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Executive Summary  

In recent years, traffic congestion has become a significant issue in urban areas. People in the 

United States travel an extra one billion hours and consume an extra one billion gallons of fuel 

due to traffic congestion every year. Therefore, monitoring the performance of the transportation 

system plays an important role in any transportation operation and planning strategy.  

Congestion that is caused by accidents, road work, special events, or adverse weather is called 

non-recurring congestion. Non-periodic events with an expected large attendance (referred to as 

planned special events [PSE]), such as concerts, football games, etc., play a major role in 

transportation delays.  

Memorial Stadium in Lincoln, Nebraska, is the home of the Nebraska Cornhuskers football team. 

With an extended capacity of more than 85,000 people, the stadium is commonly referred as the 

“third-largest city in Nebraska” on game days. Game days, therefore, typically affect travel 

patterns in Lincoln and its neighboring regions.  

This report documents a study evaluating the relationship between professional sporting events 

and traffic congestion using INRIX data covering the past five years in Nebraska. The objective 

of this study was twofold: (1) monitor and evaluate the performance of the transportation system 

and travel behavior on football game days and (2) detect game day traffic hotspots on five major 

routes in Nebraska and identify significant factors affecting hotspot size. 

This study demonstrates a systematic way to assess travel patterns and identify traffic hotspot 

clusters on football game days compared to normal days. Five major routes in Nebraska were 

selected for this study, and the analysis utilized historical and real-time traffic data, including 

speeds, travel times, and location information, collected through the INRIX traffic message 

channel (TMC) monitoring platform. The INRIX dataset is currently regarded as the largest 

crowd-sourced traffic dataset. A comprehensive exploratory analysis of performance monitoring 

on game days against normal days for the five selected routes in Nebraska was also performed. 

Among the different analytical tasks that can be performed on spatiotemporal data, hotspot 

analysis is an important tool in the transportation field. A realistic scenario involving the 

application of hotspot detection is in traffic incident detection. A novel method for hotspot 

detection is proposed in this report. The proposed algorithm uses the spatiotemporal matrix of 

expected congestion cases as the baseline information. Using the expected congestion case 

matrix as the baseline information, we can replace the observed cases by the respective expected 

cases for the previously detected congestion regions in the spatiotemporal space and re-run the 

algorithm to detect additional hotspot clusters, if they exist. 

After detecting hotspots, it is crucial to identify the factors affecting the sizes of the hotspots, 

their locations, and other possible parameters. The start time of the game and the Cornhuskers’ 

opponent for a given game are two important factors affecting the number of people coming to 

Lincoln, Nebraska, on game days. The start time of the game can be classified as either noon or 

evening. The opponent of the Nebraska Cornhuskers also plays a significant role in the 
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importance of a given game and therefore the size of the crowd that the game draws. Over the 

last five years, the Cornhuskers’ toughest opponents, i.e., the opponents drawing the largest 

crowds, were (1) Ohio State, (2) Wisconsin, (3) Northwestern, (4) Michigan State, (5) Iowa, and 

(6) Purdue. Hotspot size can be defined as (1) the number of congested lanes, (2) the number of 

congested segments, and (3) congestion duration. 

Finally, given the start time of the game (noon or evening), the toughness of the opponent, and 

the specific congested segments on each route, traffic speeds on the following year’s game days 

(2018) were forecast using Dynamic Bayesian Networks, and hotspot clusters were identified 

based on the dataset of predicted traffic speeds. Data from 2018 were utilized as a validation 

dataset. 
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1. Introduction 

1.1 Background 

Monitoring the performance of the transportation system is a fundamental element of any 

transportation operation and planning strategy. Traditionally, transportation system performance 

monitoring was based on average travel times. However, travel time is not capable of 

representing the quality of service that commuters experience daily and may also inaccurately 

reflect the actual level of congestion by not accounting for unexpected congestion. 

Traffic congestion directly translates into transportation cost and plays a key role in assessing the 

performance of the transportation systems and the impacts of planning decisions. When a road 

reaches its capacity, every additional vehicle creates overload, which in turn delays other 

vehicles. Increased travel times, accidents, unpredictability of arrival times, increased fuel 

consumption, and increased pollution emissions are some of the impacts of congestion.  

Generally, there are two types of congestion: recurring and non-recurring. Recurring congestion 

is caused by routine traffic in a normal environment and is repetitive in nature and observed 

during peak periods, whereas non-recurring congestion is unexpected and is most likely caused 

by an incident. Non-recurring congestion may also result from a variety of other factors, such as 

lane-blocking crashes, disabled vehicles, work-zone lane closures, and adverse weather 

conditions. For urban road networks, travel time (and indirectly delay) is the most commonly 

used indicator to determine whether the congestion is recurring or non-recurring. Since 

unexpected incidents are the predominant source of travel time unreliability (Hojati et al. 2016), 

it is crucial to predict the performance of the transportation network during unusual conditions 

and plan a set of actions to enhance the mobility and safety of travelers.  

Daily congestion is common in many US cities, and most travelers expect and plan for some 

delay, particularly during peak hours. Most commuters modify their schedules or budget extra 

time to allow for traffic delays. It is the unexpected congestion that worries travelers the most. 

Travelers want to have a reliable travel time and want to be confident that a trip that takes 30 

minutes today will also take 30 minutes tomorrow. Travel time reliability reflects the extent of 

this unexpected delay. Reliability is formally defined as the consistency or dependability in 

travel times, as measured from day to day and/or across different times of the day.  

1.2 Planned Special Events (PSE) 

Non-periodic events with an expected large attendance (known as planned special events [PSE]), 

such as concerts, football games, etc., play a major role in transportation delays (Kwoczek et al. 

2014). Although such events are mostly different from each other, they all have one attribute in 

common: they impose a non-recurring stress on the transportation network, which leads to safety 

risk, capacity reduction, and demand surge.  
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The presence of a professional and college sports team in a city can have a considerable impact 

on the local economy of that city. Previous research has focused mainly on assessing the benefits 

of professional and college sports teams to the local economy, without any focus on the direct 

and indirect costs generated by professional and college sports teams and their games. Direct 

costs include facility construction; salaries for players, managers, and officials; and the costs 

associated with public safety at games. Indirect costs come from traffic, crowds, trash and 

pollution, noise, crime, and other negative aspects of the games. A thorough understanding of 

both the benefits and costs of professional and college sports teams provides context for 

understanding the public subsidies provided to professional and college sports teams.  

In this report, we empirically analyze the relationship between attendance at National Collegiate 

Athletic Association (NCAA) Division I Football Bowl Subdivision (FBS) games and traffic in a 

US metropolitan area, an indirect cost associated with the presence of a college football team.  

The FBS is the most competitive subdivision of NCAA Division I, which itself consists of the 

largest and most competitive schools in the NCAA. As of the 2017 college football season, there 

are 10 conferences and 130 schools in the FBS. College football is very popular in the US, and 

the top schools generate tens of millions of dollars in yearly revenue. The top FBS teams attract 

thousands of fans to games, and the largest American stadiums by capacity all host FBS teams. 

Football teams typically play at least six home games per season.  

Memorial Stadium in Lincoln, Nebraska, is the home of the Nebraska Cornhuskers football team. 

With an extended capacity of more than 85,000, the stadium is commonly referred as the “third-

largest city in Nebraska” on game days. The stadium holds the NCAA record for consecutive 

sellouts for every game since 1962, a streak of more than 300 games. Game days, therefore, 

typically affect the travel patterns of Lincoln and its neighboring regions. Most of the existing 

research on the economic costs associated with professional and college sports has focused on 

either the financial costs associated with facility construction or the crime associated with events 

held in sports facilities. However, little research has focused on the direct costs generated by 

games, such as the costs associated with public safety and sanitation, or indirect costs, such as 

the opportunity cost of funds used to subsidize the construction and operation of sports facilities. 

This report focuses on the relationship between professional and college sports events and traffic 

congestion, another overlooked cost of hosting sporting events. 

1.2.1 INRIX Data Sources  

In this study, we utilized historical and real-time traffic data, including speeds, travel times, and 

location information, collected through the INRIX traffic message channel (TMC) monitoring 

platform. The INRIX dataset is currently regarded as the largest crowd-sourced traffic dataset. 

With the help of today’s technologies, including connected vehicles and smartphones, INRIX 

offers a vast amount of historical and real-time data that can be analyzed and investigated to 

improve the performance of transportation networks. INRIX’s historical traffic flow data 

includes spatial and temporal data on average speeds for major roadways and arterials across all 

50 states. These speeds are determined by algorithms that evaluate multiple years’ worth of data 

collected using INRIX’s patented Smart Dust Network system, which reports speed values on 
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roads across the country. The speed data are then processed across several different temporal 

resolutions and reported on a customer-configurable basis for each temporal resolution. 

INRIX derives historical flow data using the following:  

● Traffic sensors – Sensors put in place by local departments of transportation (DOTs) or 

private sector companies that report traffic speed or other data from which traffic speed can 

be inferred. The sensors utilize one of several types of technology:  

o Induction loop sensors embedded in the roadway 

o Radar sensors 

o Toll tag readers along stretches of roadway 

● Probe vehicles – The INRIX network includes hundreds of thousands of probe vehicles—

trucks, taxis, buses, and passenger cars with onboard global positioning system (GPS) 

devices and transmitting capability—to relay vehicle speed and location back to a central 

facility. INRIX has agreements with several fleets to obtain the speed and location data 

anonymously.  

● INRIX Smart Dust Network – This network combines real-time GPS probe data from more 

than 650,000 commercial vehicles across the US that travel on specific road segments during 

particular time windows, physical sensor information, and other real-time traffic flow 

information with hundreds of market-specific criteria that affect traffic, such as construction 

and road closures, real-time incidents, sporting and entertainment events, weather forecasts, 

and school schedules. The Smart Dust Network gathers all input points, weights them 

appropriately based on input quality and latency, and calculates the speeds on a given road 

segment to a measured degree of accuracy.  

1.2.2 INRIX Data Format  

All INRIX historical traffic flow data for the state of Nebraska were delivered in comma-

separated value (CSV) format. The data provided by INRIX contained the following 

information: 

● TMC ID – the basic spatial unit used by INRIX to report the traffic flow data; INRIX uses a 

nine-digit TMC ID to define a unique segment 

● Time segment – a 19-digit time format used by INRIX to define the year, month, day, hours, 

minutes, and seconds (e.g., 2014-09-30 23:59:33 for September 30, 2014 at the 23rd hour, 

59th minute, and 33rd second) for each TMC 

● Speed – the average speed for a given TMC code, calculated using live data from the most 

current time slice 

● Reference speed – an uncongested “free-flow” speed determined for each TMC segment 

using the INRIX traffic archive 

● Average speed – the historical average mean speed for the reporting segment for that time of 

day and day of the week in miles per hour 

● Travel time – an attribute reported by INRIX based on an aggregation of data provided by 

GPS probes 

● Confidence – an attribute reported by INRIX having three levels: 10, 20, and 30. A 
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confidence of 30 indicates that enough base data were available to estimate traffic conditions 

in real-time, rather than using either historical speed based on time of day and day of week 

(indicated by confidence of 20) or free-flow speed for the road segment (indicated by a 

confidence of 10). 

● C_value – the confidence value (ranging from 0 to 100), designed to help agencies determine 

whether the INRIX value meets their criteria for real-time data 

An instance of Nebraska data is shown in Figure 1.1. 

 

Figure 1.1. An instance of Nebraska INRIX data 

1.3 Hotspot Detection 

Hotspot detection is used in many disciplines, such as in crime analysis for analyzing where 

crimes occur with a certain frequency, in fire analysis for studying the phenomenon of forest 

fires, and in disease analysis for studying the localization and focus of diseases.  

In the transportation field, a realistic scenario involving the application of hotspot detection is in 

traffic incident detection. Suppose that there are several detectors across a city recording the 

speeds of vehicles passing the detectors, and consider the vehicles’ speeds on normal days over 

multiple years to be the baseline information and the vehicles’ speeds on game days over 

multiple years to be the case dataset. The goal in hotspot detection is to detect those 

spatiotemporal regions that contain unexpected lower speeds that lead to non-recurring 

congestion.  

In addition to detecting hotspots, this study aims to identify the factors that affect the sizes of 

hotspots, their locations, and other possible parameters. 

1.4 Report Organization 

This report is organized as follows. A literature review summarizing previous pertinent studies is 

provided in Chapter 2. Chapter 3 presents the data used in this study, describes the routes 

selected, and provides some preliminary analysis. In Chapter 4, the experiments and results are 
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explained in detail, a complete traffic hotspot analysis is presented, a novel hotspot detection 

method is proposed, and insights into the observed results are provided. The report concludes in 

Chapter 5 with a summary of the findings of this study and a discussion of recommendations for 

future research.   
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2. Literature Review 

2.1 Introduction  

This chapter provides a review of previous studies conducted on probe data, planned special 

events and their impact on traffic congestion and travel behavior, and methods for detecting 

hotspots during special events. 

2.2 Planned Special Events (PSE) 

Traffic congestion represents a significant problem in many urban areas. Duranton and Turner 

(2011) note that in 2001, the average American household spent more than 2.5 person-hours each 

day in a passenger vehicle. They also investigated the effects of road construction and other 

factors on congestion. Rappaport (2016) extended the standard monocentric city model to 

include commuting and identified traffic congestion as a critical factor constraining local growth. 

Another recent study concluded that commuting to and from work is among urban households’ 

least enjoyable activities, suggesting that additional time spent in a car at the end of the day 

involves substantial psychic costs.  

Non-periodic events with large attendance (i.e., PSEs) play a significant role in transportation 

delays (Kwon et al. 2006). Although such events are mostly different from each other, they all 

have one feature in common: they impose a non-recurring stress on the transportation network, 

which leads to safety risk, capacity reduction, and demand surge. Major events are discussed in 

many studies. They can be recognized by their larger spatio-temporal size compared to recurring 

congestion, but they are not well defined. Müller (2015) proposed a methodology containing four 

parameters for defining major events: number of visitors, media coverage, costs, and urban 

transformation (Müller 2015). The Handbook for Event Transportation (Handbuch 

Eventverkehr) similarly categorizes events according to a substantial list of factors, including but 

not limited to the number of expected visitors, relative size, open or closed access, location, 

whether the event is weather dependent, duration, and financing (Amini et al. 2016). As an 

example of the congestion generated by large events, a concert by Rihanna in South Africa in 

October 2013 forced people who were trying to reach the stadium to sit in traffic for more than 

five hours. Similarly, a concert by Robbie Williams in London in 2003 created tailbacks of up to 

10 miles on highway A1 towards the stadium. Traffic congestion created by special events has a 

typical pattern, including two sequential waves of congestion (Leilei et al. 2012). The first wave 

consists of people going to the event, while the second consists of people leaving the venue. 

Interestingly, the second wave may be even bigger that the first.  

Few studies have been conducted to predict congestion due to special events. At the same time, 

there is almost no way to predict this kind of non-recurring congestion ahead of time. In this 

report, we examine the effects of one specific type of special event, football games, on traffic 

patterns and travel behaviors in the city of Lincoln, Nebraska. 

It is worth noting that the relationship between urban vibrancy, traffic congestion, and 

greenhouse gas emissions has been investigated; the presence of a professional sports team in a 
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city could represent a type of consumer amenity that contributes to urban vibrancy. Professional 

sporting events attract large numbers of fans attending games in a small area at the same time. 

The presence of large surface parking lots and parking structures near sports facilities indicates 

that large numbers of fans drive to games. Many professional sporting events take place on 

weekend evenings, and many sports facilities are located in the urban core of large cities. Taken 

together, this suggests that sporting events could have a substantial impact on traffic congestion. 

Basic “back-of-the-envelope” estimates of annual vehicle miles travelled (VMT) based on 

National Household Travel Survey (NHTS) data and actual FBS attendance suggest that fan 

travel to football games could account for as much as one-half of one percent of annual 

metropolitan area VMT, which could plausibly affect local traffic congestion. 

2.3 Professional Sporting Events 

Fan attendance represents the key link between sporting events and urban traffic. To attend a 

sporting event, most fans travel between their home or place of work and the venue where the 

event takes place. Fan attendance at professional sporting events concentrates economic activity 

spatially in and around facilities and temporally on game day. This concentration has clear 

economic impacts.  

Humphreys and Zhou (2015) developed a spatial economic model that includes agglomeration 

effects stemming from increased fan activity in and around professional sports facilities on game 

day that predicts that the presence of a professional sports team will increase nearby property 

values and induce other service-providing firms to collocate near the sports facility. Huang and 

Humphreys (2014) found evidence of increased housing market activity near new sports facilities 

after the facilities opened, supporting the predictions of the model by Humphreys and Zhou 

(2015). If this housing market activity reflects the immigration of new residents, the population 

density near sports facilities will increase. Coates and Humphreys (2003) show that employees in 

the amusements and recreation industry—the industry that includes athletes and other employees 

working in sports facilities—earn more in cities with professional sports teams than employees 

in this industry in cities without professional sports teams; these results support the idea of 

increased economic activity in and near sports facilities (Coates and Humphreys 2003).  

Despite this evidence of increased economic activity near sporting events, no evidence exists to 

support the idea that professional sports teams or facilities generate broader economic benefits 

across metropolitan areas. However, the concentration of fans around sports facilities on game 

days, along with an increase in the nearby population, has clear consequences for traffic near 

sports facilities. Most professional sports facilities are located in or near the central business 

district (CBD) in their respective cities, which also contains many firms employing large 

numbers of workers who travel to and from their residence on weekdays, often by car. Many fans 

drive to games and park in dedicated lots surrounding sports facilities or in nearby lots and 

parking structures that are also used by local workers and residents.  

A few papers in the geography literature have examined the effect of sports facilities on local 

parking and traffic. All are case studies, and most use surveys of local residents to assess the 

extent to which increased traffic, parking, crowds, and noise on game days are perceived as a 
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“nuisance” externality by local residents. Mason et al. (1983) used household surveys to assess 

the importance of negative externalities generated by games played in a football stadium in 

Southampton, England; the paper concluded that traffic and parked cars generated substantially 

larger “nuisance” externalities on game days than crowds or noise, and the negative effects of 

traffic and parking extended several miles from the stadium (Mason et al. 1983). Chase and 

Healey (1995) assessed the importance of negative externalities generated by games played and 

rock concerts held in a football stadium in Ipswich, England; this paper also concluded that 

traffic and parked cars were the largest “nuisance” externalities associated with football matches 

and found a similarly large traffic impact area. Chase and Healey (1995) discussed proposed 

stadium location decisions in Australia in light of Australian transportation policy initiatives and 

the existing transportation environments around several rugby and Australian Rules Football 

stadiums located in the center of larger Australian cities. Although this paper did not gather 

empirical evidence, the discussion highlights the importance of increased local traffic and 

parking on game day.  

Little research has focused on the direct costs generated by games, such as the costs associated 

with public safety and sanitation, or indirect costs, such as the opportunity cost of funds used to 

subsidize the construction and operation of sports facilities. In one such study, Pyun and Hall 

(2019) reviewed the existing evidence on the relationship between professional sporting events 

and crime. Nevertheless, case study-based evidence clearly indicates that additional traffic 

around sports facilities on game days represents an important “nuisance” externality to residents 

of areas near stadiums in England and Australia. The existing theoretical and empirical evidence 

on professional sports teams in North America suggests that stadiums and arenas concentrate 

fans and economic activity in and near sports facilities on game days and may also increase the 

number of businesses and residents near sports facilities. All of these factors could increase 

traffic. However, the perceptions of residents near sports facilities about traffic conditions on 

game days may not reflect outcomes across the broader metropolitan area, and a concentration of 

fans and economic activity near a sports facility may not increase overall traffic in a metropolitan 

area. A full understanding of the potential impact of sporting events on traffic in metropolitan 

areas requires a model that determines realized driving outcomes.  

In general, predicting traffic congestion in urban environments is a highly complex task. Early 

approaches to traffic prediction used simulations and theoretical modeling (e.g. Clark 2003, 

Chrobok et al. 2004). More recently, thanks to the availability of massive new datasets on traffic, 

several different statistical and data-driven approaches have been presented. Examples include 

generalized linear regression (Zhang and Rice 2003), nonlinear time series (Ishak and Al-Deek 

2002), Kalman filters (van Lint 2008), support vector regression (Wu et al. 2004), and various 

neural network models (van Lint 2008, Park et al. 1999, Vanajakshi and Rilett 2004). A 

combination of some of the latter approaches is used by current commercial navigation solutions, 

which are able to predict recurring congestion by identifying characteristic traffic flow patterns 

on street segments based on historical data. These commercial systems can also optimize route 

planning based on the real-time traffic situation.  

In general, traffic congestion can be divided into recurring congestion, usually caused by a 

mobility demand that exceeds the capacity of the road network (e.g., due to rush hour), and non-

recurring congestion (e.g., due to incidents or special events) (Kwon et al. 2006). The effects of 
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non-recurring traffic congestion and the prediction of this type of congestion are widely 

investigated topics within the research community (e.g., Miller and Gupta 2012, Pan et al. 2012, 

Pan et al. 2015). Although approaches to predicting non-recurring congestion have improved 

significantly over time, most use data from stationary loop sensors that are not always capable of 

reflecting the traffic state at the level of granularity required for urban scenarios. In addition, the 

focus of these approaches has been on unidirectional street segments such as highways, whereas 

usually in cities the impact of congestion is multidimensional, evolving in a two-dimensional 

(2D), more complex route network. Previous studies have highlighted that PSEs are possible 

influencing factors on non-recurring congestion (Kwon et al. 2006, Ishak and Al-Deek 2002, 

Horvitz et al. 2005), since they may lead thousands (or even hundreds of thousands) of people to 

travel towards and then away from the same destination in a very limited time span. 

To the best of our knowledge, the only work available that focuses on the influence of PSEs on 

traffic is presented in Kwoczek et al. (2014). The authors present a generic overview of the 

influence of PSEs on road networks, derived from an event classification system defined by the 

Chinese State Council. The authors also introduce management plans for different types of 

events, but there is no quantifiable solution for predicting traffic. 

In the present report, we make use of INRIX probe data to analyze the influence of PSEs on 

traffic and make planning decisions based on that. However, first it is crucial to explain what 

probe-sourced data are. 

2.4 Widely Available INRIX data 

As demand for comprehensive traffic monitoring grows from both travelers and transportation 

agencies, a new technology that would reduce the installation and maintenance costs of 

monitoring systems is needed for collecting accurate and real-time traffic details. Probe-based 

methods of measuring travel time and speed data can easily scale across large networks without 

the need for deploying any additional infrastructure (Young 2007).  

The emergence of probe vehicle technology, the use of which has grown over the past few years, 

has caused a remarkable change in traffic data collection, processing, analysis, and utilization. 

The ability to access a huge volume of historical and real-time traffic data without any of the 

costs of installation, configuration, and maintenance of infrastructure-mounted sensors interests 

many agencies that want to utilize a single, uniform data source for monitoring traffic conditions 

across most routes in the US. Traffic information is collected from millions of cell phones, vans, 

trucks, connected cars, commercial fleets, delivery vehicles and taxis, and other GPS-enabled 

vehicles. At present, several probe data vendors, such as INRIX, HERE, TomTom, NAVTEQ, 

and TrafficCast, provide broad and high-quality real-time and historical traffic data around the 

world.  

INRIX provides updates on speed, travel time, incidents, and data quality along each mile-long 

travel segment at a frequency of once every minute. For the entire Nebraska roadway system, the 

stream for the INRIX TMCs comprises approximately 9 to 10 GB/month, or more than 100 

GB/year, and for XD segments the stream is approximately 45 GB/month, or more than 545 
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GB/year. With the introduction of greater spatial coverage and resolution, the size of the input 

streams is expected to increase (Cookson and Pishue 2017).  

Many studies have been conducted comparing the accuracy and reliability of probe-sourced data 

against that of local sensor data, such as data from radar sensors and loop detectors, which are 

considered the benchmark (Feng et al. 2010, Coifman 2002, Lindveld et al. 2000, Kim and 

Coifman 2014, Hu et al. 2015, Mudge et al. 2013). Kim and Coifman (2014) showed that INRIX 

speeds tend to lag behind the speeds measured by loop detectors by almost 6 minutes. Although 

INRIX reports two measures of confidence, these confidence measures do not appear to reflect 

this latency or the occurrence of repeated INRIX-reported speeds. Kim and Coifman (2014) used 

two months of INRIX data against the concurrent loop detector data to evaluate INRIX’s 

performance during both recurrent and non-recurrent events on 14 miles of I-71. To calculate the 

amount of latency, the authors used a correlation coefficient with several months of continuous 

data from concurrent detectors while shifting the time-series loop detector with 10 second steps.  

The Federal Highway Administration (FHWA) conducted a survey to gather information on (1) 

products and services offered by private sector data providers and (2) the use of those private 

sector data products and services by public sector agencies. The FHWA found that agencies are 

using a range of data sources, including GPS data from fleet vehicles, commercial devices, cell 

phone applications, fixed sensors installed and maintained by other agencies, fixed sensors 

installed and maintained by data providers, and cell phone locations. Most providers did not 

disclose specific quality evaluation results or quality assurance algorithms. INRIX explicitly 

stated its capability of meeting an availability level of more than 99.9% and an accuracy of 

greater than 95% (FHWA 2016).  

Nanthawichit and Nakatsuji (2003) proposed a method for treating probe vehicle data together 

with fixed detector data to estimate the traffic state variables of traffic volume, space mean 

speed, and density. The method uses a macroscopic model along with the Kalman filtering 

technique and was verified with several sets of hypothetical traffic data. The authors suggested 

the possibility of using estimated/predicted states to estimate/predict travel time.  

Coifman (2002) investigated various means of measuring link travel times on freeways. He used 

basic traffic flow theory to estimate link travel time using point detector data without the need 

for any new hardware.  

Sadrsadat and Young (2011) worked on the I-95 Corridor Coalition’s Vehicle Probe Project 

(VPP) to determine the probability that traffic data are reported in real-time as a function of 

hourly volume. The authors compared the VPP data against travel time data collected using 

Bluetooth traffic monitoring equipment. The VPP provides an indication that traffic data are 

reported in real-time data by a confidence score attribute equal to 30; the confidence score is 

provided by INRIX. The study confirmed the increasing availability of real-time data with 

increasing traffic volume, as measured by the percentage of confidence scores of 30.  

Feng et al. (2010) investigated the analytical relationships between travel time 

prediction/estimation accuracy and sensor spacing by means of two basic travel time 
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prediction/estimation algorithms. The authors also measured probe vehicle penetration rate. 

Travel times estimated and predicted online using induction loop detectors were evaluated 

against observed travel times. The findings of the study provide support for detector placement 

and probe vehicle deployment, especially along freeway corridors with existing detectors.   

Lindveld et al. (2000) found reasonably accurate results (10% to 15% root mean square error 

proportions) for travel time prediction/estimation accuracy across different sites for uncongested 

to lightly congested traffic conditions. They used various travel time estimators, but only speed-

based travel time estimators could be tested under congested conditions. 

The Florida Department of Transportation (FDOT) used several metrics, such as absolute 

average speed error, average speed bias, absolute average travel time error, and travel time bias, 

to determine the accuracy of vendors’ (NAVTEQ, TrafficCast, and INRIX) data. Overall, the 

data looked consistent with the ground truth and license plate reader data, and no significant 

differences in data accuracy among the three vendors were observed (FDOT 2012).  

Sharma et al. (2017) explored the reliability of probe data for congestion detection and overall 

performance assessment using an adaptive, data-driven, multiscale data decomposition algorithm 

called Empirical Mode Decomposition. The authors noted that the cost of deploying large-scale 

control strategies for traffic networks has increased the need for more reliable real-time traffic 

condition prediction.  

Liu et al. (2016) discussed two approaches for travel time prediction/estimation accuracy : 

dynamic mode decomposition and spatiotemporal pattern networks. Their results showed that 

data-driven approaches effectively detected changes in traffic system dynamics during different 

times of the day. 

A technical memorandum published by FDOT (2012) summarizes the various data available for 

analyzing bottlenecks and congestion on Florida’s Strategic Intermodal System. This technical 

memorandum also makes recommendations concerning the applicability of using existing FDOT 

data versus vehicle probe data from INRIX.  

Schuman and Glancy (2015) discussed how INRIX launched the world’s first crowd-sourced 

traffic monitoring network using sensors in fleet vehicles and mentioned how INRIX XD gives 

greater traffic detail on any map and a platform for planning, analysis, and operation of road 

networks.  

Matsumoto et al. (2010), using probe data to estimate CO2 emission reductions, defined three 

services (traffic flow analysis, improvement of signal control performance, and priority control 

of bypasses) that enhance traffic flow control. The authors confirmed the detection of a 

bottleneck without depending on the deployment rate of in-vehicle GPS units by using probe 

data statistically in traffic flow analysis (Matsumoto et al. 2010). 
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Different techniques (data assimilation, Newtonian relaxation) to incorporate probe data into 

macroscopic traffic flow models have been used to solve the optimization problem in urban 

areas, and these techniques have confirmed the possibility of decreasing the amount of probe 

data needed to detect congested traffic with negligible degradation of the quality of the traffic 

status estimation (Chu and Saito 2013). While reducing CO2 emissions using intelligent traffic 

control requires many detectors and high installation costs, Nagashima et al. (2014) used probe 

data collected by vehicles equipped with GPS or other devices and a signal control system that 

calculated consecutive spatial traffic information (spatial data) such as queue length. The authors 

showed that it is possible to reduce the number of detectors needed for the calculation.  

Haghani et al. (2015) described a novel validation scheme for comparing travel time data from 

two independent data sources with an emphasis on arterial applications. In addition, a context-

dependent-based travel time fusion framework was developed to integrate data from INRIX and 

Bluetooth datasets to improve data quality. To minimize the impact of random errors that can 

occur with INRIX data, two new techniques, confidence value and smoothing, were developed 

by a coalition of the University of Maryland and INRIX. When used together, these techniques 

reduce both the frequency and severity of the sudden changes in traffic condition that have been 

observed. Kobayashi et al. (2011) suggested using probe data to collect spatial traffic 

information in an effort to reduce CO2 emissions and verified the possibility of detecting 

bottleneck intersections based on traffic flow analysis utilizing infrared beacon probe data 

collected from the field. 

In the present study, we utilized the historical and real-time traffic data, including speeds, travel 

times, and location information, collected through the INRIX TMC monitoring platform. With 

the help of today’s technologies, including connected vehicles and smartphones, INRIX offers a 

vast amount of historical and real-time data that can be analyzed and investigated to improve the 

performance of transportation networks. INRIX’s historical traffic flow data includes spatial and 

temporal data on average speeds for major roadways and arterials across all 50 states. These 

speeds are determined by algorithms that evaluate multiple years’ worth of data collected using 

INRIX’s patented Smart Dust Network system, which reports speed values on roads across the 

country. The speed data are then processed across several different temporal resolutions and 

reported on a customer-configurable basis for each temporal resolution. 

2.5 Hotspot Detection 

Generally, predicting traffic congestion in urban environments is an extremely complex task. In 

general, two types of congestion are defined: recurring and non-recurring. Recurring congestion 

is caused by the usual traffic in a normal environment and is repetitive in nature and observed 

during peak periods, whereas non-recurring congestion is unexpected and is often caused by 

weather conditions, work zones, and incidents. While early approaches for traffic forecasting 

included simulations and theoretical modeling, the massive traffic datasets available today have 

made several different statistical and data-driven approaches available to the research 

community, including linear regression, nonlinear time series, Kalman filters, support vector 

regression, and various neural network models. The effects of traffic congestion and the 

prediction of these effects have been extensively studied. However, to the best of our knowledge, 
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only one study has focused on the impacts of PSEs on traffic congestion (Kwoczek et al. (2014). 

The authors of that study present a general theory of the impact of PSEs on road networks, 

derived from an event classification system defined by the Chinese State Council. The authors 

also introduce management plans for different types of events, but there are no measurable 

solutions to predict traffic. 

Over the years, many researchers have attempted to utilize mathematical prediction methods for 

traffic prediction. In the field of traffic flow prediction, traffic flow has always been regarded as 

a two-dimensional stochastic process (temporal and spatial). Parametric models try to find a 

mathematical model parameter that describes traffic flow as a time series process. In 1979, the 

first parameter approach was proposed to predict short-term freeway flow using an 

autoregressive integrated moving average (ARIMA) model. Many studies have shown the value 

of the ARIMA model, but the approaches in these studies suffer from a tendency to focus on the 

average values of the time series and therefore are not able to predict extremes. In order to 

predict the flow of traffic within a study area, other parametric models, such as the Kalman 

filtering model and local linear regression, have also been suggested.  

Since 1990, researchers have tended to make use of nonparametric instead of parametric models. 

In order to define the model’s structure and the number of parameters, nonparametric models 

rely on training data. While nonparametric models are promising because of the nonlinear nature 

of traffic flows, many of the proposed methods only characterize traffic flow temporally in a 

time series process. This paper investigates Bayesian networks (BN) to predict traffic flows 

using spatial and temporal information. Dynamic Bayesian Networks (DBN) extend Bayesian 

networks to model systems that evolve over time. In other words, a DBN is a BN that relates 

variables to each other over contiguous time stamps. 

2.6 Conclusion 

This chapter summarized previous studies on the impacts of various kinds of planned special 

events. Moreover, the impacts of professional sporting events, an example of a PSE, on traffic 

congestion were examined. Finally, information was presented on INRIX, the source of data for 

this study. The next chapter presents details on the data used and routes selected for this study 

and an exploratory analysis. 
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3. Data 

3.1 Introduction 

In today’s complex global economy, transportation connections enable a business to locate in 

any region offering the best possible combination of labor, land, tax, and cost while competing 

worldwide. All state departments of transportation (DOTs) rely on fixed-mounted sensors to 

collect traffic information such as travel time, traffic speed, volume, etc. Such traffic information 

can be used by Nebraska Department of Transportation (NDOT) councils to identify which 

routes are used most and to decide whether to improve those roads or provide alternatives if there 

is an excessive amount of traffic.  

Probe data collection involves a set of relatively low-cost methods for obtaining travel time and 

speed data for vehicles traveling on freeways and other transportation routes. NDOT has already 

procured probe data streams through a third-party vendor, INRIX, to augment traffic data 

collection and assess the performance of its operations. INRIX is maintaining 4,125 traffic 

management centers to collect traffic information for major freeways and urban areas in 

Nebraska. 

The objective of this study was to assess and explore the impact of University of Nebraska 

Cornhuskers football game days on travel patterns. Game days attract a significantly high 

volume of traffic and hence result in congestion and higher travel times for road users. The past 

several years of INRIX data available through NDOT were used to generate travel time 

reliability curves and thereby estimate shockwave lengths. 

This project provides insights on the impact of game day schedules and the Cornhuskers’ 

opponents on travel patterns and route choices. The insights gained from this study will help 

NDOT implement active traffic assignment and thereby reduce congestion on game days.  

Table 3.1 shows the Nebraska Cornhuskers home game schedule from 2013 to 2017. For all 

games, the table shows the date and day of the week, the opposing team, the game’s result, and 

the start time of the game. 
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Table 3.1. Nebraska Cornhuskers home game schedule and results from 2013 to 2017 

Date Day Opponent Location Result Status Time 

Game Days 2013 

8/2/2013 Fri Fan Day 
Memorial 

Stadium 
   

8/31/2013 Sat Wyoming 
Memorial 

Stadium 
W, 37-34  7:00 PM 

9/7/2013 Sat Southern Miss 
Memorial 

Stadium 
W, 56-13  5:00 PM 

9/14/2013 Sat UCLA 
Memorial 

Stadium 
L, 41-21  11:00 AM 

9/21/2013 Sat 
South Dakota 

State 

Memorial 

Stadium 
W, 59-20   

10/5/2013 Sat Illinois 
Memorial 

Stadium 
W, 39-19  11:00 AM 

11/2/2013 Sat Northwestern 
Memorial 

Stadium 
W, 27-24   

11/16/2013 Sat Michigan State 
Memorial 

Stadium 
L, 41-28   

11/29/2013 Fri Iowa 
Memorial 

Stadium 
L, 38-17  11:00 AM 

Game Days 2014 

8/30/2014 Sat Florida Atlantic 
Memorial 

Stadium 
W, 55-7  2:30 PM 

9/6/2014 Sat McNeese State 
Memorial 

Stadium 
W, 31-24  11:00 AM 

9/20/2014 Sat Miami FL 
Memorial 

Stadium 
W, 41-31  7:00 PM 

9/27/2014 Sat Illinois 
Memorial 

Stadium 
W, 45-14 Homecoming 8:00 PM 

10/25/2014 Sat Rutgers 
Memorial 

Stadium 
W, 42-24  11:00 AM 

11/1/2014 Sat Purdue 
Memorial 

Stadium 
W, 35-14  2:30 PM 

11/22/2014 Sat Minnesota 
Memorial 

Stadium 
L, 28-24  11:00 AM 

Game Days 2015 

4/11/2015 Sat 
Red-White Spring 

Game 

Memorial 

Stadium 

Red 24, 

White 15 
 11:00 AM 

8/5/2015 Wed 
Nebraska Football 

Fan Day 

Memorial 

Stadium 
 

Presented by 

US Cellular 
 

9/5/2015 Sat Brigham Young 
Memorial 

Stadium 
L, 33-28  2:30 PM 

9/12/2015 Sat South Alabama 
Memorial 

Stadium 
W, 48-9  7:00 PM 
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9/26/2015 Sat Southern Miss 
Memorial 

Stadium 
W, 36-28 Homecoming 11:00 AM 

10/10/2015 Sat Wisconsin 
Memorial 

Stadium 
L, 23-21  2:30 PM 

10/24/2015 Sat Northwestern 
Memorial 

Stadium 
L, 30-28  11:00 AM 

11/7/2015 Sat Michigan State 
Memorial 

Stadium 
W, 39-38  6:00 PM 

11/27/2015 Fri Iowa 
Memorial 

Stadium 
L, 28-20  2:30 PM 

Game Days 2016 

8/3/2016 Wed Fan Day 
Memorial 

Stadium 
   

9/3/2016 Sat Fresno State 
Memorial 

Stadium 
W, 43-10  7:00 PM 

9/10/2016 Sat Wyoming 
Memorial 

Stadium 
W, 52-17  11:00 AM 

9/17/2016 Sat Oregon 
Memorial 

Stadium 
W, 35-32  2:30 PM 

10/1/2016 Sat Illinois 
Memorial 

Stadium 
W, 31-16 Homecoming 2:30 PM 

10/22/2016 Sat Purdue 
Memorial 

Stadium 
W, 27-14  2:30 PM 

11/12/2016 Sat Minnesota 
Memorial 

Stadium 
W, 24-17  6:30 PM 

11/19/2016 Sat Maryland 
Memorial 

Stadium 
W, 28-7  11:00 AM 

Game Days 2017 

4/15/2017 Sat Spring Game 
Memorial 

Stadium 

Red 55, 

White 7 
  

9/2/2017 Sat Arkansas State 
Memorial 

Stadium 
W, 43-36  7:00 PM 

9/16/2017 Sat Northern Illinois 
Memorial 

Stadium 
L, 21-17  11:00 AM 

9/23/2017 Sat Rutgers 
Memorial 

Stadium 
W, 27-17  2:30 PM 

10/7/2017 Sat Wisconsin 
Memorial 

Stadium 
L, 38-17  7:00 PM 

10/14/2017 Sat Ohio State 
Memorial 

Stadium 
L, 56-14  6:30 PM 

11/4/2017 Sat Northwestern 
Memorial 

Stadium 
L, 31-24  2:30 PM 

11/24/2017 Fri Iowa 
Memorial 

Stadium 
W, 56-14  3:00 PM 
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3.2 Exploratory Analysis 

The research team and the technical advisory committee for the project decided to select five 

major routes to Memorial Stadium in Lincoln, Nebraska. Figure 3.1 indicates these five routes, 

which included I-80 (No. 1), NE 2 (No. 2), NE 31 (No. 3), US 6 (No. 4), and US 77 (No. 5). 

 

Figure 3.1. Five routes selected for this study 

Raw data files received from the INRIX server were parsed using Hadoop technology and then 

processed using tools like Tableau and Python programming to visualize all routes and detect the 

mostly congested locations on each of the routes on game days. In this report, each of the five 

routes is separately analyzed for all game days over five years, from 2013 through 2017.  

Figure 3.2 illustrates the inspiration for examining traffic speeds on game days before the start 

time of each game until after the end of the game.  
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Orange and red represent normal and game days, respectively 

Figure 3.2. Hourly CDFs of speeds on two game days and two normal days for a sample 

game starting at 2:30 PM 

The horizontal axis in the figure shows speed in mph, and the vertical axis represents the 

cumulative distribution functions (CDFs) of the speeds. The CDF is the probability that a 

variable takes a value less than or equal to x. The horizontal axis represents the allowable 

domain for the given probability function. Because the vertical axis reflects probability, it must 

fall between 0 and 1; it increases from 0 to 1 from left to right on the horizontal axis.  

As can be seen in Figure 3.2, the CDFs of the speeds for two normal days and two game days 

(orange and red, respectively) start to shift in the hours before the start time of the games (11 

a.m., 12 p.m., 1 p.m., 2 p.m.) and after the end of the games (5 p.m. and 6 p.m.). Take, for 

example, games with start times of 2:30 p.m. Point A in Figure 3.2 indicates two red lines, the 

CDFs of the speeds on two separate game days at 12 p.m. It can clearly be seen that the CDFs 

(point A) are well below 45 mph, showing congestion at 12 p.m. (almost two hours before the 

start time of the games), which can be contrasted to the orange lines (point B), which represent 

the CDFs of speeds on two separate normal days. A similar scenario is observed at 11 a.m., 1 

p.m., 2 p.m., 5 p.m., and 6 p.m. 

In the following sections, each route is thoroughly analyzed in terms of the congested zones 

identified from a couple of hours before the start time of the games to a few hours after the end 

of the games.  

3.2.1 Route 1: I-80 

First route is I-80, which, in Nebraska, runs east from the Wyoming state border across the state 

to Omaha. Nebraska has over 80 exits along I-80. Figure 3.3 shows I-80 in the state of Nebraska. 
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Figure 3.3. Route I-80 in Nebraska, with blue points representing INRIX TMC segments 

There are several points on I-80 eastbound (EB) showing congestion during game days (from 

exits 353 to 369 in Figure 3.4).  

 

Figure 3.4. Route I-80 EB, with red points representing INRIX TMC segments showing 

congestion on game days 

When the start time of the game is 11:00 a.m. or 2:30 p.m., there is congestion on I-80 

westbound (WB) from Omaha to Lincoln (Figure 3.5). However, when the start time of the game 

is 6:30 p.m. or 7:00 p.m., there is almost no congestion on I-80 WB from Omaha to Lincoln. 

From Exit 353 to 369 
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Figure 3.5. Route I-80 WB, with red points representing INRIX TMC segments showing 

congestion on game days 

For hotspot detection, a very thorough exploratory analysis is conducted on each route. All 

significant speed drops from 2013 to 2017 for each segment is analyzed. If the proportion of 

significant speed drops to total number of game days is greater than 0.5 the segment is classified 

as a hotspot. For instance, if the total number of game days are 40 over the five years (2013 to 

2017) and segment A experienced traffic congestion for 20 times or more during this period, that 

segment will be classified as a hotspot. Figure 3.6(a) shows all segments from Omaha to Lincoln 

(I-80 WB) as blue points. In general, blue points represent all segments on each route. Red points 

represent hotspot segments.  
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a)  
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Noon Evening 

 

 

 

 

b) 

Figure 3.6. (a) Hotspots indicated by red points and (b) heat maps for I-80 EB and WB for 

noon and evening games 

Figure 3.6(b) shows heat maps for I-80 EB and WB for noon and evening game days. Each heat 

map shows 0 as the start time of each game. The heat maps also show six hours before and after 

the start time of the games. Red point are also annotated by name of exit number or street name 

in the figure. Before the games, considerable congestion is evident for both noon and evening 

games starting from three hours before the games on I-80 WB. On I-80 EB, the heat maps show 

traffic congestion after the end of each game, which starts from three and a half hours after the 

start time of the game. The red points in Figure 3.6(a) correspond to the segments on the heat 

maps that show congestion. Those red points correspond to exits 448, 432, after 409, and 401-

401B.  

448 

432 

After 409 

401 - 401B 
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3.2.2 Route 2: NE 2 

NE 2 is a highway in Nebraska with two segments. The western segment begins at the South 

Dakota border northwest of Crawford and ends southeast of Grand Island at the intersection with 

I-80. The eastern segment begins in Lincoln and ends at the Iowa border at Nebraska City. In this 

study, the eastern part of NE 2 is examined. Figure 3.7 shows the eastern part of NE 2. 

 

Figure 3.7. Route NE 2, with blue points representing INRIX TMC segments 

As can be seen in Figure 3.8(b), there is considerable congestion on four segments on NE 2 WB 

for noon games. There is no considerable congestion on NE 2 EB at all.  
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a)  



 

25 

Noon Evening 

 

 

 

 

b) 

Figure 3.8. (a) Hotspots indicated by red points and (b) heat maps for NE 2 EB and WB for 

noon and evening games 

This means that people prefer to choose an alternative route to travel east (for example, to Iowa) 

after the game. However, there is significant congestion on NE 2 WB before the games begin at 

noon, which means that people from Iowa or regions around Nebraska’s eastern border prefer to 

use this route to travel to Lincoln for noon games. The red points in Figure 3.8(a) correspond to 

S 84th Street and a segment between S 33rd Street to S 27th Street. 

3.2.3 Route 3: NE 31 

NE 31 is a highway in Nebraska. The southern terminus is near Louisville at the intersection 

with NE 50. The northern terminus is near Kennard at the intersection with US 30. The highway 

S 84th St. 

from S 33rd st to S 27th 
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serves as a main north-south highway in the western portion of the Omaha Metropolitan Area 

(Figure 3.9). 

 

Figure 3.9. Route NE 31, with blue points representing INRIX TMC segments 

As can be seen in Figure 3.10(b), there is considerable congestion on three segments on NE 31 

southbound (SB) for both noon and evening games. There is no congestion on NE 31 northbound 

(NB) neither noon nor evening games.  
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a)  
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Noon Evening 

 

 

 

 

b) 

Figure 3.10. (a) Hotspots indicated by red points and (b) heat maps for NE 31 NB and SB 

for noon and evening games 

This means that people prefer to choose an alternative route for traveling north after the game. 

However, there is significant congestion on NE 31 SB before both noon and evening games. The 

red points in Figure 3.10(a) correspond to the intersections between NE 31 SB and US 6, S 216th 

Street, and the merging point to I-80. 

3.2.4 Route 4: US 6 

US 6 in Nebraska is a highway that goes from the Colorado border west of Imperial to the Iowa 

border in the east at Omaha. In Lincoln, US 6 comes into the city on West O Street, portions of 

which are divided highway. At Cornhusker Highway, which is a divided highway, US 6 turns 

east with a short urban connection to I-180 in the west along Cornhusker Highway. US 6 then 

S 216th St. 

merging to I-80 
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follows Cornhusker Highway northeast out of the city. At the east end of Cornhusker Highway 

(near Waverly), US 6 meets I-80. As can be seen in Figure 3.11, US 6 finally merges onto the 

freeway, the West Dodge Expressway, and turns due east towards downtown Omaha. 

 

Figure 3.11. Route US 6, with blue points representing INRIX TMC segments 

As can be seen in Figure 3.12(b), there is considerable congestion on eight segments of US 6 

WB for both noon and evening game days. There is almost no significant congestion on US 6 

EB.  
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a)  
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Noon Evening 

 

 

 

 

b) 

Figure 3.12. (a) Hotspots indicated by red points and (b) heat maps for US 6 EB and WB 

for noon and evening games 

This means that people prefer to choose an alternative route for traveling to Omaha after the 

game, specifically I-80 EB. However, there is significant congestion on US 6 WB before the 

game. The red points in Figure 3.12(a) correspond to 72nd Street in Omaha, Superior Street–

Cornhusker Highway, N 35th Street, and Sun Valley Boulevard in Lincoln. 

3.2.5 Route 5: US 77 

US 77 in Nebraska runs south to north across the eastern portion of the state, emerging from 

Kansas in Gage County south of Wymore and ending in Dakota County north of South Sioux 

City before making a brief entrance into Iowa. Figure 3.13 shows the portion of US 77 analyzed 

in this study. 

Superior st. 

72nd St. 

N 35th st 

Sun valley blvd 
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Figure 3.13. Route US 77, with blue points representing INRIX TMC segments 

Figure 3.14(a) shows that there is no significant congestion far from Lincoln. All considerable 

traffic congestion is at the entry to Lincoln for both the north and south directions.  
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a)  
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Noon Evening 

 

 

 

 

b) 

Figure 3.14. (a) Hotspots indicated by red points and (b) heat maps for US 77 NB and SB 

for noon and evening games 

Figure 3.14(b) also indicates significant congestion for the whole game day, especially noon 

games, on the SB entry into Lincoln (the merging point with I-80) and the NB entry into Lincoln 

(from W Old Cheney Road to W Van Dorn Street).  

3.3 Conclusion 

This chapter provided a detailed, visualized description of all five routes covered in this study 

and the most frequently congested locations on each route before and after games for noon and 

evening game days separately. Table 3.2 below summarizes all hot spots of noon and evening 

game days. In the next chapter, the reliability and accuracy of real-time INRIX data using 

different performance measures for the selected locations is discussed. 

from W Old Chenney Rd to W Van 

Dorn st 

merging to I-80 SB 
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Table 3.2. Summary of all hot spots of noon and evening game days 

Hot spots Route Location Noon/Evening 

1 I-80 Exit 448 N E 

2 Exit 432 N E 

3 After 409 N E 

4 401-401B N E 

5 NE-2 S 84th St N -- 

6 from S 33rd St to S 27th N -- 

7 -- E 

8 N E 

9 NE-31 US6-NE31 -- E 

10 S 216th St N E 

11 Merging to I-80 N E 

12 US6 72nd St N E 

13 -- E 

14 Superior St - Cornhusker Hwy N E 

15 N 35th St. N E 

16 Sun Valley blvd N E 

17 US77 Merging to I-80 SB N E 

18 from W Old Cheney Rd to W Van 

Dorn St 

N E 

19 N E 
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4. Traffic Hotspot Analysis 

4.1 Introduction 

4.1.1 Incident Detection 

Researchers and engineers have long been motivated to improve traffic safety and operations. 

Traffic congestion, especially that due to traffic accidents and special event traffic, is of great 

importance because of the delays and costs to the local community. Traffic delays can be 

attributed to certain events, including but not limited to traffic accidents and adverse weather 

conditions. These incidents may also have other effects, such as secondary collapse and delays in 

emergency medical services, which may result in additional costs. As a result, in the area of 

traffic management, the monitoring of the transportation network and the ability to detect and 

report abnormalities in real time is very important. 

4.1.2 Data Stream and Pre-Processing 

Most of the time in real-world scenarios, raw traffic data are incomplete, highly susceptible to 

noise, and inconsistent for many reasons, such as sensor failures, measurement technique errors, 

the large size of datasets, etc. Data pre-processing can be used to try to detect and correct corrupt 

and erroneous traffic data. However, the storage and analysis of massive amounts of INRIX data 

are impossible using traditional methods because they require the processing of more than 500 

GB of data, which would be prohibitively time intensive on a traditional machine. For this study, 

a high performing cluster was used for data processing. The Hadoop Distributed File System 

(Apache Software Foundation 2018a) was used for storage of the data, and map-reduce was used 

for processing. Pig Latin (Apache Software Foundation 2018b) was used as the language to 

implement map-reduce algorithms. 

4.2 Hotspot Detection 

4.2.1 Introduction 

Hotspot detection is utilized in many disciplines, such as in crime analysis for identifying where 

crimes occur with a certain frequency, in fire analysis for studying the phenomenon of forest 

fires, and in disease analysis for examining the localization and focus of diseases. Today, there is 

great interest in spatiotemporal data analysis because of the availability of huge amounts of data. 

Among the different analysis tasks that can be performed on spatiotemporal data, hotspot 

analysis is an important tool in security informatics and bio-surveillance. For instance, in 

applications for detecting crime hotspots, an outcome such as the identification of an increase in 

criminal activity at a specific shopping mall between the hours of 5:00 to 8:00 p.m. would be a 

spatiotemporal hotspot. Outcomes such as identifying crime hotspots at shopping mall or city 

centers would be strictly spatial hotspots, and identifying crime hotspots between 5:00 and 8:00 

p.m. and between 9:00 and 11:00 a.m. are examples of temporal hotspots. The goal of hotspot 

analysis consists of detecting certain spatiotemporal regions among datasets. For example, in 
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facial recognition the specific set of the largest eigenvectors can be used to approximate images 

of the human face. In structural engineering, both the eigenvalues and eigenvectors are used to 

assess the vibration of structures. In control engineering, the eigenvalues of a linear system are 

used to evaluate the stability and response of the system. 

In the transportation field, a realistic scenario involving the application of the hotspot detection is 

in traffic incident detection. Suppose that there are several detectors across a city recording the 

speeds of vehicles passing the detectors, and consider the vehicles’ speeds on normal days over 

multiple years to be the baseline information and the vehicles’ speeds on game days over 

multiple years to be the case dataset. The goal in hotspot detection is to detect those 

spatiotemporal regions that contain unexpected lower speeds that lead to non-recurring 

congestion. For instance, an outcome that identifies certain activity on segments S1, S2, and S3 

during the years Y1 to Y3 might be considered a spatiotemporal hotspot. The detection of such 

hotspots enables transportation agencies to better understand their target of interest and thereby 

provide essential interventions and preventive measures. 

Hotspot analysis involves a spatiotemporal count matrix for the cases needed for the detection of 

those spatiotemporal regions (hotspots) that seem unexpected, given the baseline spatiotemporal 

matrix. Each cell in each matrix represents a count corresponding to a specific region and time. 

In particular, for traffic incident detection, each cell in the baseline matrix represents the speed 

corresponding to a segment at a specific time period on normal days. Each cell in the case matrix 

also represents the value of the reported speed on a specific segment within a given time period, 

but on game days. The goal of the analysis is to determine those subgroups of the spatiotemporal 

space whose reported cases are unexpected.  

In this research, we aimed to develop a method that (1) does not require any input parameters 

and (2) weighs all the possible hotspots based on a standard metric like statistical significance (p-

value). The alpha threshold should also be easy to estimate (usually alpha = 0.15). Addressing 

this problem, an Eigenspace-based algorithm called EigenSpot was recently proposed to detect 

space-time clusters with no restriction on the distribution and quality of the data or the shape of 

the cluster. However, this method can detect single hotspots only and is unable to detect multiple 

clusters. In traffic incident detection, when one cluster (incident) is detected, it is of interest to 

know whether there are additional clusters of high-risk regions present in the spatiotemporal 

space.  

This research aimed to utilize an extension of the EigenSpot algorithm called Multi-EigenSpot to 

allow the detection of multiple clusters in a spatiotemporal space. The proposed algorithm uses 

the spatiotemporal matrix of expected congestion cases as the baseline information. Using the 

expected case matrix as the baseline information, we can replace the observed cases by the 

respective expected cases for the previously detected regions in the spatiotemporal space and re-

run the algorithm to detect additional clusters, if they exist. 

Eigenspace-based algorithms identify space-time incident hotspots by tracking changes in the 

space-time occurrence structure instead of conducting an exhaustive search over the space, as in 

traditional methods. Traditional methods are more useful for sensitive applications when the 



 

38 

assumptions about the distribution of the data and the nature of the clusters are satisfied. 

However, for some nontraditional data sources, where these assumptions are not met, 

Eigenspace-based methods are an ideal solution for detecting potential clusters in a 

spatiotemporal space with no restrictions on the distribution and quality of the data or the shape 

of the cluster. Eigenspace-based methods detect clusters of homogeneous regions in terms of a 

congestion occurrence structure and do not restrict the regions in a cluster to being spatial 

neighbors. Since our proposed algorithm is based on the EigenSpot method, the following 

section briefly reviews the EigenSpot method before we present the proposed algorithm. 

4.2.2 EigenSpot Algorithm 

The inputs of the EigenSpot algorithm are two spatiotemporal m × n matrices, C, the game day’s 

speeds, and, B, the baseline information (normal day’s speeds), where m represents the number 

of segments and n represents the number of temporal instances. Each cell in each matrix 

represents a count (vehicle speed) corresponding to a specific segment and time. Given these 

matrices, the EigenSpot algorithm aims to identify a subgroup of regions in the spatiotemporal 

space where the reported cases (speeds) are unexpected with respect to the baseline information. 

Each matrix is decomposed using a one-rank singular value decomposition (SVD) to obtain the 

principal left and principal right singular vectors. The SVD is applied to each matrix, B and C, 

and the left and right singular vectors are calculated. The singular value decomposition of a 

spatiotemporal m × n matrix, M, is of the form M = UDVT, where the columns of U are the left 

singular vectors corresponding to the spatial dimension and the columns of V are the right 

singular vectors corresponding to the temporal dimension. D is a diagonal matrix whose diagonal 

entries are the Eigenvalues of matrix M.  

For instance, imagine that the baseline matrix (normal day) and case matrix (game day) are as 

follows: 

𝐵 =  [
65 65 60    60    65    . . .
67 68 65    60    58    . . .
70 70 70    70    73    . . .

]        𝐶 =  [
65 35 30    39    49    . . .
27 30 40    65    69    . . .
55 55 50    40    35    . . .

]    

       

As explained above, the SVD of B and C each equals UDVT.  

B = UBDBVT
B 

Where, 

 

           -0.5527     0.2357    -0.7994 

UB =  -0.5581    -0.8170     0.1450  

         -0.6189     0.5263     0.5831 
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D =  [
255.0036 0           0             0        0

0 8.1791           0             0        0
0 0       3.5015      0        0

]     

 

 

            -0.4574    -0.3149    -0.4075    -0.1711    -0.7045 

        -0.4596    -0.4148    -0.3661     0.3156     0.6189 

VB    -0.4422    -0.2593     0.6512    -0.5372     0.1569   

        -0.4313     0.2402     0.4441     0.7029    -0.2550 

        -0.4450     0.7771    -0.2806    -0.2974     0.1761 

 

Similarly, 

C = UCDCVT
C 

Where, 

           -0.5574     0.3050    -0.7722 

UC =  -0.5920    -0.7981     0.1121 

         -0.5821     0.5196     0.6254 

 

D =  [
177.5876 0              0             0        0

0 42.6109              0             0        0
0 0        22.5603      0        0

]     

 

 

            -0.4743     0.6302    -0.5658     0.2389     0.0252 

            -0.3901     0.3593     0.4759    -0.5490    -0.4368 

 VC =           -0.3914     0.0752     0.5581     0.2751     0.6737 

            -0.4702    -0.4506     0.0971     0.5403    -0.5239 

            -0.4985    -0.5149    -0.3639    -0.5233    0.2830  

The elements of the principal left singular vectors and right singular vectors are associated with 

the spatial dimension and temporal dimension, respectively. In the next step, the distances 

between the corresponding elements of the pair singular vectors are calculated. If the spatial 

singular vector for the normal day’s (baseline) matrix is represented by (sb1, sb2, . . ., sbn) and for 

the game day’s (case) matrix by (sc1, sc2, . . ., scn), then the subtract vector is calculated as 

follows: 

ds = [ds1 = sc1 - sb1 ds2 = sc2 - sb2 . . . dsn = scn - sbn] 

Similarly, for the temporal dimension, the subtract vector is given by the following: 

dt = [dt1 = tc1 - tb1 dt2 = tc2 - tb2 . . . dtm = tcm - tbm] 
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A z-score control chart is applied to vectors ds and dt with a significance level of α to identify 

the out-of-control spatial and temporal components. The locations of hotspot regions in the 

spatiotemporal space are approximated by the joint combination of the out-of-control spatial and 

temporal components. 

For instance, assume that sb = (0.25, 0.10, 0.75, 0.20) is the spatial singular vector of the 

baseline and sc = (0.30, 0.90, 0.80, 0.15) is the spatial singular vector of the cases. Each element 

in the spatial singular vector corresponds to a specific region. For instance, 0.30 and 0.25 in the 

first element corresponds to region 1. Similarly, the second, third, and the fourth elements 

correspond to regions 2, 3, and 4, respectively. The angle between the two singular vectors sb 

and sc is equal to 68° in this example. This angle does not tell us what elements of the singular 

vector have contributed to this difference. However, if, in the aforementioned example, we 

remove region 2 from the system, we have two vectors, sb = (0.25, 0.75, 0.20) and sc = (0.30, 

0.80, 0.15), where the angle between them is equal to 0.09, which is almost equal to zero. Region 

2 in this example is equivalent to the spatial component of the hotspot. In order to identify region 

2 in this example, a z-score control chart is applied to the subtract vector ds = (0.25 - 0.30, 0.10 - 

0.90, 0.75 - 0.80, 0.20 - 0.15) = (0.05, -0.80, -0.05, 0.05). Afterwards, we compute the 

standardized z-scores of the subtract vector, which in this case is zds = (0.4119, -1.4893, 0.4119, 

0.6654). As shown, a z-score of -1.4893 is equivalent to the left-tailed p-value of 0.06. If we 

define α = 0.10, region 2 would be identified as a hotspot spatial component. This is because its 

p-value is lower than 0.10. 

4.2.3 Multi-EigenSpot Algorithm 

For the proposed algorithm, we consider the situation in which the vehicle speed data on game 

days and normal days are aggregated for different sub-regions over a time period range. In the 

proposed algorithm, the vehicle speeds on game days and normal days are arranged in the form 

of identical m × n spatiotemporal matrices, C and B, respectively, where m denotes the number 

of components in the spatial dimension (sub-regions) and n denotes the number of components in 

the temporal dimension (time points). 

Given the spatiotemporal matrices, C (game day’s speeds) and B (normal day’s speeds), two 

spatiotemporal matrices, E (expected speeds) and R (relative risks), are calculated. For the 

expected traffic congestion, if no cluster exists in the spatiotemporal space, we use the formula 

proposed in Kulldorff et al. (2005), which assumes the reported cases to be distributed over the 

spatiotemporal space proportional to the respective normal day’s speeds. The risk measure, RR, 

is also calculated as the proportion of the C to the E. The SVD is applied to each matrix, C and 

E, and the left and right singular vectors are calculated. The SVD of a spatiotemporal m × n 

matrix, M, is of the form M = UDVT, where the columns of U are the left singular vectors 

corresponding to the spatial dimension and the columns of V are the right singular vectors 

corresponding to the temporal dimension. D is a diagonal matrix whose diagonal entries are the 

Eigenvalues of matrix M. For the purposes of comparison, only the singular vectors 

corresponding to the largest Eigenvalue were considered because these principal vectors explain 

or extract the largest part of the inertia of the data table.  
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If we assume that C and E are identical, their principal left and right singular vectors are identical 

as well, i.e., the corresponding elements in the pair singular vectors stay at a zero distance. If 

some change occurs in C, this change can be detected from the changes in the principal singular 

vector’s elements. In such cases, some distances between the corresponding elements of the pair 

singular vectors become abnormal for the components corresponding to the affected areas in 

both the spatial and temporal dimensions.  

Our approach uses the z-control chart for monitoring the distances between the corresponding 

elements of the pair singular vectors. The corresponding elements of the pair left singular vectors 

showing abnormal differences are associated with the spatial components of a cluster, and the 

corresponding elements of the pair right singular vectors are associated with the temporal 

components. If abnormal components are found in both dimensions, matrix C is upgraded by 

replacing the elements (game day’s lower speeds) corresponding to the out-of-control spatial and 

temporal components by the respective expected cases. In addition, matrix R is upgraded by 

replacing the elements corresponding to the out-of-control components by their average values to 

further visualize these elements on the heat map with the same color as a hotspot. The process is 

repeated with the upgraded matrix C and the original matrix of the expected cases, E. The 

matrices C and R are upgraded iteratively until no out-of-control component is found in either 

spatial or temporal dimension. Since the upgraded elements in matrix R are used to approximate 

the hotspots, the elements in the upgraded matrix R, other than the average values, are replaced 

by 1 to differentiate the upgraded elements from the non-upgraded ones. The resulting matrix R 

is then visualized on the heat map to show the different average relative risks using different 

colors. In cases where no space-time cluster exists, the resulting heat map has all elements equal 

to 1, indicated by a dark blue color only. Colors on the heat map other than dark blue 

approximate different space-time clusters. The sub-regions in a cluster are homogeneous with 

respect to the space-time occurrence structure and are represented by the same color on the heat 

map. 

The Multi-EigenSpot algorithm requires three types of tools: (1) an SVD for finding the singular 

vectors of a non-square matrix, (2) a statistical process control tool for monitoring distances 

between the corresponding elements of the pair singular vectors and (3) a visualization tool (heat 

map) for visualizing the detected clusters. The detailed stepwise process and the ways these tools 

are deployed in the algorithm are given below. 

● Step 1: Calculate the spatiotemporal matrices of the expected vehicle speeds and relative 

risks.  

𝐸𝑖𝑗  =  
𝐶.𝑗

𝐵.𝑗
 ×  𝐵𝑖𝑗 

𝐸 =  [𝐸11  ⋯ 𝐸1𝑛  ⋮ ⋱ ⋮  𝐸𝑚1  ⋯ 𝐸𝑚𝑛 ] 
Where,  
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𝐶.𝑗 is the jth column-average of matrix C 

𝐵.𝑗 is the jth column-average of matrix B 

𝐵𝑖𝑗 is the speed in the ith sub-region over the jth time-point 

𝑅𝑖𝑗  =  
𝐶𝑖𝑗

𝐸𝑖𝑗
 

𝑅 =  [𝑅11  ⋯ 𝑅1𝑛  ⋮ ⋱ ⋮  𝑅𝑚1  ⋯ 𝑅𝑚𝑛 ] 
 

Having matrix R, we are able to visualize hotspot clusters on the heatmap. 

● Step 2: Calculate the SVDs of matrices C and E. 

● Step 3: Calculate the subtract vectors. 

● Step 4: Identify abnormally high distances in the corresponding elements of the pair singular 

vectors. 

● Step 5: Upgrade matrices C and R. 

● Step 6: Find additional abnormal components in the spatial and temporal dimensions. Repeat 

Steps 2 through 5 until no abnormal component is found in each dimension. 

● Step 7: Replace the elements in the last upgraded matrix R, corresponding to the components 

(spatial/temporal) that were not found to be abnormal, with 1. 

● Step 8: Visualize the resulting matrix R on a heat map on which the average RR values are 

represented by different colors. 

Figure 4.1 is an example output of the proposed method.  

 

Figure 4.1. Sample result of the proposed algorithm showing a spatiotemporal matrix for I-

80 

The colored regions on the heat map (points A and B) corresponding to different average RR 

values (less than 1) show multiple space-time hotspots. Point A indicates a traffic hotspot cluster 

after a game ends on route I-80 EB. Point B shows congestion before the start time of the game 

After 

game 

ends 
Before 

game 

starts 
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on I-80 WB. If no cluster exists, then all the data values on the heat map are equal to 1, indicated 

dark blue color. 

After analyzing normal days against game days, it was observed that congestion mostly occurs a 

few hours before the start time and immediately after the end of each game. It is important to 

compare a normal day against a typical congested day (i.e., a congested non-game day) and 

assess congestion trends and the differences between the traffic patterns observing on game-day 

versus typical congested day. In order to do that, two speed contour maps are plotted in Figure 

4.2 that show speeds over each minute of a normal day and those on a typical congested day.  

 

Figure 4.2. Sample results showing speed contour maps for a normal day and a typical 

congested day 

As can be seen, the normal day’s heat map (left) is almost completely blue, indicating speeds 

above 45 mph, which means no congestion occurred. The heat map showing a typical congested 

day (right) shows speeds less than 45 mph for a few hours starting at noon and lasting until the 

evening. That congestion could be recurring and/or non-recurring. 

According to a sample analysis of a normal day against a typical congested day, there is no 

similarity between the congestion that occurs on game days and the congestion that occurs on 

typical congested days. On game days, congestion occurs in a specific period of time before or 

after the start time of the game and in specific zones, while on a typical congested day traffic 

congestion can occur anywhere on a route and at any hour of the day. 

4.3 Hotspot Parameters 

After detecting hotspots on game days, it is crucial to identify the factors affecting the sizes of 

the hotspots, their locations, and other possible parameters. The start time of the game and the 

Cornhuskers’ opponent on a given day are two important factors affecting the number of people 

coming to Lincoln, Nebraska, on game days. The start time of the game can be classified as noon 

or evening. The noon category contains games starting at 11:00 a.m. or 2:30 p.m. Similarly, the 

evening category contains all games starting at 6:30 or 7:00 p.m. Moreover, the Cornhuskers’ 

opponent on a given day can significantly influence the importance of the game and therefore the 

size of the crowd that the game draws. For example, the Cornhuskers’ toughest opponents in 
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2018, i.e., the opponents drawing the largest crowds, were (1) Ohio State, (2) Wisconsin, (3) 

Northwestern, (4) Michigan State, and (5) Iowa. Therefore, it is important to assess the impacts 

of these two factors (start time and opponent) on the sizes of the hotspot. Hotspot size can be 

defined as (1) the number of congested lanes, (2) the number of congested segments, and (3) 

congestion duration. The number of congested lanes itself is divided to three categories: one 

lane, two lanes, and three lanes.  

4.3.1 Start Time of the Game 

Using the proposed method for hotspot detection, it is possible to determine the number of 

consecutive segments in each hotspot. Having the segments’ lengths and the number of 

consecutive segments for each hotspot, it is possible to approximate the length of each 

congestion region (hotspot). Figures 4.3 and 4.4 illustrate how the length and duration of 

congestion vary between noon and evening games with respect to the time the congestion 

occurred, whether before the start time of the game (negative values) or after that (positive 

values).  

 

Figure 4.3. Impact of the start time of the game on congestion (hotspot) length 
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Figure 4.4. Impact of the start time of the game on congestion (hotspot) duration 

The vertical axis in each figure is divided into positive and negative values. Positive represents 

congestion that occurs after the end of the game, while negative represents congestion that 

occurs before the start of the game. Among the 19 hotspots (horizontal axis) identified in the 

case study by the proposed hotspot detection algorithm, it is clear that for most of the hotspots, 

the congestion length when the start time of the game is noon (red bars) is higher than that of 

evening games (blue bars), no matter whether the congestion occurred before (negative y-values) 

or after the start of the game (positive y-values). 

The Multi-EigenSpot algorithm is also capable of identifying the duration of each hotspot 

cluster. As shown in Figure 4.1 as an example, the time (congestion duration) and number of 

segments (congestion length) of each traffic hotspot cluster are easily visible. Thus, we estimated 

congestion duration using the proposed method. Figure 4.4 shows the average congestion 

duration of 19 hotspots during noon and evening football games with respect to the time the 

congestion occurred, either before the start time of the game (negative values) or after that 

(positive values). As can be seen in the figure, all games that started in the evening (blue bars) 

had a lower average congestion duration than noon games (red bars), no matter whether the 

congestion occurred before or after the start of the game. 

4.3.2 Opponent 

The Nebraska Cornhuskers’ opponent on a given day play a significant role in the importance of 

the game and therefore the size of the crowd that the game draws. Over the last five years, the 

Cornhuskers’ toughest opponents, i.e., the teams drawing the largest crowds, were (1) Ohio 
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State, (2) Wisconsin, (3) Northwestern, (4) Iowa, (5) Michigan State, and (6) Purdue. It is 

therefore important to evaluate the effect of the Cornhuskers’ opponent on game day traffic 

congestion. 

Using the proposed method for hotspot detection, we are able to determine the length and 

duration of traffic hotspots. The goal of this section is to determine the impact of the 

Cornhuskers’ opponents on the length and duration of traffic congestion. For instance, is there a 

longer duration or length of congestion in the Lincoln area when the game is between the 

Cornhuskers and Ohio State compared to when the game is between the Cornhuskers and 

Rutgers?  

In Figures 4.5 and 4.6, the horizontal axis shows the top five opponents of the Nebraska 

Cornhuskers over the past five years.  

 

Figure 4.5. Impact of Cornhuskers’ opponents on the congestion length 
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Figure 4.6. Impact of Cornhuskers’ opponents on the congestion duration 

In the figures, the “Others” category includes all other teams, which usually have little chance of 

winning against the Cornhuskers. As can be seen in the boxplots, there is a decreasing trend from 

Ohio State (the toughest opponent) to Others (the weaker teams), implying that the length and 

duration of traffic hotspots are influenced by the Cornhuskers’ opponents.  

According to Figure 4.5, the median length of congestion that occurred in the Lincoln area when 

the opponent was among the top five is more than three miles, while it decreases to around two 

miles when Cornhuskers faced weaker teams. Similarly, based on Figure 4.6, the median 

duration of congestion that occurred on game days against stronger teams is around 80 minutes 

while it drops to 40 minutes on games days against weaker teams. 

Based on the exploratory analysis described above, the traffic hotspot size is influenced by the 

start time of the game and the toughness of the Cornhuskers’ opponent. In the next step, this 

research aims to predict traffic congestion based on the available variables and identify hotspot 

clusters for the year 2018 based on the predicted dataset. Given the start time of the game (noon 

or evening), the toughness of the opponent, and the specific congested segments for each route, it 

is possible to forecast speeds on game days for the following year (2018) using Dynamic 

Bayesian Networks and identify hotspot clusters based on the predicted dataset. The data from 

2018 are utilized as a validation dataset. 
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4.4 Dynamic Bayesian Networks 

Pearl introduced Bayesian networks as probabilistic graphic models that explain the dependence 

and independence of random variables on conditions. These dependencies are represented by a 

directed acyclic graph and measured by a joint probability distribution that breaks down into a 

product of local conditional distributions: 

𝑝(𝑋1, … , 𝑋𝑛) =  ∏  

𝑛

𝑖=1

𝑝(𝑋𝑖|𝑃𝑎(𝑋𝑖)) 

Where Pa(Xi) is the set of parents of Xi. Bayesian networks’ flexibility allows different sources 

of information to be combined. For example, you can use your own knowledge to set a part of 

the model and the other part can be learned automatically from data (Faour et al. 2006). 

Additionally, inferences (the forecasting process) can be made using the information propagation 

mechanism, even in the case of incomplete data. This feature is especially useful in real-time 

applications where it can be harmful to implement a further imputation process. 

Dynamic Bayesian Networks are extended to models evolving over time (Dean and Kanazawa 

1989). Each node X_i^((t)) represents the instantiation of the variable X_i^  at time slice t. The 

parents of X_i^((t)) can belong to t, t-1, …, t-r, where r is the order of the Dynamic Bayesian 

Network (Ghahramani 2006).  

Due to the limited number of available observations, 10-fold cross-validation is evaluated in the 

forecasting performance (Kohavi 1995). This method involves dividing the dataset X randomly 

into 10 subsets X1, ..., X10 of (approximately) the same size. The model is trained on X\Xk and 

tested on X for each K ∈ {1, ...,10}. The final performance is estimated by an average of 10 

measurements of accuracy. The weighted average absolute percentage error (WMAPE) is 

adopted in this report: 

𝑊𝑀𝐴𝑃𝐸(𝑥, 𝑥̂) =  
∑  𝑁

𝑡=1 |𝑥(𝑡) −  𝑥̂(𝑡)|

∑  𝑁
𝑡=1 𝑥(𝑡)

 

Where 𝑥̂ is the estimate of x and N is the number of comments in the dataset. The WMAPE is 

easy to interpret, like the mean absolute percentage error (MAPE). However, it favors models 

that predict high values effectively. 

4.4.1 Learning with Incomplete Data 

In this study of several routes in Nebraska over five years, the missing data are too dispersed to 

delete list-wise. Sun et al. (2006) proposed that the parents of the Dynamic Bayesian Network 

can be replaced with variables whose values are missing. Unfortunately, this method is hardly 

applicable to this study because it means that parents are complete, which in many situations 

does not necessarily apply.  
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The expectation-maximization (EM) algorithm, proposed by Dempster et al. (1977), is a method 

for iteratively estimating the maximum likelihood of parameters when values are missing (or 

hidden) in the training dataset. This method involves two steps at each iteration, starting from an 

initial parameter estimation. It completes the dataset of observed data and current estimates of 

the expectation (E) parameters. This completed dataset is used in the M step to update 

parameters by maximizing the probability of logging. As Dempster et al. (1977) shows, the log 

likelihood increases at each iteration until the maximum local convergence is achieved. 

The next time slice forecasting process can be considered a problem of inference in the Dynamic 

Bayesian Network. A comprehensive review of inference methods can be found in Murphy’s 

thesis (2002) or in Koller and Friedman’s recent book (2009) on Dynamic Bayesian Networks. 

The approximate inference methods normally take less time than the exact methods. For the 

present study, they seem to be a better choice to ensure real-time forecasts given the complexity 

of our model. The bootstrap filter (Gordon et al. 1993), also known as the fittest survival, is a 

stochastic simulation algorithm that can be inferred in real-time. It generates weighted sample 

sequences by sampling unobserved values. These sequences are time collected-multiplied in 

proportion to their weight, which reflects their probability of time.  

4.4.2 Experimental Method 

The data for this study were collected during 41 game days and 41 normal days over five years 

from 2013 to 2017. As explained earlier, the start time of the game and the toughness of the 

Cornhuskers’ opponent are two significant factors affecting the hotspot clusters detected by the 

Multi-EigenSpot algorithm. The start time of the game can be classified as noon or evening. The 

noon category contains games that start at 11:00 a.m. or 2:30 p.m. Similarly, the evening 

category contains all games starting at 6:30 or 7:00 p.m. Moreover, the Cornhuskers’ opponent 

on a given day can significantly influence the importance of the game and therefore the size of 

the crowd that the game draws. For example, the Cornhuskers’ toughest opponents in 2018, i.e., 

the opponents drawing the largest crowds, were (1) Ohio State, (2) Wisconsin, (3) Northwestern, 

(4) Michigan State, and (5) Iowa. The variable describing the toughness of the Cornhuskers’ 

opponent can have one of two values: tough opponent or normal opponent. The prediction 

algorithm is applied to each route separately. To predict speeds and thereby identify hotspots, 

which are the locations always experiencing congestion on game days, the start time of the game 

and the opponent’s toughness are two discrete variables. In the model’s structure, time windows 

of 15 minutes are considered. In other words, each frame of the model contains 15 minutes of 

traffic speed as a vector. 

In this study, the Dynamic Bayesian Networks approach was found to perform well on each 

route. The corresponding WMAPE for each route is provided in the Table 4.2. The average 

WMAPE for all routes is 13.8 %.  
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Table 4.1. Average forecasting errors (WMAPE in %) 

Route WMAPE 

I-80 12.2 

NE 31 10.6 

US 6 11.4 

US 77 18.1 

NE 2 16.5 

 

Note that the effect of toughness of the opponent in the model does not change significantly 

when there are five classes of toughness rather than two. The accuracy of the model is well 

illustrated by Figure 4.7, which shows the actual and predicted values on I-80 as an example.  

 

Figure 4.7. Predicted and actual hotspot clusters showing traffic congestion on game days 

on I-80 in 2018 

Heat maps of other routes are provided in Figure A.1 in Appendix A. Game days in 2018 were 

utilized as the validation dataset. After forecasting speeds using DBNs, we utilized the Multi-

EigenSpot algorithm again to find the hotspot clusters, both for the predicted scenario and the 

actual scenario. As can be seen in Figure 4.7, the predicted and actual values are nearly same, 

indicating the high accuracy of the proposed prediction method. Points AP (predicted) and AA 

(actual) correspond to each other, as is the case for points BP (predicted) and BA (actual). 

4.5 Conclusion 

In recent years, traffic congestion has become a significant issue in urban areas. People in the 

United States travel an extra one billion hours and consume an extra one billion gallons of fuel 

due to traffic congestion every year. Therefore, monitoring the performance of the transportation 

system plays an important role in any transportation operation and planning strategy. Non-

recurring congestion includes congestion caused by accidents, road work, special events, or 

adverse weather conditions. Non-periodic events with a high expected attendance, including 
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PSEs such as concerts, football games, etc., play an important role in delays in everyday 

transportation.  

Memorial Stadium in Lincoln, Nebraska, is the home of the Nebraska Cornhuskers football team. 

With an extended capacity of more than 85,000 people, the stadium is commonly referred as the 

“third-largest city in Nebraska” on game days. Game days, therefore, typically affect travel 

patterns in Lincoln and its neighboring regions.  

This chapter evaluated the relationship between professional sports events and traffic congestion 

using INRIX data for the past five years in Nebraska. This study demonstrates a systematic way 

to assess travel patterns and traffic hotspot clusters on football game days compared to normal 

days.  

Five major routes in Nebraska were selected for this study, and the analysis utilized historical 

and real-time traffic data, including speeds, travel times, and location information, collected 

through the INRIX traffic message channel (TMC) monitoring platform. The INRIX dataset is 

currently regarded as the largest crowd-sourced traffic dataset.  

For the detection of hotspots, the Multi-EigenSpot algorithm, which is an extension of the 

EigenSpot algorithm, was utilized. The spatiotemporal analysis of real-world congestion case 

data demonstrated that the proposed method addresses the two main limitations of the existing 

EigenSpot algorithm: multiple cluster detection and visualization.  

Ultimately, the DBN approach was proposed to forecast traffic congestion (hotspots) on game 

days. This approach is designed to provide predictions in real-time even when incomplete data 

are present. In the presence of incomplete data, the structural EM algorithm is used both to 

reduce the structure’s dimensions and find the parameters’ maximum probability estimates. The 

bootstrap filter is then used to make predictions. The experiment was carried out on all game 

days and corresponding normal days from 2013 to 2017. Data from 2018 was used for 

validation.  
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5. Summary and Conclusions 

In recent years, traffic congestion has become a significant issue in urban areas. People in the 

United States travel an extra one billion hours and consume an extra one billion gallons of fuel 

due to traffic congestion every year. Therefore, monitoring the performance of the transportation 

system plays an important role in any transportation operation and planning strategy.  

Traffic monitoring using wide-area probe-sourced data is increasingly becoming a viable means 

of comprehensive traffic monitoring without the need for a large investment in the deployment of 

physical assets in rights-of-way and the associated cost and maintenance burdens. Congestion 

that is caused by accidents, road work, special events, or adverse weather is called non-recurring 

congestion. Non-periodic events with an expected large attendance, including PSEs such as 

concerts, football games, etc., play a major role in delays in everyday transportation.  

Memorial Stadium in Lincoln, Nebraska, is the home of the Nebraska Cornhuskers football team. 

With an extended capacity of more than 85,000 people, the stadium is commonly referred as the 

“third-largest city in Nebraska” on game days. Game days, therefore, typically affect travel 

patterns in Lincoln and its neighboring regions.  

The study described in this report evaluated the relationship between professional sports events 

and traffic congestion using INRIX data over the past five years in Nebraska. The study 

demonstrates a systematic way to assess travel patterns and traffic hotspot clusters on football 

game days compared to normal days.  

Five major routes in Nebraska were selected for this study, and the analysis utilized historical 

and real-time traffic data, including speeds, travel times, and location information, collected 

through the INRIX traffic message channel (TMC) monitoring platform. The INRIX dataset is 

currently regarded as the largest crowd-sourced traffic dataset. A comprehensive exploratory 

analysis of performance monitoring on game days against normal days for the five selected 

routes in Nebraska was also performed. 

The following observations were drawn from this study: 

● There are several points on I-80 EB showing congestion during game days (from exit 353 to 

exit 369). 

● When the start time of the game is 11:00 a.m. or 2:30 p.m., there is congestion on I-80 WB 

from Omaha to Lincoln. However, when the start time of the game is 6:30 or 7:00 pm, there 

is almost no congestion on I-80 WB from Omaha to Lincoln. 

● There is considerable congestion on four segments on NE 2 WB, while there is no 

considerable congestion on NE 2 EB. This means that people prefer to choose an alternative 

route to travel east (for example, to Iowa) after the game. However, there is significant 

congestion on NE 2 WB before the game, which means that people from Iowa or regions 

around Nebraska’s eastern border prefer to use this route to come to Lincoln.  

● There is considerable congestion on three segments on NE 31 SB. However, there is no 

congestion on NE 31 NB.  
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● There is congestion on eight segments on US 6 WB, while there is almost no significant 

congestion on US 6 EB. This means that people prefer to choose an alternative route to travel 

to Omaha after the game, namely I-80 EB. However, there is significant congestion on US 6 

WB before the game.  

● On US 77, there is no significant congestion far from Lincoln. All considerable traffic 

congestion can be seen only at the entry to Lincoln for both the north and south directions. 

In the transportation field, a realistic scenario involving the application of hotspot detection is in 

traffic incident detection. A novel method for hotspot detection was proposed in this report. The 

proposed algorithm uses the spatiotemporal matrix of expected congestion cases as the baseline 

information. Using the expected case matrix as the baseline information, the observed cases can 

be replaced by the respective expected cases for the previously detected regions in the 

spatiotemporal space, and then the algorithm can be re-run to detect additional clusters, if they 

exist. 

After detecting hotspots, it is crucial to identify the factors affecting the sizes of the hotspots, 

their locations, and other possible parameters. The start time of the game and the Cornhuskers’ 

opponent for a given game are two important factors affecting the number of people coming to 

Lincoln, Nebraska, on game days. The start time of the game can be classified as either noon or 

evening. The opponent of the Nebraska Cornhuskers also plays a significant role in the 

importance of a given game and therefore the size of the crowd that the game draws. Over the 

last five years, the Cornhuskers’ toughest opponents, i.e., the opponents drawing the largest 

crowds, were (1) Ohio State, (2) Wisconsin, (3) Northwestern, (4) Michigan State, (5) Iowa, and 

(6) Purdue. Hotspot size can be defined as (1) the number of congested lanes, (2) the number of 

congested segments, and (3) congestion duration. 

The DBN approach was proposed to forecast traffic congestion (hotspots) on game days. This 

approach is designed to provide predictions in real-time even when incomplete data are present. 

In the presence of incomplete data, the structural EM algorithm is used both to reduce the 

structure’s dimensions and find the parameters’ maximum probability estimates. The bootstrap 

filter is then used to make predictions. The experiment was carried out on all game days and 

corresponding normal days from 2013 to 2017. Data from 2018 was used for validation.  

Table 4.3 summarizes the important findings of this report. 
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Table 5.1 Summary of important findings from this study 

Finding Comments 

Hotspot detection 
● The Multi-EigenSpot algorithm was used to detect traffic 

hotspot clusters. 

Impact of the start time of the game 

● The start time of the game was classified as either noon 

or evening. 

● Among the 19 hotspots identified in the case study by the 

proposed hotspot detection algorithm, it is clear that for 

most of the hotspots, the congestion length when the start 

time of the game is noon is higher than that of evening 

games, no matter whether the congestion occurred before 

or after the start of the game. 

● All games that started in the evening had a lower average 

congestion duration than noon games, no matter whether 

the congestion occurred before or after the start of the 

game. 

● When the start time of game is noon (11:00 a.m. or 2:30 

p.m.), there is congestion on I-80 WB from Omaha to 

Lincoln. 

Impact of opponent 

● The Cornhuskers’ opponent on a given game day affects 

the length and duration of traffic congestion. 

● A decreasing trend in the length and duration of traffic 

congestion was observed from Ohio State (the toughest 

opponent) to the Others category (the weaker teams), 

implying that the duration and length of traffic hotspots 

are influenced by the Cornhuskers’ opponents. 

Hotspot prediction 

● The DBN approach was proposed to forecast traffic 

congestion (hotspots) on game days. 

● The average WMAPE for all routes was 13.8%. 

● The DBN approach performed well on each route. 

 

Finally, it should be mentioned that many tests, analyses, and experiments were not conducted in 

this study due to a lack of sufficient data. Because this study focused mainly on freeways, future 

work should be focused on a deeper analysis of arterials and urban areas. This would be possible 

through the deployment of additional sensor infrastructure on both freeways and arterials. 
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Appendix A: Heat Maps for NE 31, US 6, US 77, and NE 2 

 
NE 31 

 
US 6 

 
US 77 

 
NE 2 

Figure A.1 Predicted and actual hotspot clusters showing traffic congestion on game days 

in 2018 on four routes: NE 31, US 6, US 77, and NE 2 



 

61 

Appendix B: Length and Duration of Hot Spots of Noon and Evening Game Days 

Table B.1 Congestion length and duration of hot spots of noon and evening game days 

Hot 

spot 

Congestion length (mile) Congestion duration (min) 

Noon Evening Noon Evening 

Before 

start-

time  

After 

start-

time 

Before 

start-

time  

After 

start-

time 

Before 

start-

time  

After 

start-

time 

Before 

start-

time  

After 

start-

time 

1 1.37 1.48 0.37 0.88 18 24 9 18 

2 1 1.5 0.75 0.8 17 34 11 14 

3 0.9 1.6 0.35 0.55 32 50 13 20 

4 1 0.8 0.3 0.1 46 35 18 8 

5 2 1.04 0.6 0.35 39 25 17 10 

6 1.9 1.25 0.8 0.29 22 13 20 9 

7 0.7 0.45 0.8 0.35 46 23 27 13 

8 0.9 1.54 0.5 0.85 13 41 9 17 

9 1.2 1.35 0.2 0.65 20 18 7 21 

10 0.4 2.9 0.2 0.85 18 55 10 25 

11 0.7 3.3 0.8 2.55 8 33 8 28 

12 0.9 1.45 0.3 0.65 12 32 9 19 

13 1.2 0.74 1.05 0.6     

14 0.7 0.25 0.5 0.35 20 10 10 8 

15 1.3 2.2 1.4 1.7 20 49 19 25 

16 1.3 2.69 0.5 0.7 13 43 8 13 

17 0.9 0.7 0.45 0.35 8 7 10 7 

18 1.5 1.19 0.7 0.35 32 23 11 8 

19 0.8 0.78 0.5 0.35 17 15 23 17 
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