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Abstract 
American burying beetle (ABB), Nicrophorus americanus, historically occurred in the 

eastern 35 U.S. States from Canada to Texas and is classified as a habitat generalist. ABB was listed 

as a federally endangered species in 1989 with remaining distribution in only six U.S. States..  

Within these states, populations of ABB are disjunct, occurring in mostly undisturbed habitats 

associated with multiple soil types and vegetation structure.  In Nebraska, the distribution of ABB 

has been mapped in two ecoregions, the Sandhills and Loess Canyons. In this project, we developed 

and compared a logistic regression model and a random forest model of ABB distribution at its 

northern and eastern edge in the Northern Plains ecoregions of Nebraska and South Dakota. We used 

baited pitfall sampling for 5 trap nights at 482 unique sites to establish presence of ABB at 177 sites. 

Distribution was not uniform in the plains ecoregion and the random forest model was used predict 

occurrence.  The results show that the ABB population in the northern plains ecoregion is unique 

from the previous model of the Nebraska Sandhills despite these ecoregions being adjacent.  The 

model results also reduce requirements to survey and conduct habitat mitigation for ABB in 

approximately 77,938 hectares of Nebraska and South Dakota that was considered potential habitat 

while prioritizing areas for conservation.   
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Introduction 

Species distribution models are becoming increasingly important for conservation of rare and 

endangered species.  This modelling has allowed new populations to be located (e.g. Guisan et al. 

2006; Jurzenski et al. 2014), improve conservation area planning, and predict potential effects of 

global climate change (e.g.  Carvalho et al. 2011; Riordan and Rundel 2014).  Many threatened and 



endangered species have limited distribution and specific habitat associations; however, some 

species once had wide distributions that spanned a multitude of habitats.  The use of many habitats 

may limit the accuracy of predictive models and thus, limit the usefulness of the models for 

predicting species occurrence and the effects of landscape and climate change on the species.    

The American burying beetle (ABB), Nicrophorus americanus (Olivier), is a federally 

endangered species native to North America (USFWS 2008). The ABB’s range historically extended 

into 35 U.S. states and three Canadian provinces (Lomolino and Creighton 1996; Bedick et al. 

1999).  However, the current range is limited to areas within six states: Arkansas, Kansas, Nebraska, 

Oklahoma, Rhode Island, and South Dakota (Godwin and Minich 2005; USFWS 2008), representing 

a more than 90% reduction from the historic range of the ABB (Lomolino et al. 1995).  Within the 

six states where it still occurs, habitat associations vary and the remaining western populations are 

disjunct both regionally and within the states (Leasure and Hoback 2017, U.S. FWS 2016).     

The ABB is characterized as a habitat generalist, and despite more than 25 years of research 

since its listing, no critical habitat has been designated because of the variability or contradiction 

found among variables that are strongly linked with ABB occurrence. Several models of predicted 

occurrence have been developed for Oklahoma and for two Nebraska populations that occur 

separately in the Loess Canyons and Sandhills (Crawford and Hogland 2010; McPherron et al. 2012; 

Jurzenski et al. 2014). Both the Loess Canyons and Sandhills models included validation and 

produced an AUC statistic of 0.765 and 0.82, respectively (McPherron et al. 2012; Jurzenski et al. 

2014), suggesting high correlation of the models’ ability to predict occurrence of ABB despite 

differences in predictive variables.  Additional modeling of the distribution of western ABB 

populations by Leasure and Hoback (2017) confirmed differences between habitat associations of 

ABB in the northern and southern range.  However, there are limited data from the farthest north 



areas in Nebraska and southern South Dakota.  Although previous work in South Dakota produced 

both a distribution and population estimate of ABB (Backlund and Marrone 1997; Backlund et al. 

2008) this research used variable trap spacing from 0.2-3.22km, a small trap size, rotted beef kidney 

bait, and longer survey length than standard protocols (USFWS 2014).  

In this study, ABB in northern Nebraska and southern South Dakota was sampled and 

positive and negative trap locations were analyzed based on environmental characteristics that were 

measured within an 800 m radius around each site. We used GIS to map ecologically-relevant 

characteristics of climate, soils, land cover, and human impacts. Because our study area is at the 

extreme northwestern corner of ABB range, we hypothesized that decreasing annual precipitation 

would limit the western edge of the distribution and colder winter temperatures would limit the 

northern distribution.  The predicted geographic distribution of the ABB and its correlations with 

environmental covariates were compared using two modeling approaches, a machine learning 

algorithm (random forest) and a generalized linear model (logistic regression).  Validation data were 

collected both within the model’s range and outside of the range to test scalability of the model.   

Methods 
Field Methods 

Presence or absence of the ABB was determined at 456 sites in northern Nebraska and 

southern South Dakota (Fig. 1) from 2005 to 2015 (mostly post-2008) using federally approved 

bucket-style baited pitfall traps (Bedick et al. 2004). Sites used to generate the models were selected 

using stratified random sampling methods. Ecoregions in the study area included the Northwestern 

Great Plains, the Northwestern Glaciated Plains, and a small fragment of Nebraska Sand Hills 

(USEPA 2013). Sites were spaced at least 1600 meters apart to maintain independence of samples, 

based on the assumption that the effective sample radius of baited pitfall traps is about 800 meters 



(Leasure and Hoback 2017). There is some empirical support for this effective trap radius (Leasure 

et al. 2012, Butler et al. 2013), but the trap radius is likely to be influenced by environmental 

conditions including wind and precipitation. Five nights of trapping were conducted at each site to 

minimize the chance of false negatives. Previous studies have estimated the probability of detecting 

an ABB population with baited pitfall traps to be about 50% for a night of trapping and between 85.7 

(± 5.3% S.E.) to 93.7 (± 5.1% S.E.) after 5 consecutive trap nights (Leasure et al. 2012, Butler et al. 

2013). This would result in a false negative rate of about 3-10% across five nights of trapping, and 

we considered this error rate satisfactory for the purposes of this study (Butler et al. 2013; USFWS 

2014). 

Trap locations were selected by identifying areas in the Northwestern Great Plains and 

Glaciated Plains ecoregions that lacked presence/absence sample data during the last 10 years, were 

accessible by public roads, and were not within 1600 m of previously sampled areas. Surveys were 

conducted using federally compliant 18.9 L in-ground bucket pitfall traps (USFWS 2014). These 

traps were dug into the ground with approximately 3 cm of the bucket lip above ground to prevent 

the entrance of water during rain events. Soil was packed against the outside of the bucket lip to 

create a ramp to ease the entrance of beetles into the trap. Approximately 8 cm of moistened soil was 

added to the bottom of the bucket to reduce competition among individuals, and protect against 

ABBs overheating or desiccating. Soil moisture was checked daily and water was added if needed. 

Each trap was baited with an extra-large previously frozen laboratory rat carcass (RodentPro.com®) 

which had been rotted in a dark colored 18.9L bucket in the sun for 2-4 days, depending on 

temperature. Traps were covered using 2, 5x5cm sticks cut into 45 cm lengths and a piece of 

plywood measuring 45x45cm. The sticks were placed on the lip of the bucket in parallel to allow 



beetles space to enter the trap, and the plywood was then placed on top of the sticks. A large piece of 

sod was then placed on top of the plywood to prevent removal by scavengers or wind.  

Upon capture of an ABB, the individual was aged, sexed, and its pronotum width measured 

(USFWS 2014). Because open bait allowed direct contact between the ripened rat carcass and the 

captured beetle, additional handling and feeding time was not required. Beetles were released 

approximately 100 m away from traps where they were caught to reduce the likelihood of artificially 

high recapture rates. At the release site, an artificial burrow was created using a stick, and individual 

beetles were oriented into the hole into which they readily crawled. A small amount of loose soil or 

vegetation was then placed over the opening. A single capture of ABB resulted in a positive result 

for the trap site, while no ABB over 5 trap nights resulted in a negative result. 

Environmental Covariates 
Based on results from previous studies (Hoback and Leasure 2017), we identified 16 

environmental covariates to assess as predictors of ABB occurrence including metrics of climate, 

soil texture, human impacts, and land cover (Table 1). For comparability, an effort was made to use 

similar predictors to those used in a previous study in the Nebraska Sandhills (Jurzenski et al. 2014). 

A combination of automated GIS scripts and manual GIS processing was used to delineate an 800 m 

sample area around each trap location and to summarize the underlying GIS layers representing our 

covariates within the circular sample areas surrounding each trap location (ESRI 2013, Python 

2012). This process was repeated for a grid of points spaced 500 m apart to collect covariate data 

throughout our study area necessary for mapping the expected distribution of the ABB. 

Three climate metrics were selected as environmental covariates: annual precipitation, 

average minimum winter temperature, and average summer temperature (Table. 1). We hypothesized 

that annual precipitation was related to overall ecosystem productivity and to desiccation risk. 



Burying beetles are susceptible to desiccation in dry environments leading to increased risk of 

mortality (Bedick et al. 2006). We also hypothesized that average minimum winter temperature was 

related to overwintering survival (Schnell et al. 2008), and that average summer temperature 

influenced habitat suitability as related to temperature-dependent flight activity (Merrick and Smith 

2004) during summer months when beetles actively search for carcasses to use for reproduction. 

Three soil texture covariates were selected: percent sand, silt and clay in the topsoil horizons 

(O and A) (Table. 1). Soil texture has been identified as an important habitat characteristic for 

determining suitability of areas for ABB to construct underground brood chambers (Scott 1998).  In 

Nebraska, ABB occurrences appear to be related to the presence of sandy loam soils likely because 

these soils allow rapid burial of carcasses and formation of stable brood chambers, and retain soil 

moisture (Lomolino,  et al. 1995, Scott 1998; Jurzenski et al. 2014). 

We selected five metrics of human influence: road density, highway density, coverage of 

developed areas, coverage of crops, and coverage of hayfields (Table. 1). These metrics could all 

have indirect effects on habitat suitability because of general habitat degradation and fragmentation 

that could affect availability of carcasses suitable for reproduction across the landscape (USFWS 

1991; Jurzenski et al. 2014; McPherron et al. 2012). In addition to these indirect effects, intensive 

row crop agriculture, hayfields, and developed areas could have direct negative effects on the ABB 

from soil disturbance and pesticide applications. 

Five land cover metrics were selected: coverage of water, grasslands, wet prairies, wetlands, 

and forests (Table 1). In dry environments, availability of open water could potentially benefit 

burying beetles at risk of desiccation, but in general we would expect open water to be negatively 

related to burying beetle abundance due to decreased availability of terrestrial habitats and potential 



limits to dispersal.  Previous studies have indicated that ABBs were associated with grasslands and 

wet prairies in Nebraska (Kozol et al. 1988; Bedick et al. 1999, Jurzenski et al. 2014).  

Analysis 
Initially, we examined the response of ABB based on presence or absence to the sixteen GIS-

based environmental covariates within the 800 m buffer surrounding each trap site.  We collected 

data from a total of 456 sites.  Covariates were centered and scaled prior to analysis, except 

percentages that were remained unscaled. We compared results from two modeling approaches, a 

generalized linear model and a random forest model (Breiman 2001).  

The generalized linear model (logistic regression) was implemented using the R statistical 

programing language (R Core Team 2014). To avoid collinearity among predictors in the model, 

environmental covariates were screened based on Spearman correlation coefficients greater than 0.6. 

Ten of the 16 environmental covariates were selected for logistic regression (Table 1). Predictors 

were centered and scaled prior to analysis. Regression coefficients and p-values were used to infer 

the strength and direction of correlations among ABB occurrence and environmental covariates in 

the model. The influence of each observation on model parameters (leverage) was assessed 

graphically using the ‘glm diag plots’ and ‘influence measures’ functions from the R package boot 

(Canty and Ripley 2014). We focused on the Cook’s D and hat statistics. High leverage observations 

were removed to avoid a small number of points having a large pull on the predictions produced. 

The random forest model was implemented using the R package “randomForest” (Liaw and 

Wiener 2002). Random forest is a machine learning algorithm that produces ensemble predictions 

from a large number of classification trees trained on bootstrap samples of the data. We used 10,000 

trees in our model. To build each tree, the algorithm first selected four predictors at random and 

searched for a threshold that could be applied to one of them to best separate our samples into ABB 



presence versus absence sites. The best predictor and threshold were retained as the first node in the 

tree, and the algorithm moved to the next node in each branch (i.e., above and below the selected 

threshold) to randomly select a new set of four predictors to assess. We included all 16 predictors in 

the random forest model because the algorithm handles correlations among predictors. Model fit was 

assessed based on the “out-of-bag” classification error rate. Out-of-bag error rates are produced by 

the random forest algorithm by making predictions at each site using only those trees in the model 

that did not include that site in their training data (see Breiman 2001 for more). These error rates are 

considered conservative estimates that reflect expected error when extrapolating the model to new 

sites within the study area. The importance of predictors was assessed based on decreases in the Gini 

index (a measure of homogeneity in predicted presence and absence bins) resulting from random 

permutations of each predictor (Breiman 2001, Liaw and Wiener 2002).  

To compare fit between the random forest model and the logistic regression, the area under 

curve (AUC) statistic was calculated using the R package ROCR (Sing et al. 2005). AUC is a 

measure of how well predicted probabilities of the ABB occurrence fit our presence-absence 

observations. It is a threshold-independent fit statistic, meaning that we do not arbitrarily select a 

threshold for inferring presence or absence based on predicted probabilities of occurrence. We used 

AUC to compare model fit between our logistic regression and random forest models. AUC greater 

than 0.8 is considered a good fit (Franklin 2010). We identified a threshold for each model to 

convert probabilities of occurrence into binary presence-absence predictions that balanced false 

positive and false negative rates using R package ROCR (Sing et al. 2005). 

To validate the model and to test the models’ transferability to new regions (both GLM and 

random forest), we assessed predictive performance at 151 new sites in 2016.  We converted 

predicted probabilities of ABB occurrence to discrete presence-absence predictions using the 



thresholds identified above that balanced rates of false negative and false positives.  Predictor 

variables for validation sites were collected using the same GIS process described above. 

Results 
Of the 456 trap sites, 177 sites were positive, with a total of 1,201 ABB captured (Fig. 1). 

Both models had relatively good fits to the data within our study area.  The logistic regression model 

had an AUC of 0.83 and a non-significant chi-square deviance test (p  =  0.529). Five false negative 

trap sites were removed due to high leverage based on Cook’s D and hat statistics. This is not 

surprising based on previous studies that have shown five percent or more beetles present in an area 

cannot be caught even under ideal conditions after five trap nights (Butler et al. 2013). The random 

forest model had an AUC of 0.82 and an out-of-bag classification error rate of 25.6%. A threshold of 

0.4 to convert probabilities of occurrence to discrete presence-absence predictions balanced the false 

positive and false negative rates for both models. The predicted distributions of ABB from the two 

models also agreed closely (Fig. 2).   

Although both models fit relatively well within our study area, neither model performed well 

outside of our study area (47% error rate; Fig. 3).  The random forest model had far better predictive 

accuracy than logistic regression within the study area at sites with original training data (Fig. 3).  It 

should be noted that predictions in Fig. 3 are from the full random forest model, whereas AUC for 

random forest (above) were more conservative assessments based on “out-of-bag” model 

predictions.    

The importance of predictors in each model were noticeably different, except that minimum 

average winter temperature (twinter) was always a strong predictor. For the random forest model the 

most important predictors (Fig. 4) were minimum average winter temperature, average precipitation 

(which was negatively correlated with minimum average winter temperature), clay, which was 



correlated with sand and silt, grasslands which were negatively correlated with crops, and roads. In 

the logistic regression, minimum average winter temperature and percent coverage of wet-grasslands 

had significant positive relationships with the presence of ABB, while the presence of water and 

forest had significant negative relationships (Table 2, Fig. 5).  

Discussion 
 

This study represents the first model created specifically for predicting occurrence of ABB in 

the northwestern limit of its known current range. Our results showed minimum average winter 

temperature, which was not included in either the Loess Canyons or Sandhills models, as the 

strongest single predictive factor in both the random forest and linear regression models (McPherron 

et al. 2012; Jurzenski et al. 2014). The average minimum winter temperature was obtained for the 

average from 1950-2000. Correlation with warmer average winter temperatures may suggest that 

areas with a lower amount of temperature fluctuation during the winter months increase the 

likelihood of ABB occurrence along with areas with a warmer climate. The Northern Plains lacks 

large bodies of open water; however, the Ogallala Aquifer is close to the surface (McMahon et al. 

2007). The areas with highest likelihood of ABB occurrence in both the random forest and 

generalized linear models are also close to the surface groundwater from the Ogallala Aquifer 

(McMahon et al. 2007). This would suggest that minimum average winter temperature may be 

acting as a surrogate for proximity to subsurface water rather than minimum average winter 

temperature alone and may relate to avoidance of overwintering desiccation (Bedick et al. 2006).  

This correlation between ABB occurrence and proximity to subsurface water may also partly 

explain the differences in habitat association between Nebraska and Oklahoma populations of ABB. 

Lomolino and Creighton (1996) noted that in its southern range, the ABB appeared to be a forest 



specialist. The results of this study contradict their finding because ABB had negative correlations 

with forest and open waters, which were often surrounded by trees in this study region. The 

correlation may be another product of an association of Nebraska ABBs with the Ogallala Aquifer as 

a source of soil moisture and temperature stability. ABBs in Oklahoma cannot access aquifer 

moisture and likely depend on forestation and tree cover to help retain soil moisture (Lomolino and 

Creighton 1996; Mcmahon et al. 2007; Walker and Hoback 2007). ABBs present in the Loess 

Canyons were also found to associate with water features and trees, and in these areas, the Ogallala 

Aquifer is deep underground and inaccessible to the beetles (Mcmahon et al. 2007; McPherron et al. 

2012). 

Precipitation was a strong predictor of ABB occurrence in the random forest model, which is 

in agreement with Jurzenski et al. (2014) who found precipitation to be the strongest predictive 

factor. ABB was negatively associated with clay in the random forest model, which also agrees with 

the Sandhills model. In the Sandhills, ABBs appear to prefer a more sand dominant soil texture, but 

will avoid areas without trace amounts of silt and clay as the soil is likely unstable for maintaining a 

brood chamber (Jurzenski et al. 2014). In contrast, the Loess canyon soil is fine silt and sandy soils 

are limited in the region (Bedick et al. 1999; McPherron et al. 2012).  The Sandhills and Loess 

canyons differ in suitability for rowcrop agriculture with the Sandhills having unstable or saturated 

soils that limits crops and the Loess canyons having steep topography.     

The presence of human development represented by crops and roads were negative predictors 

in the random forest model, while areas with high percentages of grassland were positive predictors 

of ABB presence. These findings are consistent with past models and literature that show ABBs to 

avoid areas of developed land such as agriculture (Sikes and Raithel 2002; McPherron et al. 2012; 

Jurzenski et al. 2014). As crop values increase, marginal lands are often developed (Lichtenberg 



1989) leading to both direct (mortality from pesticides, soil disturbance) and indirect (changes in 

vertebrate species, habitat fragmentation) impacts on ABB.   

Areas in this model designated 70 - 100% probability of presence should be considered for 

additional conservation measures and preservation as they may be especially suitable ABB habitat. 

However, caution must be used because the predictive power of this and other predictive occurrence 

models is limited to predicted absence or predicted presence on average over a period of years. This 

long-term trend prediction is not translatable into density estimation data as predictive occurrence 

models are based on long term climate trends and general habitat characteristics. The ABB is a 

highly mobile animal that is able to routinely travel 1.23 km per night, as far as 2.9 km in a single 

night, and up to 10 km in 6 nights (Creighton and Schnell 1998). This gives the ABB the ability to 

move into areas with better conditions in terms of climate, food availability, and mate availability. 

These types of year-to-year fluctuations would render any density models built upon long term 

temperature or precipitation trends unacceptably inaccurate. Thus, future studies contributing to the 

conservation and recovery of the ABB should include population density distribution over an area to 

better manage potential disturbances from land use and climate change coupled with the impacts of 

these changes on vertebrates used as food and reproductive resources. 

Future studies should also seek to utilize or generate detailed distribution data of not only the 

ABB but also common carrion sources. Carrion availability is likely the single most important factor 

in determining presence of ABBs, but due to the lack of fine scale distribution data across a broad 

range of possible carrion sources, such modeling efforts remain out of reach at the time of this study. 

While the of the passenger pigeon (Ectopistes migratorius L.) and subsequent loss of suitable carrion 

source has been widely implicated as a driving force in the endangerment of ABB, the wide-scale 

suppression and loss of black-tailed prairie dog (Cynomys ludovicianus Ord) towns has not been 



suggested as a contributing factor to the loss of ABB. Populations of black tailed prairie dogs are 

currently about 2 percent of their historical population size (Summers and Linder 1978). Black-tailed 

prairie dog towns support a rich diversity of vertebrates as potential carrion sources of appropriate 

size for use by ABBs, but such an association has yet to be properly evaluated (Sikes and Rathel 

2002; Whicker and Detling 1988; Lomolino and Smith 2003). 
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Tables. 
 

Table 1. Predictive variables used in the logistic regression (GLM) and random forest (RF) models to 
create distribution maps for American burying beetle in northeastern Nebraska and South Dakota.  
 

GLM RF Covariate Description Citation 

 
• precip Average annual precipitation 1950-2000 Hijmans et al. 2005 

• • twinter Avg. min. winter temperature 1950-2000 Hijmans et al. 2005 

• • tsummer Avg. summer temperature 1950-2000 Hijmans et al. 2005 

• • sand % sand in top soil horizon USDA 2006 

 
• silt % silt in top soil horizon USDA 2006 

 
• clay % clay in top soil horizon USDA 2006 

• • road Road density in 2011 (km / km²) USDC 2011 

 
• hwy Highway density in 2011 (km / km²) USDC 2011 

• • develop % coverage of developed areas Homer et al. 2015 

 
• crop % coverage of crops Homer et al. 2015 

 
• hay % coverage of hayfields Homer et al. 2015 

• • water % coverage of open water Homer et al. 2015 

• • grass % coverage of grasslands Homer et al. 2015 

• • wetgrass % coverage of wet prairies Homer et al. 2015 

• • wetland % coverage of wetlands Homer et al. 2015 

• • forest % coverage of forests Homer et al. 2015 

 

  



Table 2.  Regression coefficients for each predictor in the logistic regression model of American 
burying beetle occurrence in northeastern Nebraska and South Dakota.  Asterisks indicate statistical 
significance when alpha = 0.05 (*) or alpha = 0.01 (**). 

Coefficient Estimate SE p 
 

(Intercept) 0.812 0.132 < 0.001 ** 

tsummer 0.084 0.151 0.579 
 

twinter 1.25 0.146 < 0.001 ** 

sand 0.07 0.138 0.61  
develop -0.041 0.145 0.779 

 
road -0.169 0.151 0.265  
grass 0.201 0.15 0.179  
wetgrass 0.378 0.146 0.01 ** 

water -0.605 0.293 0.039 * 

forest -0.75 0.216 < 0.001 * 

 

 

 

 

 

 

 

 

 

 

 

 



Figures. 
 

Figure 1. Study area and recovery data for Nicrophorus americanus in Nebraska and South Dakota 
(2005-2015). 
 

 

  



Figure 2. Model predictions throughout study area.  Color schemes use a probability of occurrence of 
0.4 as the threshold to distinguish a presence versus an absence site because this balances the rates of 
false positives and false negative in both models of ABB probability of occurrence. 

 

  



Figure 3.  Assessment of model prediction accuracy inside and outside the original study area. 
Predictions inside the study area are for the sites used to fit the model, while predictions outside the 
study area are new sites.  The random forest model had better predictive accuracy within the study area.  
Both models performed poorly outside the original study area when predicting probability of occurrence 
of ABB.   



Figure 4.  Importance of predictor variables in the random forest model of American burying beetle 
occurrence in northeastern Nebraska and South Dakota. 

 

  



Figure 5. Partial regression plots of significant predictors in the logistic regression model for American 
burying beetle occurrence in northeastern Nebraska and South Dakota. 
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