NDOR

Evaluation of Cylinder Strenghth Coredation

Research Project Title:

Evaluation of Cylinder Strength Correlation

Research Project Number:

R-2005-07
Starting Date: 09/01/2005
Completion Date: 07/01/2010
Principle Investigators:
Robert Rea
Assistant Materials \& Research Engineer
Wally Heyen
PCC Engineer
Lieska Halsey
NDOR Research

P.C.C Laboratory:

Gary Mangen
Highway Quality Assurance Manager

PURPOSE OF THE INVESTIGATION:

Currently, NDOR is using 6×12-inch cylinder mold for compressive strength field performance testing. In 2005, due to the increase of research on the strength comparison between 4×8-inch cylinders vs. 6×12-inch cylinders, NDOR started an evaluation for strength comparison in four NDOR's mixes to establish a strength correlation.

DESCRIPTION OF THE INVESTIGATION:

1. Evaluate NDOR's paving and structural mixes according to AASHTO T-126 and ASTM C-1231 specifications.
2. Evaluate compressive strength data for 7,28 and 56 days to establish an average of two specimens per age per mix tested.
3. Evaluate and establish a percent different between the 4×8-inch and the 6×12-inch cylinders and compare results with other studies.

LABORATORY INVESTIGATION:

The cylinders were made in the field and were brought to the central lab the next day. The fabrication and curing of all cylinders was conducted according to specifications previously mentioned. The 47B mix design was used in all applications shown in Table 1. The compressive strengths were between 3000 and 3500 psi.
Each mix was composed of six specimens for each 4×8 inch and 6×12 inch cylinders. The concrete plastic characteristics used in the study are shown in Table 1.
Table 1. Concrete Mix Plastic Characteristics

Mix Number (\#)	Concrete Type	W/C Ratio	Air Percentage (\%)	Compressive Strength (psi)	Cementitious Contents lbs per cy
1	47B	0.412	6.5	3500	564
2	47B	0.423	6.8	3000	564
3	47B	0.436	4.5	3000	564
4	47B	0.414	7.0	3500	564

Compressive strength was collected from the results of $7,28 \& 56$ days; respectively, as it is shown graphically in Figure 1 .
Figure 1. Compressive strength results

TO DATE INVESTIGATION PROGRESS:

In 2005, 20 laboratories documented to ASTM the close correlation between the 4×8 and 6×12 inch cylinders in compressive strength.
In 2006, ASTM C 31 allowed the use of 4×8 inch cylinders in lieu of 6×12 inch cylinders when job specifications permitted their use.
In 2007 through 2009, NDOR followed up with the 2007 ASTM C 31 which stated, "The cylinder diameter shall be at least 3 times the nominal maximum size of the coarse aggregate"; therefore, the largest aggregate size allowed would be $15 / 16$ inch. NDOR's spec. specifies the coarse aggregate to be used in paving and structures will have a target value of 100% passing with a tolerance of -8% on the 1 inch sieve. NDOR is currently investigating what percent is passing the $11 / 4$ sieve. Two projects will be selected in the next construction season, to collect more compressive strength data for comparing the 4×8 inch and 6×12 inch cylinders. Depending on these results, NDOR may require the 4×8 inch cylinder in lieu of the $6 x 12$ inch cylinder for compressive strength in the future. After an in depth testing and correlation NDOR with several projects was performed and compressive strength data was analyzed. The results were within the 1% deference on the 4×8 inch cylinders.

The Table 2. Shown the evaluation performed in different highways type of projects.

SAMPLE ID\#	PROJECT NUMBER	AGE DAYS	COMPRESSIVE STRENGTH LBS /SQ IN CYLINDER SIZE		Percent Average \%					
$\mathbf{0 8 3 7 1 4 1 7 0 0 1 9}$	STPD-BR-89-3(104)	7	3892	4281	1.10					
$\mathbf{0 8 3 7 1 4 1 7 0 0 2 0}$	STPD-BR-89-3(104)	7	3565	3697	1.04					
$\mathbf{0 8 3 7 1 4 1 7 0 0 2 9}$	STPD-BR-89-3(104)	7	3986	3857	0.97					
$\mathbf{0 8 3 7 1 4 1 7 0 0 1 9}$	STPD-BR-89-3(104)	28	5485	5559	1.01					
$\mathbf{0 8 3 7 1 4 1 7 0 0 2 0}$	STPD-BR-89-3(104)	28	4878	5483	1.12					
$\mathbf{0 8 3 7 1 4 1 7 0 0 2 9}$	STPD-BR-89-3(104)	28	4959	5204	1.05					
$\mathbf{0 8 3 4 1 0 5 4 0 0 5 2}$	NH-30-4(103)	7	3352	3623	1.08					
$\mathbf{0 8 3 4 1 0 5 4 0 0 5 2}$	NH-30-4(103)	28	4861	5415	1.11					
N/A	NH-80-9(837) SCC concrete	7	5060	5620	1.11					
N/A	NH-80-9(837) SCC concrete	28	6870	6920	1.01					
Average										1.06

Results were comparable for cylinders with $f_{c}^{\prime}<5000$ psi within Nebraska Department of Roads Class of Concrete. Also, these results correlated with National Studies performed on the subject. Due to the results found Nebraska Department of Roads starting July $1,20104 \times 8$ cylinders will be allow to be used on all NDOR \& Federally Funded Projects. This change will be reflected in the sampling guide and in Site Manager on July 1, 2010. Therefore, when using 4×8 molds, concrete should be place in the molds in two lifts and rodded 25 times using a $3 / 8$ by 12 inch rod. Also, when testing the 4×8 specimens, 2 cylinders will be made and averaged for one test result. The 6×12 cylinder molds will be discontinued January 1 , 2011 for NDOR Staff. For LPA Projects, consultants will still have the option of using 6×12 cylinders.
Starting July $1,20104 \times 8$ cylinders will be allow to be used on all NDOR \& Federally Funded Projects.

