	<u> </u>											_							Ļ
	Q = Qua	rry Sample	Spe	cifications																		•			ĺ
			Test	Results Ba	sed C	n: A	ASHT	O T 2	7, T8	4, T &	5, T	39, T	90, T	96, T	104				<u> </u>					-	<u> </u>
						N	DR T	103, 1	T 504																

DATE: 2-14-97 REVISED: VOID – DO NOT USE

Figure E3.2 – Test Report Report of Test – Crushed Rock for Use in Asphaltic Concrete

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 85, T 96, T 104

NDR T103, T 504, T 584

Figure E3.3 – Test Report Report of Test – Crushed Rock for Use in Asphaltic Concrete

Laboratory: Aggregates

DR Form 226a, Mar 01

Test Methods: AASHTO T 27, T 96, T 104, T 89, T 90, T 85

NDR T 103, T 504

					_	e of Ros						Proje	ect No.:												
												Nam	e of Mate	rial:	Crusi	hed I	Rock						Control N	o.;	_
ounty:					-							For	Use In:	٠,	Asph	altic	Con	crete							
ontractor:	Number, Nar	10 8 Ac	(dress)									Sour	CB;												_
												Prod	ucer:									_	****		_
												Labo	ratory:	- 1	inco	In, N	IE						Report N	o.:	_
LAB					DATE							E ANA	LYSIS Vere Us		-				z	SS	* 2	Sį.	4 %	PER	CEN
DENT.	FIELD IDENT.	CONST. CONTRACTOR	ITEM	l e	a	ē		_		, 1	Total P	ercent	Passing	7				BULK SPECIFIC GRAVITY	ABSORPTION	L.A. ABRASION GRADING & % LOSS	CLAY LUMPS & SHALE & COAL	* SOFT PARTICLES	TOTAL CLAY, SHALE & SOFT PARTICLES, %	SOUN	_
CR C		SINOS		SAMPLED	RECEIVED	REPORTED	25.0	3/4 19.0	1/2	3/s 9.50	4.75	2.36	10	16	30	50	200	GRAVITY	% ABSC	A AB	SHALE	100	T PAR	FREEZE & THAW	MUOOS
·H	-	H		1 3		æ	mm	mm	mm	mm	mm	7.36 mm	mm	1.18 mm	600 µm	300 µm	75 µm		<u>.</u>	3	**	×	Ē\$	€.	8
		H					<u> </u>					ļ											<u> </u>		Ļ
		H					_			_													<u> </u>		Ł
		\top	····		t											<u> </u>							┼		╁
						-														-					t
		Ш.													·		_								t
		#																							T
		+			<u> </u>																				
		╁			ļ	<u> </u>																			L
		╫			-							_			-	_									_
		++-		_	-							_													Ļ
	Q = Qu	arry :	Sample	Spe	cificat	ions															-			-	-
													, T 89,												L

For Materials and Research Division

Figure E3.4 – Test Report Report of Test – Mineral Aggregate for Use in Asphaltic Concrete

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 96, T 104, T 248, T 304, T 89, T 90, T 84

	apar: (Name		7/055)			Na	ime of (Road:					Proj	ect No.:											
													Nam	se of Ma	terial:	Mine	ral A	ggre	gat	e			Contro	No.:	
County:						_							For	Use In:		4sph									
ontractor:	Number, Nan	o å	Address)										Sour	rce;											
													Proc	lucer:											
													Labo	oratory:		•							Repor	No:	
		Sam	pie		т.	DATE		γ								inco	oin, i	VE_		, ,		,	<u> </u>		_
LAB IDENT.	FIELD IDENT.	Cla	18	ITEM	_							(Space	r Sieve	NALYS s Wen ent Pas	e Usea	0				BULK	NOF	MAYUS 76 pm SIEVE LIQUID LIMIT	MRNUS 75 µm SIEVE PLASTICITY INDEX	SODIUM SIALFATE SOUNDMESS	LA. ABRASION
		CONST.	TEAC		SAMPLED	RECEIVED	REPORTED	1	3/4	1/2	3/6	4	8	10	16	30	40	50	200	SPECIFIC GRAVITY	ABSORPTION	200	1 5 F	15 ABO	ABR
MA		8 8	8		_ ₹	Ä	ä	25 mm	19.0 mm	12.5 mm	9.50 mm	4.75 mm	2.36 mm	2.00 mm	1.18 mm	600 µm	425 µm	300 µm	75 μm]	₹		32	8 4	3
		-	ļ			<u> </u>																		<u> </u>	
		+	4_			ļ		_																	
		+	-			ļ			ļ .							<u> </u>									
		+	-			-			<u> </u>																
		+	-						_	-					_										Ļ
		+	+		+-				_							<u> </u>					-				
		†	+		-											-									L
		\uparrow	1					-	-													-		ļ	<u> </u>
		T	1 -												<u> </u>								<u> </u>		┝
												-				-			-						-
																									\vdash
					Spec	lficat	ions																	Max. 12	Max 40
					Test	Resul	ts Ba	sed (n: A	SHTO	T 27,	T 96,	T 104,	T 24	B, T 3	04, T 8	9, T 90), T 84							

Figure E3.5 – Test Report Report of Test – Mineral Aggregate for Use in Armor Coat

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 96, T 104, T 248

	All	la	Coat No boratory	Perfor	med T	est	ite		
NDOR M&R Omar Qudus, Geote	echnical Manager		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Template ID Version: 20	: AGL007001 080129
	Dry Weight of Sample		Wash Test Total P (Spacer Si	assing P	ercent				
	Retained	1/2	3/8	4	10	50	200		
	Passing %		00 20 00	FO 100		-			
-	Specifications Test		99/100	60/85	0/15	0/10	0/3 Results	Spec.	-
	LA Abrasion [M Sodium Sulfate Soun	ethod	1.1	Grading :	and % Lo	088		40 Max	
* Accepted	based on previous te						-	5 Max	
Comments:									
Test Specifications:	AASHTO T27 T96	T104	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104. 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104. 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
	: AASHTO T27, T96,	T104, 1	T248						
Test Specifications:	: AASHTO T27, T96,	T104, 1	T248						
	: AASHTO T27, T96,	T104, 1	T248						

Figure E3.6 – Test Report Report of Test – Gravel Surfacing

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 96, T 104, T 248

NDOR M&R Omar Qudus, Geote	chnical Manager	Gravel for S Laboratory Perf			Template ID: AGL010001 Version: 20080128	
	Dry Weight	Wash Test - Sie	ve Analysis			
	of Sample	Total Passing				
		(Spacer Sieves \	Were Used)			
	Retained 11/2	1 3/4 1/2	3/8 4	10	200	- 1
	Passing %				The state of the s	
		00	61/95	16**	0/6	
** A dedu	ction from contract bid	price will be made for	materials which ar	re more tha	n 14	
percentag	e points above the targ ion, Section 310.	jet value as specified	in the Standard Sp	pecification	ns for Highway	
1	Test	1	Results	Spec.		4-7
	LA Abrasion (Method] , Grading a		40 Mas		
	Sodium Sulfate Soundne			12 Max		
* Accepte	d based on previous te	sts				
Comments	• [
				-		
Test Specification:	AASHTO T27, T96, T1	04, T248				
Test Specification:	AASHTO T27, T96, T1	04, T248				
Test Specification:	AASHTO T27, T96, T1	D4, T248				
Test Specification:	AASHTO T27, T96, T1	D4, T248				
Test Specification:	AASHTO T27, T96, T1	D4, T248				

Figure E3.7 – Test Report Report of Test – Fine Aggregate (Class A) for Use in High-Density Low-Slump or Silica Fume Concrete

Laboratory: Aggregates

Test Methods: AASHTO T 21, T 27, T 84, T 104, T 248

	Cla	ass A (Silic	a Fun	ne Fin	e) Ag	grega	ate	
		L	abora	tory Pe	rformed	l Tests	;		
NDOR M&R Omar Qudus, Geo	otechnical Enginee	r							Template ID: AGL001001 Version: 20080725
	Dry Weight		Wasi	h Test - 9	ieve Ana	alysis			
	of Sample			otal Pass					
			(Spa	cer Sieve	es Were l	Jsed)			
		3/4	3/8	4	10	20	30	200	
	Retained								
	Passing %		-11						
_	Specifications	:	100	92/100	64/90		10/40	0/3	
	Test						Results	Spec.	
	Colormetric								
	Bulk Specific	Gravity (S	SD)						
	Absorption %								
	Clay Lumps %							0.5 M	ах
	Sodium Sulfat	e %						10 Ma	ж
* A	ccepted based on p	previous to	ests						
Cor	nments:								
Tost Consideration	m: AACUTO TO1 1	727 TO4	T104	T240					
rest opecinicatio	n: AASHTO T21, 1 NDR T504	27, 104,	1104,	1240					

Figure E3.8 – Test Report Report of Test – Coarse Aggregate (Class F) for Use in High-Density Low-Slump or Silica Fume Concrete

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 85, T 96, T 248

NDR T 103, T 504

Class F (Silica Fume Coarse)	
Laboratory Performed Tests	
NDOR M&R	Template ID: AGL006001
Omar Qudus, Geotechnical Engineer	Version: 20080725
Dry Weight Wash Test - Sieve Analysis	
of Sample Total Percent Passing	
(Spacer Sieves Were Used)	
1 3/4 1/2 3/8 4	10 200
Retained	<u> </u>
% Passing	
Specifications: 100 96/100 40/90 4/30	0/8 0/3
** may be increased to 0/6 provided n than 1.5% is passing the 200 sieve wh	
Test	Results Spec.
Bulk Specific Gravity (SSD)	
Absorption %	
LA Abrasion (Method) , Grading and Loss %	% 40 Max
Clay Lumps %	0.5 Max
Shale and Coal %	1 Max
Soft Particles %	3.5 Max
Total Clay, Shale, Coal, and Soft Particles %	3.5 Max
Freeze Thaw %	8 Max
* Accepted based on previous tests	
Comments:	
Test Specifications: AASHTO T27, T85, T96, T248	
NDR T103, T504	

Figure E3.9 – Test Report Report of Test – Fine Aggregate (Class D) for Use in Grout Sand

Laboratory: Aggregates **Test Methods**: AASHTO T 27

roject Man	ager: (Name	& Addres	5)		Na	me of R	oad:					Project	No.:												_
											-	Name	of Material	Fin	e Aa	area	ate - (Class	s D			C	ontrol No	D.:	_
sunty:												For Use	in;		out S										_
•	Number, Nari	ne & Ado	ress)		\perp							Source													_
												Produce	vr:												
												Laborat	ory:	Lin	coln,	NE						R	eport No	ı.:	
					DATE	<u> </u>						LYSIS			,				S		_	T <u>22</u>	4 4	PER	CENT
LAB DENT,	FIELD IDENT.	ĭs ≼	ITEM		Δ	e			(5			Were U Passin				COLORIMETRIC	BULK SPECIFIC	* ABSORPTION	LA ABRASION GRADING & % LOSS	% CLAY LUMPS	% SHALE & COAL	% SOFT PARTICLES	TOTAL CLAY, SHALE & SOFT PARTICLES, %	SOUN	SS
		FHWA		SAMPLED	RECEIVED	REPORTED	11/2	1	3/4	3/4	4	10	20	30	200	9	SPECIFIC GRAVITY (88-D)	ABSO	A. ABP	ž	HALE	E E	PART	FREEZE & THAW	NUMOOS
Α				₹.	H.	22	37.5 mm	25.0 mm	19.0 mm	9.50 mm	4.75 mm	2.00 mm	850 µm	₽m 600	75 µm	Ů		*	GRA	*	ž.	*	SOFI	E.	S
				_	<u> </u>	ļ					_	<u> </u>													
					-	ļ			_							<u>.</u>	L								
		H			-						_	ļ. <u>.</u>				-									
		++		+	-				_			-													_
		$\parallel \parallel$		+-		-			-			 				-					-		-		
				-			_					-													
												-									-				
																									_
		#					ļ																		
		Ш.		_	<u> </u>	L																			
н	eady Mix	Plant	Location	Spe	cificat	ions					100	95 ±5		57 ±18	3 ±3										
				Test	Result	ls Bas	ed O	n: AA	SHTO	T 27,	NDR 1	504				-									

Figure E3.10 – Test Report Report of Test – Fine Aggregate (Class B) for Use in Class 47B Concrete

Laboratory: Aggregates

Test Methods: AASHTO T 21, T 27, T 84, T 96, T 104, T 176, T 248

		CI		•	Fine; Perform			е			
NDOR M&R Omar Qudus, Ge	otechnical En	gineer								te ID: Al : 20080	GL002001 725
Dry ₩ of Sai	_		WAS		- SIEVE I Passing		IS				
	1 1/2	1	3/4	1/2	3/8	4	10	20	30	200	
Retair	ned										
Passir	_					11				-10	
Speci	fications:	100				77/97	50/70		16/40	0/3	
		Test					Results	Spec.			
	Colorm	etric									
	Bulk S	pecific Gr	avity (SS	D)							
	Absorp	tion %									
	Clay L	umps %						0.5 Max			
	LA Abi				(Method)					
		n Sulfate %						10 Max			
		quivalent									
* Acc	epted based o	n previou									
Finen	ess Modulus		3/4	3/8	4	8	16	30	50	100	
	Retain		\sqsubseteq						\sqsubseteq		
F:	Retain			-1.0							
Finen	ess Modulus 1	otal Retai	nea &								
Comm	ents:										
Test Specification	on: AASHTO NDR T50		T84, T90	6, T104,	T176, T2	48					
	11211 730										

Figure E3.11 – Test Report Report of Test – Sand-Gravel Aggregate (Class C) for Use in Class AX & BX Concrete

Laboratory: Aggregates

Test Methods: AASHTO T 21, T 27, T 84, T 96, T 104, T 176, T 248

	X and BX) Agatory Performed Te			
NDOR M&R Omar Qudus, Geotechnical Engineer	2.0.y . 0.1.0.111.0 2		Template ID: A Version: 20080	
	h Test - Sieve Analysis otal Passing Percent	•		
1 1/2 1 3/4	1/2 3/8 4	10 20	30 200	
Retained				
% Passing				
Specifications: 100	44/8	3 24/50	4/20 0/3	_
Test		Results Spec.		
Colormetric				
Bulk Specific Gravity (SSD)				
Absorption %				
Clay Lumps %		0.5 Ma	x	
LA Abrasion	(Method)		
Sodium Sulfate %		10 Max	e .	
Sand Equivelent				
* Accepted based on previous tests				_
Fineness Modulus 3/4	3/8 4 8	16 30	50 100	
Retained				
Retained %				
* Fineness Modulus Total Retained %				<u>_</u>
Comments:				
Test Specification: AASHTO T21, T27, T84, T96, T NDR T504	104, T176, T248			

Figure E3.12 – Test Report Report of Test – Coarse Aggregate (Class E) for Use in Class 47B Concrete

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 85, T 96, T 248

NDR T 103, T 504

	Class	E (47B Co	arse) Aggre	egate		
		Laboratory Pe	rformed Tests			
NDOR M&R Omar Qudus, Geotechnica	d Engineer				emplate ID: AGL ersion: 2008072	
	ii Erigineei	West Test C	·:		C131011. 2000012	
Dry Weight of Sample		Wash Test - 9 Total Passi				
or Sample		(Spacer Sieve	_			
	2 1 1/2	1 3/4	1/2 3/8	4 20	200	
Retained						
Passing %	-110				-1.0	
Specifications	s: 100	92/100 66/90	15/45	0/12 **0/4	0/3	
** May be in	creased to 0/6 pro	ovided no more th	an 1.5% is passing	g the 200 sieve	when washed	
	T	est		Results S	pec	
В	Bulk Specific Gravi	ity (SSD)				
A	Absorption %					
L	A Abrasion	(Method), Grading and Lo	ss % 4	0 Max	
C	Clay Lumps %			0	.5 Мах	
S	Shale and Coal %			1	Мах	
S	oft Particles %			3	.5 Max	
Т	otal Clay, Shale, (Coal, and Soft Pa	ticles %	3	.5 Max	
F	reeze Thaw %			8	Max	
C	Calcium Carbonate			8	0 Min	
* Accepted bas	ed on previous te	sts				
Comments:						
Test Specification: AASH	TO T27, T85, T96	, T248				
NDR 1	T103, T504					

Figure E3.13 – Test Report Report of Test – Stabilized Mixture for Use in Foundation Course (Regular)

Laboratory: Soils

DR Form 435d, Feb 01

Test Methods: AASHTO T 27, T 248

NDR T 99

roject Man	ager. (Name	& Addi	ess)		N	ame of I	load:				Pr	oject No.:				-						
											N	me of Ma	lerial:	Stabi	lized	Mix	ure				Control	No.:
County:					\downarrow						Fo	r Use In:					ourse	(rea)		J	
ontractor.	(Number, Nar	ne å A	ddrass)		L						Sc	wrca:			-			(1.5-4)				
											Pr	oducer:										—
											_ La	boratory:		inco	In A	IF					Report	No.:
		Samp	e		DAT	E				Si (Span	EVE A	NALYS es Were	IS		,,,,		MOISTI	RE DENSI	TV YEST	~		Γ
LAB IDENT.	FIELD IDENT.	П	TOK OF		Θ.	8				Tot	al Perc	ent Pass	sing				<u> </u>	ył.		MOISTURE DENSITY CURVE NO.		ĺ
		CONST.	XI	SAMPLED	RECEIVED	REPORTED	25	3/4 19.0	1/2	3/a 9.50	4.75	10	30	40	50	200	MAXIMUM DENSITY gm/cc	OPTIMUM	METHOD	STURE		
SM		8 2	3	- l &	#	2	mm	mm	mm	9.50 mm	4.75 mm	2.00 mm	600 µm	425 µm	300 µm	75 μπ	30_	P ON	3	ğ		
		H	 		+-	-	<u> </u>															
		\parallel		\vdash	+	-								 				_				
		П																				
		П									•											
		\sqcup			ļ																	
		4			-	-																
		++	-		-	-										· .						
	-	\forall			1	-																
		\prod		_	_	<u> </u>																
															_							
P) Produ	icer			Spe	cifica	lons	100 None					62±12		34 <u>+</u> 8		9±3						
				Test	Dogu	te Ba			PUTO:	7 27, T	040											

For Materials and Research Division

> Figure E3.14 – Test Report Report of Test – (General)

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 88, T 89, T 90, T 96, T 100, T 104, T 248

NDR T 99, T 103

roject Mar	ager: (Name	å A	idress)			N	ame of		_	_		_	_	_	_	roject			st										_
		_					-				_				╌	ame o	d Mate	rial·											
						_						—			-L												Control N	0.:	,
ounty:		_				-									⊣՟	or Use	In:												
intractor:	Number, Nar	ne &	Addres	s)		Щ.									⊣િ	ource:													
															P	roduce	ir:												
																aborato	ory:									,	Report N	<u>,</u>	_
		Sar	uple			DAT	E	_													ncol	n, N	E						_
LAB	FIELD	CL	68.		<u> </u>		—	1		6	Space	er Sie	ves	Nere	Usa	d)				DRO-	GRAVITY	E	**DEX	DE	NSITY T	IE EST	È	S ATE	,
DENT,	IDENT.	۰		ITEM	<u> </u> 8	P.	E E	1	3/4	1/2	101	ai Pe	_	Pas	Ť	l	lean		۱.		800	ID LAMIT	¥ .	≅≻.	≥#	۵	E BE	SULF	a lack
		SONS	PRS		SAMPLED	RECEIVED	REPORTED	25.0 mm		12.5 mm				30 600	425	300	100	75 µm	x SILT	* CLV	SPECIFIC	Clabin	PLASTICITY	A SING	OPTIMUM MOISTURE	METHOD	MOISTURE DENSITY CURVE NO.	SODIUM SULFATE SOUNDNESS	I OS ANGELES
-		Ť	+		+-	+-	-	min	mm	mm	mm	mm	mm	μm	μm	μm	μm	μm	_				-	3.	05		3	Ø.	L
	_		+		-	+-	-	┢	-				_	-	-		ļ	<u> </u>		<u> </u>		ļ	<u> </u>						L
		H	\top		+	-	┢	╁╌	┿	-	_	-		-	-		-	_	<u> </u>		ļ								L
·		_	+		+	╁	├-	╁	-			-		┡	-			_	<u> </u>	_									
		-	+-		+	+-	 -	├	-	-					ļ			_	ļ					ļ					
			+		+	+	<u> </u>	 	-	-			_		_	-	_		<u> </u>	_									L
	_		+		+	+-	-	-	\vdash		-	_						Н	<u>.</u>										
			$^{+}$			-	_	-	-			_			<u> </u>			_						ļ					_
		٦				 	 	-	-	-				-				-											
		7	+		+-	<u> </u>		-				-					\vdash												
		1	\top		_	+	-	-	 		-		_		-							_		_					
		7	1		+-		_	<u> </u>			-	\dashv	-		_	\dashv			_										
					Sne	cificat	ione									\dashv	-	\dashv	_		-			_					_
					L							_					j			İ								- 1	
					Test	Resul	ts Ba	sed	On:	AAS	HTC	T 2	7, T	88,	T 89,	Т9	0, T	96,	T 100,	T 104	, T 24	8							_
										1401	113	3, I	103																

Figure E3.15 – Lab Worksheet Organic Impurities in Fine Aggregate for Concrete

materials a	Department of and Research Orksheet	Division	Orga	nic Impuri T	ties in Fin	e Aggregate	e for Cor	crete
LAB.		STA	ART	FIN				
IDENT. FA	BOTTLE NO.	DATE	TIME	DATE	TIME	RESULT	TESTED BY	DATE REPORTED
							1	
						74 L		
		-						
			-					
						10		

Figure E3.16 – Lab Worksheet Coarse Aggregate Specific Gravity and Absorption

Naterials	Department and Research orksheet	h Division	Co	arse Agg	regate S	pecific G	iravity an	d Abso	rption
Lab Ident.	Dry Weight (A)	In Air	In H ₂ O	Bulk Sp. Grav.	Bulk Sp. Grav. SS-D Basis	App. Sp. Grav/	Absorp. B - A A x 100	Tested By	Date Reported
							-		
	,								
				1 - 3	- L				
								*,	
									-
									+
-		4	31						
					-6,				
					-				
-									
				1					
					1		-		

Figure E3.17 – Lab Worksheet Aggregate – Los Angeles Abrasion Test

Laboratory: Aggregates **Test Method:** AASHTO T 96

Nebraska Department of Roads Materials and Research Division **Lab Worksheet**

Aggregate Los Angeles Abrasion Test Test Method: AASHTO T 96

Gradings of Test Samples

MPLE, gm	OF TEST SAME	GHT AND GRADING	WEI	SIZE	SIEVE
	С	В	Α	RETAINED	PASSING
			1250	1 INCH	1 1/2 INCH
			1250	3/4 INCH	1 INCH
-1		2500	1250	1/2 INCH	3/4 INCH
		2500	1250	3/8 INCH	1/2 INCH
	2500			1/4 INCH	3/8 INCH
	2500			NO. 4	1/4 INCH
				NO. 8	NO. 4

Test Results

LAB IDENT.	TESTED BY	GRADATION	A INITIAL WT., gm	FINAL WT., gm Retained on +12 Sieve	C PASSING NO. 12 SIEVE, gm A-B	PERCENT LOSS C x 100	DATE REPORTED
			5000				
	u.		5000				
			5000				
			5000				
			5000				
			5000				
		10	5000				
			5000				
			5000				
			5000				
			5000			1.7	
			5000				
4			5000				
			5000				
			5000				
			5000				
			5000				
			5000				
			5000				

DR Form 492, Feb 08

Figure E3.18 – Lab Worksheet Sieve Analysis of Mixtures of Fine and Coarse Grained Materials

b Ident.							
TOTA	AL UNWASHED	OVEN-DRY WE	IGHT		С		D
A		3	Plus No.	4	% of Sample		of Minus No. 4
Total Sample	Minus	No. 4	Fids No.	PE	assing No. 4 (B/A) Materia	l Tested, gm
	PLU	IS NO. 4 MATE	RIAL		MINUS NO. 4	MATERIAL	
	E	F	G	Н	1	J	K
SIEVE SIZE	RETAIN	GHT NED, gm	% Retained Cumulative	Weight Retained Cumulative, gm	% Retained Cumulative	% Adjusted to Total Sample I x C	Cumulative % Retained Total Sample G + J
	Each Size	Cumulative			-		
3 Inch							ļ
2 Inch							
1½ Inch							
1 Inch							
3/4 Inch							
1/2 Inch							
3/8 Inch							
No. 4							
No. 8							
No. 10							
No. 16							
No. 20							
No. 30							
No. 40							
No. 50							H
No. 100							
No. 200							
Pass No. 200							
ested by:	- Inches	***************************************					

Figure E3.19 – Lab Worksheet Fine Aggregate Specific Gravity and Absorption

Lab W	orkshe	eet			Test Me	thod: AAS			
Lab. Ident.	Flask No.	A Total Weight Flask + 500 gm + 500 ml Water	B Total Weight Flask + 500 gm + Water to Mark	C Volume of Displacement of S.S.D. Aggregate A - B	Oven Dry Weight	Bulk Specific Gravity S.S.D.	Absorption Percent 500-D × 100	Tested By	Date Reporte
	-								

Figure E3.20 – Lab Worksheet Aggregate – Sodium Sulfate Soundness Test, Record of Cycles

Revised: Nebraska Materials Lab Work	Department of and Tests Divis	Roads ion		н.		M SULFAT	OF CY	NDNES CLES			+
					TES	T METHO	D: AAS	внто т	104	*	
ab Ide	entification			•	1		- 1				4
	Test No.			-		Tank No					
NO.	SPECIFIC GRAVITY	TEMP. OF SOLUTION	DATE	TIME	SPECIFIC GRAVITY	OUT Na₂SO₄ SO TEMP. OF	DATE	TIME	TEMP.	OUT OF OVE	
1		GOLDITOR			GRAVITY	SOLUTION	DATE	TIME	TEMP.	DATE	TIME
2			-								
3			-						- 1		-
4							4		4		
5 ested	by:									•	
	by:										
	by:										
	by:					a.					
5 rested	by:										
	by:										

Figure E3.21 – Lab Worksheet Sodium Sulfate Soundness Test

Nebraska De Materials and Lab Worksh	3-97 epartment of Rd d Tests Divisio	oads n			SODIUM TEST			INDNES SHTO T		Ţ	
Lab Iden	tification _										
	Sieve Size								Actu	al Loss	Weighted
	Reta	ined	Basket	Original	Corrected	Percent	Original	Final			Average
Passing	Before Test	After Test	Number	Gradation	Gradation	of Size	Weight	Weight gm	gm	Percent	Loss Percent
1 1/2"	3/4"	5/8"									
3/4"	3/8"	5/16"									
3/8"	No. 4	No. 5					-			*	
No. 4	No. 8	No 8									
No 8	No. 16	No. 16									
No. 16	No. 30	No. 30									
No. 30	No. 50	No. 50									
Tested by									т	otal	
	:					Date Rep	ported:		Т	otal	
	:					Date Rep	ported:		Т	otal	
	:					Date Rep	ported:		т	otal	
	:					Date Rep	ported:		т	otal	
	:					Date Rep	ported:		Т	otal	
	:					Date Rep	ported:		Т	otal	
	:					Date Rep	ported:		Т	otal	
	:					Date Rep	ported:		Т	otal	
	:					Date Rep	ported:		Т	otal	
	:					Date Rep	ported:		Т	otal	

Figure E3.22 – Lab Worksheet Coarse Aggregate for Concrete (All Classes)

Laboratory: Aggregates

Test Methods: AASHTO T 11, T 27, T 255

AB IDENTIFICATION	CA			CA		-
ESTS REQUIRED						
MATERIAL	FINER THAN N	O. 200 [75 µm] SI TEST METHOI	EVE IN MINERAL D: AASHTO T 11	AGGREGATE	BY WASHING	
TOTAL OVEN DRY UNWASHED WEIGHT, gm						
TOTAL OVEN DRY WASHED WEIGHT, gm		211	-			
% PASSING NO. 200 [75 μm] SIEVE		-				
	TOTAL MOI	STURE CONTENT	T OF AGGREGAT			
WET WEIGHT, gm						
OVEN DRY WEIGHT, gm						
% MOISTURE						
-	•		D: AASHTO T 27			
SIEVE SIZE	Each Size	RETAINED Cumulative	% Retained Cumulative	WEIGHT Each Size	RETAINED Cumulative	% Retained Cumulative
2 Inch [50 mm]						
1½ Inch [37.5 mm]						
1 Inch [25.0 mm]						+
3/4 Inch [19.0 mm]						
1/2 Inch [12.5 mm]						***************************************
3/8 Inch [9.50 mm]						
No. 4 [4.75 mm]					4.	
No. 20 [850 μm]						
No. 200 [75 μm]						
	mnleted.		Da	te Completed:		

Figure E3.23 – Lab Worksheet Sieve Analysis of Aggregate

Laboratory: Aggregates

Test Method: AASHTO T 27, T 11

Materials and Research Division Lab Worksheet	heet	vision	Material:	<u>ia</u> :			7		Year.			E E	St N	etho	d: .	Test Method: AASHTO T 27	25 25 25 25 25 25 25 25 25 25 25 25 25 2		2
IDENT.								_	7							- 1			
SIEVE SIZE	mg	5 %	% mb	%	mg	%	mg	mg %	% и	E	%	m _B	%	E B	%	mg	%	mg	%
TOTAL OVEN-DRY UNWASHED WEIGHT				-				-		-									
TOTAL OVEN DRY WASHED-WEIGHT										7716									
1½ IN. [37.5 mm]			-	2															
1 in [25 mm]				-						, 1									
3/4 in [19 mm]									-7					-					
1/2 in [12.5 mm]				140															
3/8 in. [9.50 mm]																			
No. 4 [4.75 mm]				-															
No. 8 [2.36 mm]							1												-
No. 10 [2.00 mm]																			
No. 16 [1.18 mm]	14	,						7											
No. 20 [850 µm]						-													
No. 30 [600 µm]																			
No. 40 [425 µm]									-										
No. 50 [300 µm]							1												
No. 100 [150 µm]				-							-								
No. 200 [75 µm]																			
Pass 200 [75 µm]								1											
TESTED BY		-		_				-									-		1
DATE TESTED																			
DATE REPORTED		-						-											

Figure E3.24 – Lab Worksheet Sand Equivalent Test

					Sand E	Equivale Designation	ent Test					
	Date			Soakin	g Period		tion Period		D.			Date
Lab. Ident.	Tested	Method of Test	Operator	Start	End	Start	End	Clay Reading	Sand Reading	Sand Equivalent	Average	Reported

Figure E3.25 – Lab Worksheet Percent Clay, Shale and Soft Particles

Laboratory: Aggregates **Test Method:** NDR T 504

laterials ab W	and Tests	ent of Road Division	1	Aggreg	jate P	ercent Cla Test Metho	ay, Shod: ND	ale & Soft R T 504	Partic	cles
Lab. Ident.	Tested By	Date Tested	Total Weight	Clay		Shale		Soft Parti	cles	Date
- Idona	Бу	resteu	Weight Oven Dry	Weight	%	Weight	%	Weight	%	Reported
			2				-			
			3 -							
	1								-	
							-			
		-								
		-			4			-		
					-					-
						- 1				-
					+					5
		-								
-										
						-				+
4								- 2 20		
,										
	-									
										V
			-				-			
					1			1		

Figure E3.26 – Lab Worksheet Aggregate, Freezing and Thawing Test (16 Cycles)

Laboratory: Aggregates **Test Method:** NDR T 103

Nebraska Department of Roads Materials and Research Division **Lab Worksheet**

Aggregate Freezing and Thawing Test (16 cycles)

Test Method: NDR T 103

Lab Ident.	Pan No.	Tested By	Initial on No. Before	Weight 4 Sieve Test, gm	Final Wt. on No. 8 Sieve After	Loss, gm	Percent Loss	Date Reported
			Wet	Oven-Dry	Test, gm			
					+			
					-			
-			-					
								-
1								
							-	
								01

DR Form 425, Feb 06

Figure E3.27 – Lab Worksheet Aggregate and Stone, Record of Freezing and Thawing Cycles

Laboratory: Aggregates **Test Method:** NDR T 103

Revised: Nebraska Materials a Lab Works	Department and Tests Di sheet	of Roads vision		REC	ORD OF F			WING CYCLES
Lab Ide	ntificatio	n						
		FREEZING			THAWING	-	ГТ	
CYCLE NO.	DATE	TIME .	(A) TEMP. T. WATER	DATE	TIME	(B) TEMP. FREEZER	TESTED BY	REMARKS
1					-	-		
2				-				-
3		-		-	-			
4			14.5					
5								
6.								
7.		7				+		
8								
9			*					
10		7.						
11							F +	*
12					1			* **
13						1.4		*
14		15 1	49					
15								
16								
17			11					
18					1			
19								*
20								
21					17 Una 17 3			
22						-		
23								
24								
25								

Figure E3.28 – Lab Worksheet Aggregate for Asphaltic Concrete – Specific Gravity and Absorption

Laboratory: Aggregates **Test Method:** AASHTO T 84

Nebraska Department of Roads Materials and Research Division **Lab Worksheet**

Aggregate for Asphaltic Concrete Specific Gravity and Absorption

Test Method: AASHTO T 84

* Where 500 = Weight of S.S.D. Aggregate

Date			Α		С				
Tested	Tested By	Flask No.	Total Weight Flask + 500 gm + 500 m Water	Total Weight Flask + 500 gm + Water to Mark	Volume of Displacement of S.S.D. Aggregate	Oven Dry Weight	Bulk Specific Gravity D C	Absorption Percent * 500-D D x 100	Date Reported
			=						
	129, Feb	129, Feb 06	129, Feb 06						

DATE: 2-28-03 REVISED: 03-10-08

Figure E3.29 – Lab Worksheet Flat & Elongated Particles

8 B	o	a	ш	L	o	I	-			
(-3/4", Weight Fail +1/2") Failing Fail	Percent (- Fail B/A x 100 v	(-1/2", + 3/8") Weight	Weight Failing	Percent Fail E/D x 100	(-3/8, +4) Weight	Weight Failing	Percent Fail H/G x 100	Total Percent Fail C+F+I	Tested By	Date Reported
						3				

DATE: 2-28-03 REVISED: 10-03-11

Figure E3.30 – Lab Worksheet Coarse Aggregate Angularity (CAA)

Laboratory: Aggregates **Test Method:** ASTM – D 5821

Nebraska Department of Roads Materials and Research Division **Lab Worksheet**

Coarse Aggregate Angularity (CAA)

ASTM - D 5821

		Α	В	С	D	E	~. · 24		
LAB IDENT.	Type of Asphalt Mix	Total Weight +4	1+ Fractured Faces	Percent B/A x 100	2+ Fractured Faces	Percent D/A x 100	Total Percent C+E	Tested By	Date Reported
		,							
	-								
	*								

DR Form 472, April 2011

03-10-08

REVISED:

Figure E3.31 – Lab Worksheet Uncompacted Void Content of Fine Aggregate

Nebraska Departn Materials and Res Lab Worksl	earch Division neet	pacted \	ASHTO Desi	ntent of	Fine Agg	regate	
Lab. Ident.	Aggregate Weight (A)	Volume of Cylinder (B)	Bulk Dry Sp. Gravity (C)	Agg. Wt. A Gravity C	Uncomp. Voids (%) (B-D) B x 100	% Uncomp. Voids (Average)	Tested By and Date
	4						
		4					
	÷						
				i i			

03-10-08

REVISED:

Figure E3.32 – Lab Worksheet Total Moisture Content of Aggregate by Drying

Nebraska Departm Materials and Rese Lab Worksheet	earch Division t	otal Moistu	re Content of Test Method AASI	Aggregate HTO T 255	by Drying
Lab ID	Wet Weight A	Dry Weight B	% Moisture (A-B) / B × 100	Tested By	Date Reported
			-		
		-	4		
					3
			1		
	-				
					-

03-10-08

REVISED:

Figure E3.33 – Sample Check-In Aggregate Laboratory Sample Record

Laboratory: Aggregates

	1	N' % FOR	PRASIO	BY							T	1		
vision	S	SS, % LOSS NGELES WELES	NADA	ios s										
의 전 전 전 전	e = ≥	00	NETHC	V										
trmen	MOISTURE DENSITY	, Wi	MITAC	5"										
Depai Depai	E 685	YTIS	GW/C				-		-					
erials raska D High Box 9	N Ho	YTIRAL	DA 3	FIN										
Materials and Research Division Nebraska Department of Roads 1400 Highway 2 PO Box 94759	ë ,	иоттано	SBA	%										
	LA.	IIVARD :	CIFIC	BdS										
			8	25 E										200
			20									-	1 - 1 1 1	50
			40	1			-							40 5
			30					-		-	-	-		
		NG		_		-							_	30
		YSIS	16					-						16
5		SIEVE ANALYSIS TOTAL PERCENT PASSING	9	-						-				10
S		EVE /	00						1-					α
a		SI	4	-2 00										A
a		٢	%	-										3%
2	-		20											1/4
18			*	19.0 mm										3/
S	DATE	O:	THO	нан										
7	A	O.	CEINE	38										IZE
100		SSAM 3		/S										SIEVE SIZE
Aggregate Laboratory Sample Record		TESTS	MADE											10
C														-
a.	2	PRODUCER												
da	5	88												
ē	2													
8	6	MIN												
A		PIT LOCATION												
		H												
	-			-										
	1	FOR USE IN												
		OR U												
	s	R CLAS		IA.				+	-	-		-		
													-	
		SUBMITTED	ā											
	-	S		-	-	_	-							
									1.5					
		5												
		PROJECT												
														**
														DR Form 224, Jan 04
		FIELD	DEN											24, 7
Material	3		-	-										TI 2
4	alc	LAB LAB	E C											R

03-10-08

REVISED:

Figure E3.34 – Sample Check-In Fine Aggregate Laboratory Sample Record

Laboratory: Aggregates

ANGELES	FOS									
M SULFATE										
SORPTION Y										
VARD RS (G-88										
оінтамін										
	200								£ #	1.5
	90									
SIEVE ANALYSIS TOTAL PERCENT PASSING	8									
YSIS	8								28 ±12	12
INAL	8									-
VE A	5								90#	37
SE PE	4								87 ±10	99
D	3/8								_	-
2	7,			_						-
3	-								901	\$
Per DATE	.O'T93A									
0 0	BEC.D.									
PLE WT.	MAS								1	
E 2									1	13
San									SE	Sk
>									NATIO BREGA	ATIO
Fine Aggregate Laboratory Sample Record									SPECIFICATIONS FINE AGGREGATE	ECIFIC
огатог		, 1							용돈	SPECIFICATIONS
0 8								-		
a										
_										
<u>s</u>										
S OF										
удгеда!										
8										
A										
0									E	
<u></u>								1112-111	NOVEC	
FOR USE	:								F DEST	
<u> </u>				- 1					DR FO	
		-			-	-		-	TIONS	
DB CLASS	TYPE								THIS FORM REPLACES OR FORM 258, DEC 75, PREVIOUS EDITIONS WILL BE DESTROYED.	
0		-						-	PREVI	
SUBMITTED									_	
TIMBU										
- O										
t-										
PROJECT										
P. B.						1				
									00	
			-					-	교	
									82	
IECO A									101	
LAB FIELD									DR Form 258, Feb 01	

03-10-08

REVISED:

Figure E3.35 – Sample Check-In Coarse Aggregate Laboratory Sample Record

Laboratory: Aggregates

LA INDEX	IDITEAL	ld										
LIMIT	rionin											
WAHT-	% FC BZBBBB											
NOISAF								1				
ARTICLES	SOFT P	%										
AALE												
-	o %	_		-		-		-	-	-		-
иоітан					-	-	-		-	-		
OPAN.			_		1		-	1	1	-		
.VARD .	BOLK SE											_
		200										
(5		8								-		
SSING	-	80				1-3-						
SIEVE ANALYSIS TOTAL PERCENT PASSING		9			-							
ANA	-	4						-			-	
EVE	-	*						-		-		
SII		%			-			-	-		-	
2		1 1 1 1			-					1		_
			-	-								
		~	-						-	-		
DATE	.O.T.9											
۵	EC,D'	BB										
.TW 3.	IMAS											
BOAM	TEST											
r con	raconcer											
MOTANOLITIC	ri cocalion									4		
FOR USE	Z											
SSY10	YPE OF	T										
SUBMITTED	А										+,	
1231 000											,	
FELD	IDENT.											
LAB												
LA	E											

03-10-08

REVISED:

Figure E3.36 – Sample Check-In Crushed Rock Laboratory Sample Record

Laboratory: Aggregates

For Use in
Type or Class
Submitted By Company of the Company

03-10-08

REVISED:

Figure E3.37 – Sample Check-In Super Pave Combined Mineral Aggregate

Laboratory: Aggregates

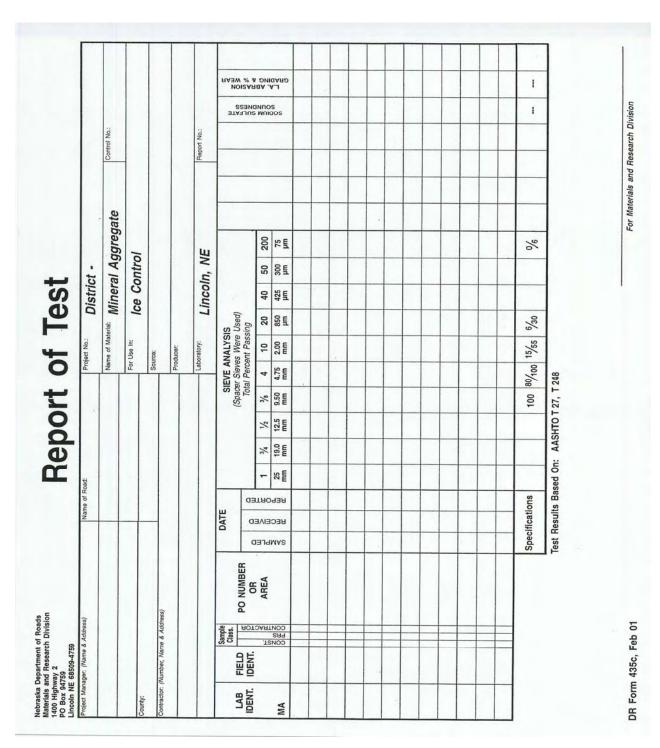
TENI	FOUNT				-					-
D	ECUIVA SAN SAN	-			-					-
	A1 AJ1									+
		-								-
	CA									
NOIT4R	N ABSOI				-					
.VARD (G	(SS) BOLK SP									
		200								
c	-	88								-
SSIN	-	8					-		 -	-
SIEVE ANALYSIS TOTAL PERCENT PASSING	-	4 10			-					+
ANA	-	%				-			-	+
EVE	-	3/4	-						-	+
S	+	-	-							+
-	-	11/2			1		-			+
		2								+
ш	.G'TG									+
DATE	EC.D'									+
t-				-						+
<u> </u>	MADE									
	РНОВОСЕН									
	PII LOCATION									
FOR USE	2		4							
SSA10	YPE OF	T								
SUBMITTED	ВУ									
Folload										
FIELD	DENT.									
LAB	F.									
≪	E C									

DATE: 03-10-08 REVISED:

Figure E3.38- Test Report	
Report of Test - CAA and FAA	

Laboratory: Aggregates

Project No.: Type of Asphalt: Contractor:		Burn Off Cold Feed FAA Sp. Gr.	ı		
Lab ID	CAA	FAA	Date Reported		
-					
	* * * * * * * * * * * * * * * * * * * *				
					
-					
		*			
*	-				
	·		1		
-	1				

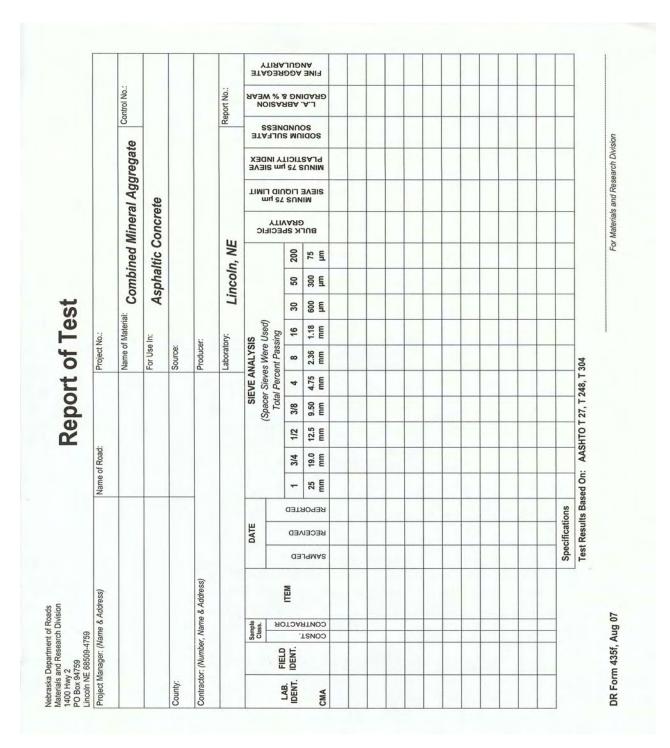

03-17-08

REVISED:

Figure E3.39– Test Report Report of Test for Mineral Aggregate (District)

Laboratory: Aggregates

Test Method: AASHTO T 27, T 248


03-17-08

REVISED:

Figure E3.40 Test Report Report of Test for Combined Mineral Aggregate

Laboratory: Aggregates

Test Method: AASHTO T 27, T 248, T 304

DATE: 3-17-08

REVISED:

Figure E3.41 – Test Report Report of Test – Asphaltic Concrete Aggregate

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 96, T 104, T 248

Asphaltic Concrete Aggregate Laboratory Performed Tests NDOR M&R Omar Qudus, Geotechnical Engineer	Template ID: AGL020001 Version: 20080728							
Dry Weight Wash Test - Sieve Analysis of Sample Total Passing Percent								
1 3/4 1/2 3/8 4 8 16 30 Retained Passing %	50 200							
Test Results	-							
LA Abrasion (Method), Grading and Loss % Sodium Sulfate %	40 Max 12 Max							
Shale and Clay %	1.5 Max							
Soft Particles %	3.5 Max							
Total Shale, Clay, and Soft Particles %	3.5 Max							
Freeze Thaw %	8 Max							
Sand Equivalent								
* Accepted based on previous tests								
Comments:								
Test Specification: AASHTO T27, T96, T104, T176, T248 NDR T173, T504								

DATE: 3-17-08

REVISED:

Figure E3.42– Test Report Report of Test – Fine Aggregate for Precast / Prestressed Concrete

Laboratory: Aggregates

Test Methods: AASHTO T 21, T 27, T 84, T 96, T 104, T 176, T 248

NDOR M&R Omar Qudus,	Fine Aggregate for Precast / Prestressed Co Laboratory Performed Tests Geotechnical Engineer	ncrete Template ID: AGL013001 Version: 20080725
	Dry Weight Wash Test - Sieve Analysis of Sample Total Passing Percent	
	1 1/2 1 3/4 1/2 3/8 4 10 20 Retained Passing %	30 200
	Test Results Spec. Colormetric Bulk Specific Gravity (SSD) Absorption % Clay Lumps % LA Abrasion (Method) Sodium Sulfate % Sand Equivelent	ax
	Fineness Modulus 3/4 3/8 4 8 16 30 Retained Retained %	50 100
	Comments: ations: AASHTO T21, T27, T84, T96, T104, T176, T248 NDR T504	

DATE: 3-17-08 REVISED:

Figure E3.43- Test Report	
Report of Test – C33 Fine Sand	

Laboratory: Aggregates

Test Methods: AASHTO T 21, T 27, T 84, T 104, T 248

NDR T 504

			La		Fine S Perforr		oto			
NDOR M&R Omar Qudus	. Geotechnical Er	ngineer	La	DUTATOLY	renon	neu re:	515		Template ID: Version: 200	AGL019001 080728
	Dry Weight of Sample				st - Sieve Passing P					
		1/2	3/8	4	8	16	30	50	100	
	Retained									
	Passing %							-11		
	Specifications	E	100	95/100	80/100	50/85	25/60	5/30	0/10	_
			Test					Results	Spec.	_
		Colormet	tric							
		Bulk Spe	ecific Gr	avity (SSE	D)					
		Absorption	on %							
		Clay Lun	nps %						0.5 Max	
		Sodium 9	Sulfate %	\$					5 Max	
* A	ccepted based or	n previous	tests							
Cor	nments:									=
	<u> </u>									_
	<u> </u>									_
Test Specific	cation: AASHTO NDR T50		, T84, T	104, T248	l					

DATE: 3-17-08

REVISED:

Figure E3.44– Test Report Report of Test – Coarse Aggregate for Precast / Prestressed Concrete

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 85, T 96, T 248

NDR T 103, T 504

Coa	rse Aggregate f			Concrete	
NDOD MAD	Labo	oratory Performed T	ests	TI-1- ID	ACI 010001
NDOR M&R Omar Qudus, Geotechni	cal Engineer			Version: 20	: AGL016001 080725
Dry Weight of Sample	٧	Vash Test - Sieve Analy Total Passing Percent			
or Jampie	(S	Spacer Sieves Were Us			
	2 11/2 1	3/4 1/2	3/8 4	20 200	
Retained					
Passing %					
	Test		Results	Spec.	
Bulk	Specific Gravity (SSD)				
Abso	rption %				
LA AI	brasion (Method) , Grading and Lo	oss %	40 Max	
Clay I	Lumps %			0.5 Max	
Shale	e and Coal %			1 Max	
Soft I	Particles %			3.5 Max	
Total	Clay, Shale, Coal, and So	oft Particles %		3.5 Max	
Freez	e Thaw %			8 Max	
* Accepted t	based on previous tests				
Comments:					
Comments.					_
					_
	SHTO TESTS: T27, T85, PR TESTS: T103, T504	T96, T248			

DATE:

3-17-08

REVISED:

Figure E3.45 – Test Report Report of Test – Chip Seal Aggregate

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 96, T 104, T 248

NDOR M&R Omar Qudus, Geotechnical M	Lal	nip Seal Ag boratory Perfo				Femplate ID: Version: 2008	AGL018001 80205	_
Dry Weight of Sample		Wash Test - Sieve Total Passing	Percent					
Retained	1/2 3/8	4 10	20	30	50	200		
Passing % Specification:	: 100	40/70 0/30			0/10	0/2		
- Specification	Test	AUT I OF OF	p		pec.			
	LA Abrasion	(Metho) Max			
	Sodium Sulfate		Г	5	Max			
* Accepted based o	ii pievious tests						-	
Lomments:								
					-			
Test Specification: T27, T96	5, T104, T248							
	5, T104, T248							
), T104, T248							
	5, T104, T248							
	5, T104, T248							
	S, T104, T248							
	5, T104, T248							
	5, T104, T248							
	5, T104, T248							
	5, T104, T248							
	5, T104, T248	*						
	5, T104, T248							
	5, T104, T248							
	5, T104, T248							
	5, T104, T248							
	5, T104, T248							
	5, T104, T248							
	5, T104, T248	*						

DATE:

3-18-08

REVISED:

Figure E3.46 – Test Report Report of Test – Microsurfacing - Mineral Aggregate

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 84, T 96, T 104, T 176, T 248, T 304

	Mic	crosurfa	ratory Pe	lineral	Aggre	egate		
NDOR M&R	technical Manager	Lab	natory r e	nonneu	Test		Template ID: AGL00800 Version: 20080129	D1
mar quads, acc	Dry Weight	w	sh Test - S	ieve Analy	ziz		Tersion. 20000123	
	of Sample	(S	Total Passir acer Sieves					
		1/2 3/	4	10	50	200		
	Retained Passing %							
	Specifications:	10	84/100	50/64	13/29	3/13		
	Test					Results	Spec.	
	Bulk Specific Grav						AE O MIL	
	Fine Aggregate An	(Metho		Grading a	nd Loss %		45.0 Min 40 Max	
	Sand Equivalent						60 Min	
	Sodium Sulfate So	oundness					12 Max	
Comme	pted based on previ	ious tests	, T176, T2 4	8, T304				
Comme	pted based on previ	ious tests	. T176, T2 4	8, T304			TZ WOA	
Comme	pted based on previ	ious tests	, T176, T24	8, T304			TZ WOA	
Comme	pted based on previ	ious tests	, T176, T2 4	8, T304			TZ WOA	
Comme	pted based on previ	ious tests	, T176, T2 4	8, T304			TZ MOA	
Comme	pted based on previ	ious tests	. T176, T2 4	8, T304			TZ MOA	
Comme	pted based on previ	ious tests	, T176, T24	8, T304			TZ WOA	
Comme	pted based on previ	ious tests	. Т176, Т24	8, T304			TZ MOA	
Comme	pted based on previ	ious tests	. T176, T2 4	8, T304			TZ MOA	

DATE: 3-18-08

REVISED:

Figure E3.47 – Test Report
Report of Test – Crushed Rock for Surfacing

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 96, T 248

NDR T 103

	Crushed Rock for Laboratory Perfo			
NDOR M&R Omar Qudus, Geotechnical Mar	nager			olate ID: AGL009001 ion: 20080725
Dry Weight of Sample		Passing		
Retained % Passing Specificatio	1 1/2 1 3/4 1/2 ons: 100	3/8 4	10 200 	
Test LA Abrasior Grading and Freeze Tha * Accepted based or	d Loss % 45 Ma w % 30 Ma	ж		
Comments:				
Test Specification: AASHTO T NDR TEST				

DATE:

3-18-08

REVISED:

Figure E3.48 – Test Report Report of Test – Gravel for Surfacing, Class X

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 96, T 104, T 248

Dry Weight Wash Test - Sieve Analysis of Sample Total Percent Passing g 11/2 1 3/4 1/2 3/8 4 10 200 Retained g Passing 2 5 Specifications: 100 90/100 50/95 65 10 Test Results Spec. LA Abrasion (Method) , Grading and Loss 2 402 Max Sodium Sulfate Soundness 12 Max *Accepted based on previous tests	Dry Weight of Sample Total Percent Passing [Spacer Sieves Were Used] 4 10 200 Retained	NDOR M&R Omar Qudus, Geotechnical Ma		oratory Performe	d Test		ID: AGL01
Test Results Spec. LA Abrasion (Method), Grading and Loss % 40% Max Sodium Sulfate Soundness 12 Max * Accepted based on previous tests	Test Results Spec. LA Abrasion (Method), Grading and Loss 2 402 Max Sodium Sulfate Soundness * Accepted based on previous tests Comments:	Dry Weight of Sample g Retained Passing %	11/2 1 (S	Total Percent Passi pacer Sieves Were I	ng Used) /8 4	200	
	Test Specification: AASHTO T27, T96, T104, T248		n previous tests				

DATE: 3-18-08 REVISED: 7-31-08

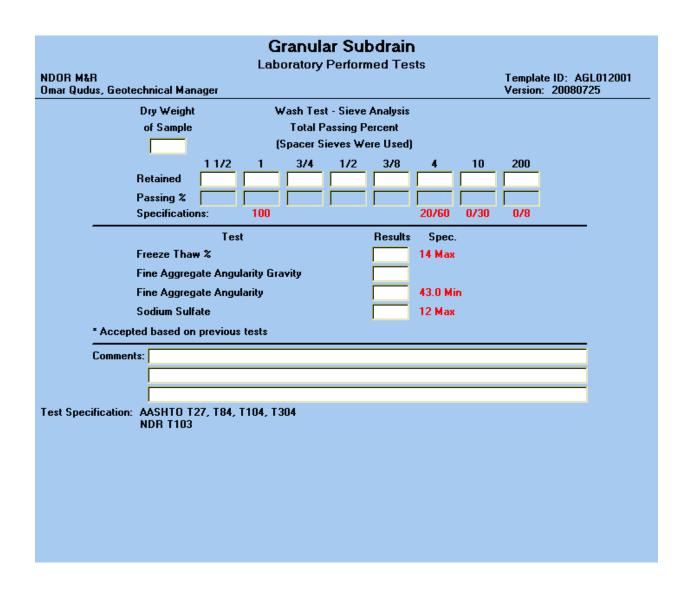
Figure E3.49 – Test Report Report of Test – Asphaltic Concrete Aggregate

Laboratory: Aggregates

Test Methods: AASHTO T 27, T 96, T 104, T 176, T 248

NDR T 173, T 504

Asphaltic Concrete Aggregate Laboratory Performed Tests
NDOR M&R Template ID: AGL020001 Omar Qudus, Geotechnical Engineer Version: 20080728
Dry Weight Wash Test - Sieve Analysis of Sample Total Passing Percent
1 3/4 1/2 3/8 4 8 16 30 50 200 Retained Passing %
Test Results Spec LA Abrasion (Method), Grading and Loss % 40 Max Sodium Sulfate % 12 Max Shale and Clay % 1.5 Max Soft Particles % 3.5 Max Total Shale, Clay, and Soft Particles % 3.5 Max Freeze Thaw % 8 Max Sand Equivalent
* Accepted based on previous tests Comments:
Test Specification: AASHTO T27, T96, T104, T176, T248 NDR T173, T504


DATE: 3-18-08

REVISED:

Figure E3.50 – Test Report Report of Test – Granular Subdrain

Laboratory: Aggregates **Test Methods:** AASHTO T 27

NDR T 103

DATE:

3-18-08

REVISED:

Figure E3.51 – Test Report Report of Test – Rock Riprap, Gabion and Revet Mattress Stone

Laboratory: Aggregates

Test Methods: AASHTO T 85, T 103

NDOR M&R			n and Revet Mat	Template ID: /	CVDD1001
Omar Qudus	, Geotechnical Manager			Version: 2008	
	Approved Product		Visual Inspection Perfor	med	
	* Freeze Thaw	14 Max	* Wt./Cu.ft.lbs.	140 Min	
		* For L	aboratory Use Only		
	Comments:		341		
Tost Consilier	cation: AASHTO T85, T103				
Test Specific	Catton. 743110 163, 1103				

DATE:

04-16-08

REVISED:

Figure E3.52– Test Report Report of Test for Mineral Aggregate for Armor Coat (District)

Laboratory: Aggregates

Test Method: AASHTO T 27, T 96, T 104, T 248

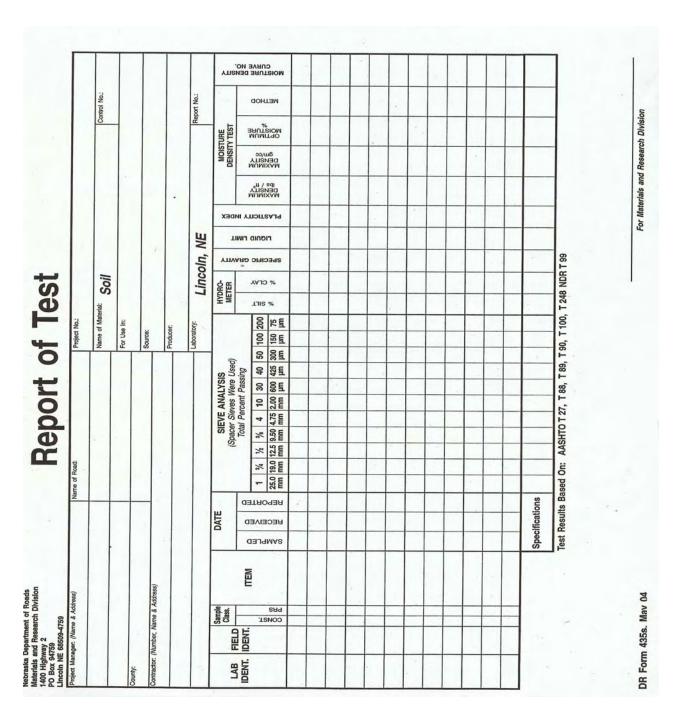
Project Name & Address Name & Address Name of Road: Project Name & Address Name of Name & Address	O Box 9475 incoln NE 68	Materials and Research Division 1400 Hwy 2 PO Box 94759 Lincoln NE 68509-4759	INISION					Re	90	T	Report of Test	es							
Name of Material: Name of Material: Name of Material: Control No.	roject Manag	er: (Name &	Addres	(\$3				Name of	Road:				Project No Dist	ict	١.				
C. C. C. C. C. C. C. C. C. C. C. C. C. C													Name of N	Material:	gregat	60		Control No.:	
Source: Produce:	-dump												For Use Ir	or Coa	4				
DATE Producer. Lincoln NE Report No.	oung.												Source:						
AB. FIELD OR PONUMBER OR PONUM	ontractor: (N	umber, Nam	e & Add	ress)									Producer:	53650					
AB. FIELD OR PONUMBER OR PONUM													Laborator	oln NE				Report No.:	
Note	LAB.	i i			PO NUMBER						SIE (Spacer Total	Sieves I Percent	LYSIS Nere Use Passing	(pa				ILPHATE NESS	NOISA
Specifications Specifications	IDENT.	IDENT.			OR				3/4				10	30	20	200	_	anno	яв а . ол %
99/ 60/ 0/ 0/ 0/ Max.	MA			DOMESTIC OF									2.00 mm	009 hm	300 mm	75 mm		os nidos	ν
99/ 60/ 0/ 0/ 0/ Max.																			
99/ 60/ 0/ 0/ 0/ Max.																			
99) 60/ 0/ 0/ 0/ Max.																			
99/ 60/ 0/ 0/ 0/ Max.																			
						Speci	fication	100			98/		90 %		70	70		Max.	Max.

DATE: 06-11-08

REVISED:

Figure E3.53– Test Report
Report of Test - Crushed Concrete for Foundation Course

Laboratory: Aggregates **Test Method:** NDR T 27


DATE: 4-1-08 **REVISED:**

> Figure E4.0 -Test Report **Report of Test - General**

Laboratory: Soils

Test Methods: AASHTO T 27, T 88, T 89, T 90, T 100, T 248

NDR T 99

DATE: 2-14-97 REVISED: 4-1-08

Figure E4.1 – Lab Worksheet Particle Size Analysis of Soils

Laboratory: Soils

Test Methods: AASHTO T 88, T 100, T 265

Lab Worksheel		13	+ /	PR	OJECT:			
TIME STARTED:				HY	DROMETER JAR NO.:	1 1		
	TEOT 11			TEI	MPERATURE:			
MOISTURE CAN N		WT. OF	CAN:				-	
WET WT. OF SOIL	& CAN:	DRYW	T: OF SOIL & CAN:	SP	GR. FLASK NO.:	T METHOD:	AASHTO T 10	00
LOSS:					TAL WEIGHT:			
PERCENT MOISTU	RE:				AL WEIGHT:			•
WET WT. OF SAME		Ingyw	T. OF SAMPLE (M):		LUME DISPLACED:		SP. GR.:	
		- DRIV	. OF SAMPLE (M).	.	LOME DISPLACED:	, ,	SP. GR.:	
-		HY	DROMETER READIN	IGS	SED N	- 1	1.5	
SEDIMENTATION TIME "T"	TEMPERATURE	ORIGINAL	CORRECTED FOR DISPERSING AGENT	CORRECTED FOR 'a" FACTOR	% OF DISPERSED SAMPLE IN SUSPENSION	EFFECTIVE DEPTH "L"	VALUE FOR "K"	GRAIN
· ·		G	H H=G-*	J	K	1 10	9	'
2'		12.7	H=G-	J=H"a"	K=J/M	4.7		
5'			4			-		
15'	7	•	1			-		
30'								
60'					* 1		+	
250'		-	+					
420'		¥ . *		- 43				
1440'			1	15				
*Complete Hy	drometer Cor	rection Fact	or	Particles	-	7.	Percent	
	- 1		0.07 Sma Sma Sma	'5 mm to 0.0 aller than 0.0 aller than 0.0 aller than 0.0	75 mm (Sand) 102 mm (Silt) 15 mm 12 mm 105 mm 102 mm (Clay)			
					01 mm (Colloids			
TESTED BY:			DATE STARTED:			DATE REPORTED):	

2-14-97 DATE: 4-1-08 REVISED:

> Figure E4.2 – Lab Worksheet **Plasticity Index Summary Sheet**

Laboratory: Soils

Test Methods: AASHTO T 89, T 90

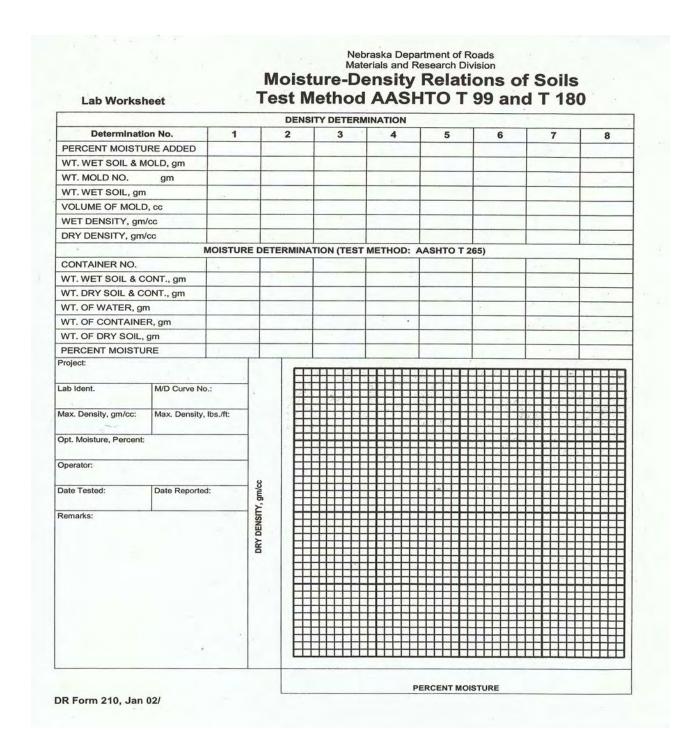
Materials and Lab Workshe	partment of F Tests Division Pet	Roads on				ICITY IND METHOD:					
LAB IDENT.	LIQUID LIMIT (AASHTO T 89)	PLASTIC LIMIT (AASHTO T 90)	PLASTICITY INDEX (AASHTO T 90)	DATE TESTED	DATE REPORTED	LAB IDENT.	LIQUID LIMIT (AASHTO T 89)	PLASTIC LIMIT (AASHTO T 90)	PLASTICITY INDEX (AASHTO T 90)	DATE TESTED	THE DEBOOM
•	1										
-						-					-
							*				
		4									
											-
											- 15
						y					
				,				-			
											1

DATE: 2-14-97 REVISED: 4-1-08

Figure E4.3 – Lab Worksheet Liquid and Plastic Limits and Moisture Content

Laboratory: Soils

Test Methods: AASHTO T 89, T 90, T 265

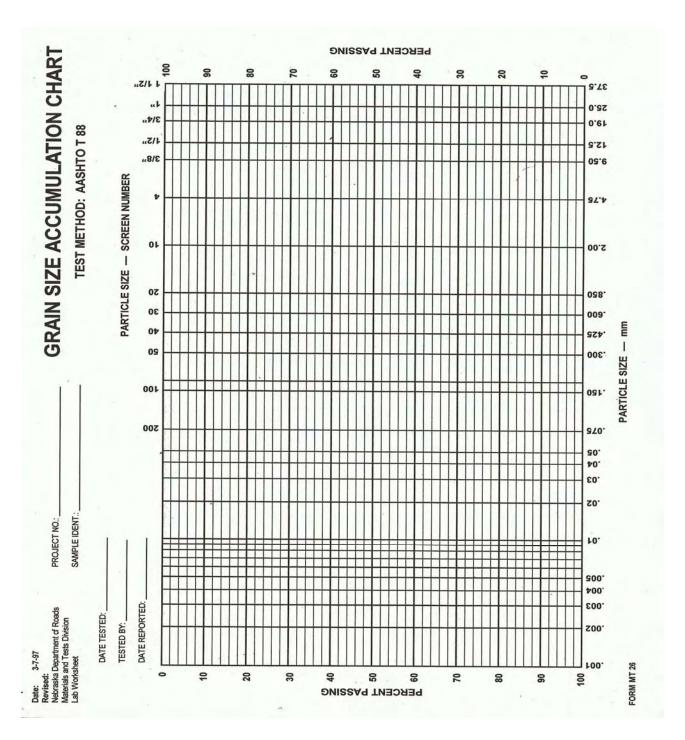

T 265	90 ANI	T 89, T	AASHTO	Nebraska Department of Ros Materials and Tests Division Lab Worksheet								
DAT	~			60			VEIGHT OF	٧	WEIGHT OF CONTAINER +			œ
TESTED	OPERATOR	LIQUID	cc WATER ADDED	NO. BLOWS	PERCENT MOISTURE	DRY SOIL	CONTAINER	MOISTURE	DRY SOIL	WET SOIL	LAB DENT.	CONTAINER NO.
				* .				-				
		-										
	÷			4				i			4	
		-			1							
		- 0								4		
			,	*								
	-						-	•				
							+					

DATE: 2-14-97 REVISED: 4-1-08

Figure E4.4 – Lab Worksheet **Moisture-Density Relation of Soils**

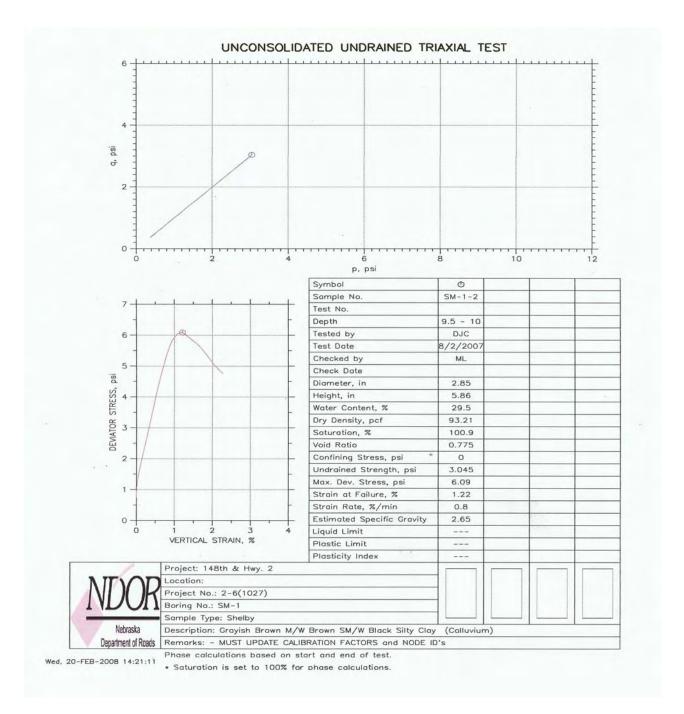
Laboratory: Soils

Test Methods: AASHTO T 99, T 180, T 265



DATE: 2-14-97 REVISED: 4-1-08

Figure E4.5 – Lab Worksheet Grain Size Accumulation Chart


Laboratory: Soils

Test Method: AASHTO T 88

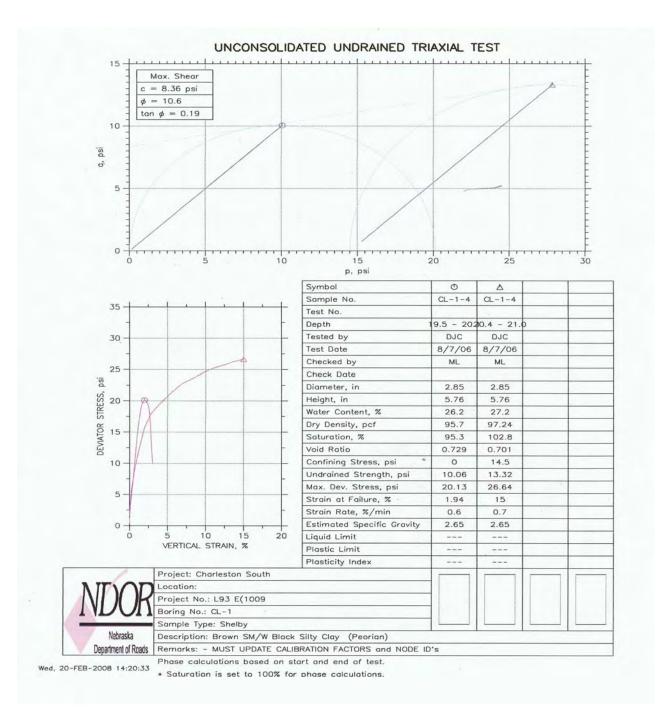

DATE: 2-14-97 REVISED: 3-31-08

Figure E4.6 – Lab Data Sheet Triaxial Test – Unconfined Compressive Strength of Cohesive Soil

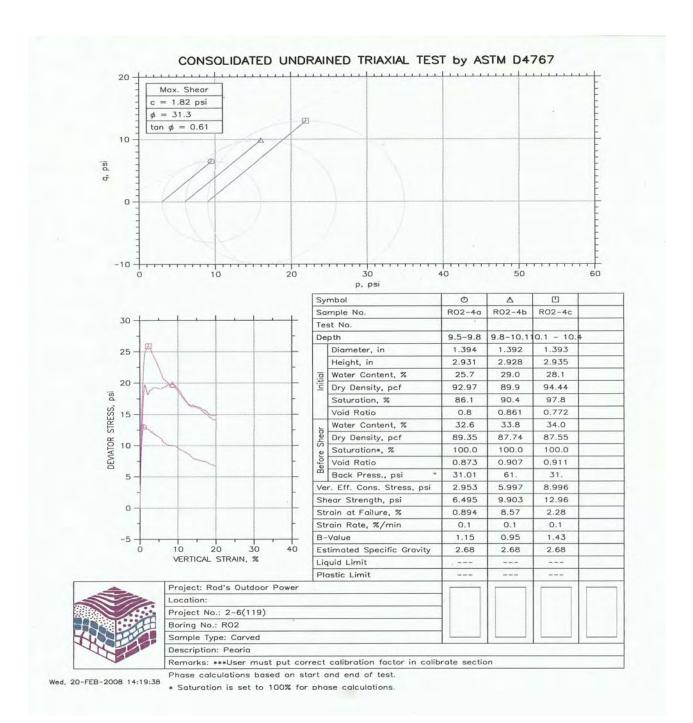

DATE: 2-14-97 REVISED: 3-31-08

Figure E4.7 – Lab Data Sheet Triaxial Test – Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression

DATE: 3-31-08 REVISED:

Figure E4.8 – Lab Data Sheet Triaxial Test – Consolidated, Undrained Triaxial Compression Test on Cohesive Soils

DATE:

3-31-08

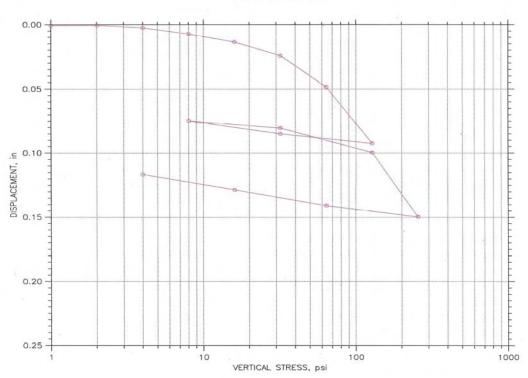
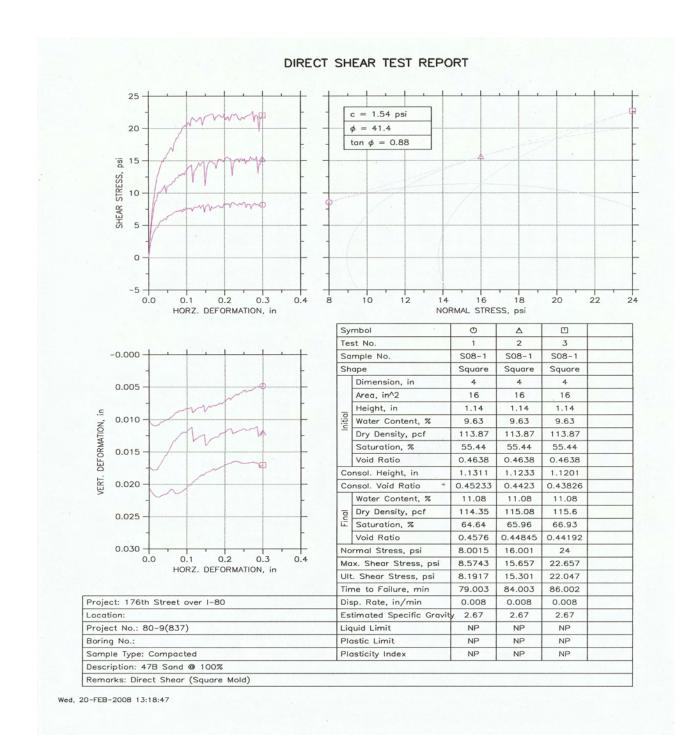

REVISED:

Figure E4.9 – Lab Data Sheet
One Dimensional Consolidation Properties of Soils

Laboratory: Soil Mechanics **Test Methods:** AASHTO T 216

CONSOLIDATION TEST DATA

SUMMARY REPORT


					Before Test	After Test
Overburden	Pressure: 0 psi			Water Content, %	27.87	25.59
Preconsolidation Pressure: 0 psi				Dry Unit Weight, pcf	89.62	101.4
Compression Index: 0			Saturation, %	87.31	107.47	
Diameter: 2	.485 in	Height: 1 in		Void Ratio	0.85	0.63
LL:	PL:	PI:	GS: 2.65			

	Project: Rod's Outdoor Power	Location: Lincoln	Project No.: 2-6(119)					
	Boring No.: RO-1	Tested By: DJC	Checked By: ML					
VIEWOD	Sample No.: RO-1-3	Test Date: 9/27/2007	Depth: 8.1 - 8.4					
NDOR	Test No.:	Sample Type: Shelby	Elevation:					
Nebraska	Description: Gray M/W Yellowish Brown Silty Clay (Peorian)							
Department of Roads	Remarks: ASTM D2435, LOAD TRAC-II ID 103							

Wed, 20-FEB-2008 14:21:51

DATE: 3-31-08 REVISED:

Figure E4.10 – Lab Data Sheet Direct Shear Test of Soils Under Consolidated Drained Conditions

DATE: 2-26-08 REVISED: 3-26-21

Figure E5.1 – Test Report (NDOT Reporting Portal) Summary of Compressive Strength Test Data for Portland Cement Concrete Cylinders

Laboratory: Cement and Concrete

M 1	Æ	
03/19/2021 10:35 AM	conc. Strength	
1	Cylinder Data	
	Cy Reqd. Conc	
	ı Data Air Content	
	Proportioning Data nent Water/ Air tor Cement Cont	
	Prop Sement actor	
est Data nders	Proportioning Data Cylinder Da Conc. Qly Cement Wateri Air Requi. Conc. Factor Cement Content Strength	
ngth Tote Cylir	rcture	
e Stre	Intended Use / Conc.Structure	
oressiv ment C 39 & A	d Use / C	
I Comp	Intende	
Summary of Compressive Strength Test Data for Portland Cement Concrete Cylinders ASTM C-39 & ASTM C-1231	Sample ID	
S Project Name:		
Projec	Class of Sample Conc. date	
	Class	
Noi	_	
DEPARTMENT OF TRANSPORTATION Contract ID: Location:	Prime Contractor: Project # Line Item Description	
ENT OF TRANS ontract ID:	ictor:	
TMENT OF TRA Contract ID:	Prime Contractor:	
DEPAR	Prim Project	

DATE: 2-26-08 REVISED: 3-26-21

Figure E5.2 – Lab Worksheet (NDOT Reporting Portal) Compressive Strength of Concrete Cylinders Worksheet

Laboratory: Cement and Concrete

Test Method: ASTM C 39

NEBRASKA 03/19/2021 12:06 PM Portland Cement Concrete Cylinder Break Count PCC DEPARTMENT OF TRANSPORTATION ASTM C-39 & ASTM C-1231 Date Break # Sample ID Age Length Diameter Surface Area Peak Load PSI Technician 213145110016-2 40760 3/19/2021 3818 7.00 d 8.00 in 4.00 in 12.5660 sain 3243 psi John.Gude 213145110016-1 4.00 in 3817 7.00 d 8.00 in 12.5660 sain 40460 3220 psi John.Gude 8.00 in 4.00 in 3678 psi 3/18/2021 3816 213145210016-2 7.00 d 12.5660 sain 46220 John.Gude 4.00 in 46840 3815 213145210016-1 7.00 d 8.00 in 12.5660 sain 3727 psi John, Gude 3/17/2021 3814 213133810005-4 7.00 d 8.00 in 4.00 in 12.5660 sain 50820 4044 psi John.Gude 213133810005-3 8.00 in 4.00 in 12.5660 sain 50860 4047 psi 3813 7.00 d John.Gude 3/16/2021 3812 213145210015-2 7.00 d 8.00 in 4.00 in 12.5660 sain 48200 3835 psi John,Gude 3811 213145210015-1 7.00 d 8.00 in 4.00 in 12.5660 sain 48660 3873 psi John.Gude 3/12/2021 3810 213145110012-4 7.00 d 8.00 in 4.00 in 12.5660 sqin 46200 3676 psi KIM.JIRKOVSKY 3809 213145110012-3 7.00 d 8.00 in 4.00 in 12.5660 sqin 46500 3701 psi KIM.JIRKOVSKY 4.00 in 49740 212038410028-2 8.00 in 12.5660 sqin 3959 psi KIM.JIRKOVSKY 3808 7.00 d 3807 212038410028-1 8.00 in 4.00 in 12.5660 sqin 51340 4086 psi 7.00 d KIM.JIRKOVSKY 3806 213145110013-4 7.00 d 8.00 in 4.00 in 12.5660 sqin 42120 3352 psi KIM.JIRKOVSKY 3805 213145110013-3 7.00 d 8.00 in 4.00 in 12.5660 sqin 40540 3226 psi KIM.JIRKOVSKY 3804 213145210013-2 7.00 d 8.00 in 4.00 in 12.5660 sqin 45860 3649 psi KIM.JIRKOVSKY 3803 213145210013-1 7.00 d 8.00 in 4.00 in 12.5660 sain 47320 3765 psi KIM.JIRKOVSKY 3802 213145110014-4 7.00 d 8.00 in 4.00 in 12.5660 sqin 45140 3591 psi KIM.JIRKOVSKY 213145110014-3 7.00 d 8.00 in 4.00 in 12.5660 sain 43860 3490 psi KIM.JIRKOVSKY 3/11/2021 Replace or Flip Pad 213133810005-1 2.00 d 8.00 in 4.00 in 12.5660 sqin 2017 psi John.Gude 212038910009-4 7.00 d 8.00 in 4.00 in 12.5660 sqin 47340 3768 psi John.Gude 3797 212038910009-3 8.00 in 4.00 in 12.5660 sqin 46880 7.00 d 3731 psi John.Gude 4.00 in 3796 212000710015-4 7.00 d 8.00 in 12.5660 sgin 49480 3937 psi John.Gude 3795 212000710015-3 7.00 d 8.00 in 4.00 in 12.5660 sqin 49160 3912 psi John.Gude 3794 212000710016-4 8.00 in 4.00 in 12.5660 sqin 51980 7.00 d 4136 psi John.Gude 4.00 in 212000710016-3 7.00 d 8.00 in 12.5660 sgin 50300 4003 psi John.Gude 8.00 in 4.00 in 44480 3792 213145110011-4 7.00 d 12.5660 sqin 3540 psi John.Gude 3791 213145110011-3 7.00 d 8.00 in 4.00 in 12.5660 sqin 45240 3601 psi John.Gude 3790 213145110010-2 7.00 d 8.00 in 4.00 in 12.5660 sgin 44040 3504 psi John.Gude 3789 213145110010-1 7.00 d 8.00 in 4.00 in 12.5660 sqin 44020 3502 psi 3/10/2021 3788 212000710014-2 7.00 d 8.00 in 4.00 in 12.5660 sqin 45240 3601 psi John.Gude 3787 7.00 d 8.00 in 4.00 in 46760 3720 psi 212000710014-1 12.5660 sgin 3/9/2021 3786 213256010178-2 7.00 d 8.00 in 4.00 in 12.5660 sqin 42720 3399 psi KIM.JIRKOVSKY 3785 213256010178-1 7.00 d 8.00 in 4.00 in 12.5660 sqin 41060 3268 psi KIM.JIRKOVSKY 3784 213145210012-2 7.00 d 8.00 in 4.00 in 12.5660 sqin 51860 4128 psi KIM.JIRKOVSKY

Page 1 of 110

DATE: 4-3-97 REVISED: 03-26-21

Figure E6.1 – Test Report Portland Cement Physical Analysis (Type I/II Cement)

Laboratory: Cement and Concrete

Test Methods: ASTM C 109, C 151, C 185, C 191, C 204, C 451

State of Nebraska Department of Transportation Materials and Research Division

Wallace Heyen Concrete Engineer

Portland Cement ASTM C150 Type I/II Standard Physical Requirements

Mill Location	Type I/II						
Laboratory ID C							
st	Result	Limit	Inspector's Initials	Date			
ASTM C-109							
		1450					
		2470					
s ASTM C-191							
		45					
		375					
ASTM C-151		0.80					
ax ASTM C-185		12.0					
ASTM C-204		260					
Check	ed By:						
	Laboratory ID C st ASTM C-109 ASTM C-191 ASTM C-151 ASTM C-185 ASTM C-204	st Result ASTM C-109 ASTM C-151 ASTM C-185	Laboratory ID C St Result Limit ASTM C-109 1450 2470 S ASTM C-191 45 375 ASTM C-151 0.80 ASTM C-185 12.0 ASTM C-204 260	Result Limit Inspector's Initials			

NDOT Form 141c, February 2021

DATE: 4-3-97 REVISED: 03-26-21

Figure E6.2 – Test Report Portland Cement Physical Analysis (Type III Cement)

Laboratory: Cement and Concrete

Test Methods: ASTM C 109, C 151, C 185, C 451, C 191

State of Nebraska Department of Transportation Materials and Research Division

Wallace Heyen Concrete Engineer

Portland Cement ASTM C150 Type III Standard Physical Requirements

Manufacturer	Mill Location		Туре	Ш	
	Laboratory ID C				
Physical Tes	t	Result	Limit	Inspector's Initials	Date
Compressive Strength, min PSI	ASTM C-109				
1-day			1740		
3-day			3480		
Time of Setting (Vicat Test), minutes	ASTM C-191				
Initial – not less than			45		
Final – not more than			375		
Autoclave Expansion max %	ASTM C-151		0.80		
Air Content of Mortar, Volume % ma.	x ASTM C-185		12.0		
False Set, final penetration, min %	ASTM C-451		50		
	Check	ed Bv:			

NDOT Form 141b, February 2021

DATE: 4-3-97 REVISED: 03-26-21

Figure E6.3 – Test Report Portland Cement Physical Analysis (Type IP Cement)

Laboratory: Cement and Concrete

Test Methods: ASTM C 109, C 151, C 185, C 191

State of Nebraska Department of Transportation Materials and Research Division Wallace Heyen Concrete Engineer

Portland Cement ASTM C595 Blended Hydraulic Cements Standard Physical Requirements

Manufacturer	Mill Location		Туре _		
	Laboratory ID C				
Physical Tes Compressive Strength, min PSI	t ASTM C-109	Result	Limit	Inspector's Initials	Date
3-day			1890		
7-day			2900		
28-day			3620		
Time of Setting (Vicat Test), minutes	ASTM C-191				
Initial - not less than			45		
Final – not more than			420		
Autoclave Expansion Test, max %	ASTM C-151		0.80		
Autoclave Contraction Test, max %	ASTM C-151		0.20		
Air Content of Mortar, Volume % ma	x ASTM C-185		12		
	Checke	ed By:			

NDOT Form 141a, February 2021

REVISED: 3-26-21 Do not perform this test for CCRL certification.

Figure E6.4 – Lab Worksheet Fineness of Hydraulic Cement Worksheet

Laboratory: Cement and Concrete

Test Method: ASTM C 430

State-of-Nebraska¶
Department-of-Transportation¶
Materials-and-Research-Division¶

Portland Cement Concrete → ASTM C-430 ← Fineness of Hydraulic Cement Worksheet ← 45-µm Sieve (No. 325) Sieve

Inspectoro_ # Yearo_ o

			¶				
Lab-Identification•	Brando	Туре	Sieve·ld.¤	Sieve· Correction· Factor·(C)o	Mass· Retained-(R)	%-Retained- R _o ⊬ R(C+100)□	Dateo
Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
Ħ	ц	Ħ	Ħ	н	ц	ц	Ħ
Ħ	Ħ	Ħ	Ħ	Ħ	ц	ц	Ħ
н	Ħ	Ħ	Ħ	ц	ц	ц	Ħ
н	Ħ	Ħ	Ħ	Ħ	ц	ц	Ħ
Ħ	ц	Ħ	Ħ	Ħ	ц	ц	Ħ
н	ц	Ħ	Ħ	Ħ	ц	ц	Ħ
н	Ħ	Ħ	Ħ	Ħ	ц	ц	Ħ
Ħ	Ħ	Ħ	Ħ	Ħ	ц	ц	Ħ
Ħ	ц	Ħ	н	н	ц	ц	Ħ
Ħ	ц	Ħ	н	н	ц	ц	Ħ
Ħ	ц	Ħ	н	н	ц	ц	Ħ
Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
Ħ	Ħ	Ħ	Ħ	Ħ	ц	Ħ	Ħ
ц	Ħ	Ħ	Ħ	Ħ	ц	Ħ	Ħ
ц	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
ц	Ħ	Ħ	Ħ	Ħ	Ħ	н	Ħ
н	Ħ	Ħ	Ħ	Ħ	Ħ	н	Ħ
ц	Ħ	Ħ	Ħ	Ħ	Ħ	ц	Ħ
ц	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
н	Ħ	Ħ	Ħ	Ħ	Ħ	ц	Ħ
ц	ц	Ħ	Ħ	ц	ц	ц	Ħ

NDOT-Form-141g, October-2017¶

REVISED: 3-26-21 Do not perform this test for CCRL certification

Figure E6.5 – Lab Worksheet Early Stiffening of Hydraulic Cement Worksheet

Laboratory: Cement and Concrete

Test Method: ASTM C 451

State-of-Nebraska¶
Department-of-Transportation¶
Materials-and-Research-Division¶

Early-Stiffening-of-Hydraulic-Cement-Worksheet¶

False Set¶ ASTM·C-451¶

Inspector:	д °°°°¤				Date:¤	°°°°¤
1						
Lab-IDo	Water¶ Requiredo	Initial¶ Penetration¤	Final¶ Penetration¤	Percent¶ Final·Penetration¶ F/·1·x·100o		Comments
•••••	•••••	*****		••••		
•••••	*****	•••••	•••••	••••	•••••	
•••••	•••••	a a a a a	•••••	• • • • • •	a a a a a B	
•••••	*****	*****	•••••	••••	••••	
•••••	•••••	a a a a a	• • • • • •		a a a a a B	
*****	*****	aaaaa 🛚	•••••	•••••	<u>.</u>	
*****	*****	•••••	•••••	••••		
	*****	a a a a a	•••••	••••	<u>.</u>	
•••••	•••••	******	•••••	•••••	 	
•••••	•••••	******	•••••	*****		
•••••	•••••	******	•••••	******	*****	
•••••	•••••	******	•••••	*****		
•••••	•••••	******	•••••	•••••	*****	
•••••	•••••	******	•••••	*****		
•••••	•••••	******	•••••	*****	******	
•••••	**************************************	99999	<u>.</u>	aaaaa	99999 E	
•••••	_□	*****	******	aaaaa	•••••	
•••••	_□	******	******	aaaaa <u>n</u>	a a a a a a	
•••••	<u> </u>	*****	•••••	************************	•••••	
•••••	•••••	******	•••••	******************************	*******	
•••••	<u> </u>	*****	******	******************	· · · · · · · · · · · · · · · · · · ·	
•••••	_□	•••••	**************************************	aaaaa <u>n</u>		
•••••	<u> </u>	a a a a a a	**************************************	aaaaa a	•••••	
•••••	•••••	•••••	•••••	aaaaa	<u>.</u>	
•••••	•••••	•••••	•••••	aaaaa ₀	· · · · · · · · · · · · · · · · · · ·	
•••••	•••••	•••••	•••••	aaaaa	•••••	
•••••	•••••	•••••	•••••	aaaaa ₀	<u>.</u>	
•••••	•••••	•••••	•••••	**************************************	•••••	
	********	*****	*****	00000m	*****	

NDOT-141V,-October-2017¶

Figure E6.6 – Lab Worksheet Normal Consistency Time of Set (Gillmore) Worksheet

Laboratory: Cement and Concrete **Test Methods:** ASTM C 187, C 266

Figure E6.7 – Lab Worksheet Fineness of Hydraulic Cement Worksheet (Air Permeability)

Laboratory: Cement and Concrete

Portland Cement Concrete - ASTM C-204 Fineness of Hydraulic Cement Worksheet Air Permeability Cell No.												
Lab Identification	Туре	Mill Code	Time	Room Temp.	√Time	Specific Surface	Inspector	Date				
		1										
4												
								-				
-												

Figure E6.8 – Lab Worksheet Normal Consistency Time of Set (Vicat) Worksheet

Laboratory: Cement and Concrete **Test Methods:** ASTM C 187, C 189

Portland Cement Concrete ASTM C-187 Normal Consistency ASTM C-191 Vicat Time of Setting												
pector Year												
	Type of	Water	Actual		Penet	ration	Set '	Гime				
Lab Identification	Cement	Req.	Drop	Time	Initial	Final	Initial	Final	Comments			
102												
			-									
-												
4												
				1								
					6							

Figure E6.9 – Lab Worksheet Air Content for Hydraulic Cement Mortar Worksheet

Laboratory: Cement and Concrete

		Po	rtland Air C	onter	ent C nt for <i>ortar</i>	Hydr	aulic	ASTM C-18 Cement t	5				
Inspector	spector Year												
Lab Identification	Brand	Туре	Water Added cc	D ₁	D ₂	D ₃	D ₄	Flow D ₁ + D ₂ + D ₃ + D ₄	Mass of Mortar	Air Content	Date		
	Ī												
= = = = = = = = = = = = = = = = = = = =													

REVISED: 02-20-24 Test Method Eliminated from Standards

Figure E6.10 – Lab Worksheet Autoclave Expansion Worksheet (Cementitious Materials)

Laboratory: Cement and Concrete

		ıtocla	ve Ex	Concret pansion itious Ma	Worksh						
nspector	spectorYear										
Lab Identification	Cementitious Material	Water Req.	Act. Drop	Initial Reading	Final Reading	Expansion F-I	% Expansion E /10 x 100	Date			
				-							
								1			
	4										
							- 1				
				*							
				50							
*											

Figure E6.11 – Lab Worksheet Cube Compressive Strength Worksheet (Hydraulic Cement Mortar)

Laboratory: Cement and Concrete

Portland Cement Concrete - ASTM C-109 Cube Compressive Strength Worksheet Hydraulic Cement Mortar										
Inspector	Age	Date I	Date Made /Date Broke							
Lab Identification	Cube 1 Load	Cube 2 Load	Cube 3 Load	Average (C ₁ +C ₂ +C ₃)/3	Strength * A/4					
	+									
_										
			-							
*										

DATE: 4-1-08 REVISED: 3-26-21

Figure E6.12a – Test Report Portland Cement Chemical Analysis – Type I/II Cement

Laboratory: Chemical

Test Method: ASTM C 114, C 150

Portland Cement Concrete Chemical Test Results

March 19, 2021

Sample ID: 2134246A0053

Producer Supplier: Continental Cement Co.-Davenport, IA

Product: II

XRF Test Method: CHL052001

	ALC: I COLI	ictiou. Officoszoc	
Min	Max	Test #	1
		Pass/Fail	Pass
	6.0	MgO %	1.896
	3.0	SO3 %	3.209
	3.0	LOI %	1.93
		CaO %	63.085
		SiO ₂ %	19.516
		K2O %	0.666
		Na ₂ O %	0.118
	6.0	Al2O3 %	4.629
	6.0	Fe2O3 %	2.992
		TiO ₂ %	0.247
		P2O5 %	0.161
		Cr2O3 %	0.009
		Mn2O3 %	0.535
		ZnO %	0.040
	0.60	Equiv. Alkali %	0.556

General Remarks

Test # Remarks

X-Ray Fluorescence SO3 of the sample exceeds the limit. However, certified results of ASTM C1038 bar expansion demonstrate the sample complies with ASTM C150 requirements. JLD

DATE: 4-1-08 REVISED: 3-26-21

Figure E6.12b – Test Report Portland Cement Chemical Analysis – Type III Cement

Laboratory:

Chemical

Test Method:

ASTM C 114, C 150

Portland Cement Concrete Chemical Test Results

March 19, 2021

Sample ID: 2134246A0048

Producer Supplier: Central Plains Cement Co-Sugar Creek, MO

Product: III

XRF Test Method: CHL052001

			100
Min	Max	Test #	1
		Pass/Fail	Pass
	6.0	MgO %	1.134
	3.5	SO3 %	4.096
	3.0	LOI %	1.19
		CaO %	63.170
		SiO ₂ %	20.441
		K2O %	0.516
		Na ₂ O %	0.193
		Al2O3 %	4.837
		Fe2O3 %	3.116
		TiO2 %	0.336
		P2O5 %	0.085
		Cr2O3 %	0.009
		Mn2O3 %	0.084
		ZnO %	0.007
	0.60	Equiv. Alkali %	0.533
	1.5	IR %	0.240

General Remarks

Test # Remarks

1

X-Ray Fluorescence SO3 of the sample exceeds the limit. However, certified results of ASTM C1038 bar expansion demonstrate the sample complies with ASTM C150 requirements. JLD

DATE: 4-1-08 **REVISED:** 3-26-21

Figure E6.12c - Test Report Portland Cement Chemical Analysis - Type I/B Cement

Laboratory: Chemical

ASTM C 114, C 595 **Test Method:**

Portland Cement Concrete Chemical Test Results

March 19, 2021

Sample ID: 213528250013

Producer Supplier: Ash Grove Cement-Louisville, NE Product: AshGrove IP(25) Duracem-IP

	XRF Test M	lethod: CHL05200	1
Min	Max	Test #	1
		Pass/Fail	
		MgO %	1.356
		SO3 %	2.296
	5.0	LOI %	2.87
		CaO %	50.318
		SiO ₂ %	27.507
		K2O %	0.969
		Na ₂ O %	0.388
		Al2O3 %	7.159
		Fe2O3 %	4.832
		TiO ₂ %	0.391
		P2O5 %	0.142
		Cr2O3 %	0.017
		Mn2O3 %	0.058
		ZnO %	0.029
		CaO/SiO ₂	1.829
		Max Ratio	1
		Equiv. Alkali %	1.026
		C3A %	10.796

General Remarks

Test # Remarks

DATE: 4-3-97 REVISED: 4-1-08

Figure E6.13 – Lab Worksheet **ASTM C 114 Rapid Test Methods Worksheet**

Laboratory: Chemical **ASTM C 114** Test Method:

		AS	TM C 114	Rapid Te	st Method	s Workshe	eet		
Date T	est Started			Operator_					
Compo	onent Teste	ed							
SRM#	1880a	1881a	1884a	1885a	1886a	1887a	1888a	1889a	634a
Value									
SRM# DAY 1	1880a	1881a	1884a	1885a	1886a	1887a	1888a	1889a	634a
Two N	on-Consec	utive Daily	Rounds of	f Tests.					
DAY 1									
DAY 2									
AVG.									
1 - 2*		een runs o		yes					
* Differ		1881a	1884a	1885a	1886a	1887a	1888a	1889a	634a
* Differ	1880a								
* Differe Differe SRM# Two day	1880a								
* Differ	1880a								

DATE:

02-26-08

REVISED:

Figure E6.14 – Lab Worksheet Portland Cement Concrete (Strength Activity Index)

Laboratory: Cement and Concrete

State of Nebraska Department of Roads Materials and Research Division	Portlan	d Cei	ment	t Cond	rete -	ASTN	/ C-31	1		
	Stre	ength	Acti	vity Ir	idex W	orksl				
Inspector			Age _		Date	Made		/Date Bi	roke	
Lab Identification	Туре	mL of Water	Flow	Cube 1 Load	Cube 2 Load	Cube 3 Load	Average (C1+ C2+ C3) /3	Strength A/4	% of Control	Water Required
						-				
-										

REVISED: 3-26-21 Do not perform this test for CCRL certification

Figure E6.15 - Lab Worksheet **Supplemental Cementitious Materials (SCM)** Strength Activity Index with Portland Cement Worksheet

Laboratory: Cement and Concrete Test Method: ASTM C 311 / C 109

State of Nebraska¶
Department of Transportation¶
Materials and Research Division¶

Supplemental-Cementitious-Materials← SCM[←] ASTM.C-311/C-109← Strength-Activity-Index-with-Portland-Cement-Worksheet¶

Inspectoro 🗵				Ageo_o	¤ Date Mad	leo	/0	ate-Broke	0	
					¶					
Lab-Identification	Type	mL·of∙ Water¤	Flows	Cube-1- Load¤	Cube-2- Loado	Cube-3- Loado	Average⊬ (C1+-C2+- C3)/3∘	Strength A/4¤	%·of· Control	Water- Required
Ħ	ц	ц	ц	д	н	Ħ	Ħ	Ħ	н	Ħ
ц	ц	д	Ħ	н	н	н	Ħ	Ħ	Ħ	Ħ
н	ц	Ħ	н	н	н	Ħ	Ħ	Ħ	ц	н
н	ц	Ħ	н	ц	н	Ħ	Ħ	Ħ	Ħ	н
н	ц	ц	ц	Ħ	н	н	н	н	ц	ц
н	ц	д	ц	ц	Ħ	ц	ц	н	ц	ц
н	Ħ	д	Ħ	Ħ	Ħ	Ħ	н	н	Ħ	ц
н	ц	ц	ц	ц	ц	н	н	н	ц	ц
н	ц	ц	ц	ц	н	д	д	н	ц	ц
н	Ħ	н	Ħ	Ħ	Ħ	Ħ	ц	н	Ħ	ц
н	ц	д	ц	ц	ц	н	н	н	ц	ц
Ħ	ц	ц	ц	н	н	н	н	н	ц	ц
н	ц	ц	ц	д	ц	ц	ц	н	Д	ц
Ħ	Ħ	ц	Ħ	н	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
ц	Ħ	ц	ц	ц	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
Ħ	Ħ	ц	ц	ц	н	Ħ	Ħ	Ħ	Ħ	ц
Ħ	ц	ц	ц	ц	н	Ħ	Ħ	Ħ	ц	н

NDOT-Form-143b,-October-2017¶

REVISED: 3-26-21 Do not perform this test for CCRL certification

Figure E6.16 – Lab Worksheet Supplemental Cementitious Materials (SCM) Class C Fly Ash Physical Analysis

Laboratory: Cement and Concrete

Test Method: ASTM C 618

State of Nebraska Department of Transportation Materials and Research Division Wallace Heyen Concrete Engineer

Supplemental Cementitious Materials SCM ASTM C618 Class C Fly Ash Physical Analysis

Brand		Plant			
Laboratory ID FA					
Physical Test		Result	Limit	Inspector's Initials	Date
Fineness: Amount Retained when wet-sieved on 45-µm sieve, max. %	ASTM C-311/C-430				
max. variation from average 5%			34		
Strength Activity Index min. % at 7-day or 28-day	ASTM C-311		75		
Water Requirement	ASTM C-311		105		
Autoclave Expansion or Contraction, max. %	ASTM C-311/C-151		0.8		
Density max. variation from average 5%	ASTM C-311/C-188				
	Checker	l Rv			

NDOT Form 143c, October 2017

REVISED: 3-26-21 Do not perform this test for CCRL certification

Figure E6.17 – Lab Worksheet Supplemental Cementitious Materials (SCM) Class F Fly Ash Physical Analysis

Laboratory: Cement and Concrete

Test Method: ASTM C 618

State of Nebraska Department of Transportation Materials and Research Division

Wallace Heyen Concrete Engineer

Supplemental Cementitious Materials SCM ASTM C-618 Class F Fly Ash Physical Analysis

Brand		Plant			
Laboratory ID FA					
Physical Test		Result	Limit	Inspector's Initials	Date
Fineness: Amount Retained when wet-sieved on 45-µm sieve, max. %	ASTM C-311/C-430				
max. variation from average 5%			34		
Strength Activity Index min. % at 7-day or 28-day	ASTM C-311		75		
Water Requirement	ASTM C-311		105		
Autoclave Expansion or Contraction, max. %	ASTM C-311/C-151		0.8		
Density max. variation from average 5%	ASTM C-311/C-188				
	Checke	d By:			

NDOT Form 143e, October 2017

REVISED: 3-26-21 Do not perform this test for CCRL certification

Figure E6.18 – Lab Worksheet Supplemental Cementitious Materials (SCM) Ground Granulated Blast-Furnace Slag Physical Analysis

Laboratory: Cement and Concrete

Test Method: ASTM C 989

State of Nebraska Department of Transportation Materials and Research Division

Cementitious Supplementary Materials SCM ASTM C989 Ground Granulated Blast-Furnace Slag for Use in Concrete Physical Analysis

Manufacturer		Mill	Gra	Grade		
Laboratory ID FA			Date		_	
Physical Test			Result	Limit	Inspector's Initials	
Fineness: Amount Retained when wet-sieved on 45-µm sieve, max. % max. variation from average 5%	ASTM C-311 Table 3	/C-595 		20		
Strength Activity Index Individual Sample at 7 days at 28 days	ASTM C-311 Table 1	/C-989 —				
Water Requirement	ASTM C-311			105		
Air Content of Slag Mortar, Max. %	ASTM C-185			12		
Densitv max. variation from average 5%	ASTM C-311.	/C-188				
Table 1	Average of Last Five Consecutive Samples	Result	Any Individual Sample	Inspec Initia		
Slag Activity Index, min. %	•					
7-Day Index						
Grade 80						
Grade 100	75		70			
Grade 120	95		90			
28-Day Index			_			
Grade 80	75		70			
Grade 100	95		90			
Grade 120	115		110			
Checked By			Date			

NDOT Form 143g, October 2017

REVISED: 3-26-21 Do not perform this test for CCRL certification

Figure E6.19 – Lab Worksheet Supplemental Cementitious Materials (SCM) Density

Laboratory: Cement and Concrete **Test Method:** ASTM C 311 / C 188

State of Nebraska Department of Transportation Materials and Research Division

Inspector

Supplemental Cementitious Materials SCM ASTM C-311/C-188 Density Worksheet

/Year

Month

Lab Identification	Material Type	Flask # 50±0.05g	Mass of Fly Ash	Initial Reading	Final Reading	Diff. F-1	Density M/D	Date

NDOT Form 143f, October 2017

REVISED: 3-26-21 Do not perform this test for CCRL certification

Figure E6.20 – Lab Worksheet Supplemental Cementitious Materials (SCM) Autoclave Expansion

Laboratory: Cement and Concrete

Test Method: ASTM C 151

State of Nebraska Department of Transportation Materials and Research Division

Inspector

Supplemental Cementitious Materials SCM ASTM C-151 Autoclave Expansion Worksheet Cementitious Materials

Year _

		Reading	Reading	Expansion F-I	Expansion E /10 x 100	Date

NDOT Form 143d October 2017

REVISED: 3-26-21 Do not perform this test for CCRL certification

Figure E6.21 – Lab Worksheet Supplemental Cementitious Materials (SCM) Fineness of Hydraulic Cement 45-µm sieve (No. 325) Sieve

Laboratory: Cement and Concrete

Test Method: ASTM C 430

State of Nebraska Department of Transportation Materials and Research Division

Supplemental Cementitious Materials SCM ASTM C-430 Fineness of Hydraulic Cement Worksheet 45-µm Sieve (No. 325) Sieve

Inspector		Year								
Lab Identification	Brand	Туре	Sieve Id.	Sieve Correction Factor (C)	Mass Retained (R)	% Retained R _o R(C+100)	Date			

NDOT Form 143a, October 2017