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Chapter 1. INTRODUCTION 

1.1 BACKGROUND 

With the evolution of precast/prestressed concrete bridge I-girders comes greater structural 

capacity and ability to span lengths of up to 200 ft. Figure 1-1 shows the evolution of cross section 

of typical concrete bridge I-girders from the standard AASHTO girders to PCI Bulb Tee girders, 

and recently to wide and thin top flange I-girders (e.g. NU girders). Precast/prestressed concrete 

I-girders with wide and thin top flanges have unique characteristics compared to the other concrete 

girders. The wide and thin top flange provides an adequate platform for workers, shorter deck 

span, and reduced girder weight. While the wide and thick bottom flange accommodates a large 

number of prestressing to improve the section capacity, the wide and thin top flange improves 

girder stability during construction and reduces the tendency to side sway when long spans are 

used. 

 

FIGURE 1-1: CROSS SECTIONS OF STANDARD AASHTO GIRDERS (LEFT) AND NU GIRDERS (RIGHT) 
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NU girders are one of the early examples of I-girder with wide and thin top flange. These 

girders were developed in the mid-1990s and have been extensively used since then. Although the 

examples presented in this Report are using NU girders, all deck removal methods, conclusions, 

and recommendations apply to other concrete I-girders with wide and thin top flange. 

 

1.2 PROBLEM STATEMENT 

Despite the advantages of concrete I-girders with wide and thin top flange, several 

challenges could be faced during deck removal operations as the top flange is more susceptible to 

damage than it is in conventional AASHTO and bulb tee girders. There are no guidelines, 

specifications, or experience on deck removal for this generation of I-girders. Therefore, there is a 

need to investigate different deck removal methods and evaluate their impact on girder  condition 

and performance. Furthermore, there is a lack of research on the efficiency and cost effectiveness 

of different deck removal methods as well as their impact on the environment.  

 

1.3 OBJECTIVES 

The objective of this project is to investigate different deck removal methods and their 

impact on the structural performance of precast/prestressed concrete I-girders with wide and thin 

top flange. More specifically, different saw cutting and jackhammering techniques are investigated 

in terms of the resulting damage to the girder, duration, cost, and impact on the environment. 

 

1.4 REPORT ORGANIZATION 

This report is organized into six chapters as follows:  
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Chapter 1: presents background information, problem statement, research objectives, and 

Report organization. 

Chapter 2: reviews the literature on existing deck removal methods and most common 

practices currently used by state DOT’s.  

Chapter 3: presents the findings of the field investigation performed on the Camp Creek 

Bridge. 

Chapter 4: gives a brief introduction to cost analysis of deck removal techniques. 

Chapter 5: presents the analytical investigation performed. A proposed deck removal 

method is analyzed for two bridge examples. 

Chapter 6: shows the experimental investigation and validation of the analytical work. The 

specimen preparation, testing, and test results for the proposed method will be presented.  
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Chapter 2. LITERATURE REVIEW 

2.1 PUBLICATIONS 

NCHRP Report 407 discusses the rapid replacement of bridge decks and states that 

methods for deck replacement do not affect only the duration and the cost of the project, but also 

the performance of the supporting structure. Equipment that can be used to remove an old deck 

can be pneumatic breakers, saws, drills, breakers, splitters, crushers, and blasting charges. The 

main limitations are the accessibility of the elements to be removed, removal time frame, and 

environmental and noise restrictions. The improper application of the aforementioned equipment 

can result in some damage that affect the performance of the structure (Tadros & Baishya, 1998). 

One way of deck removal is saw-cutting the deck into small pieces that are manageable to 

lift and transport. Micro-cracking in the girder’s top surface was observed when pneumatic 

hammers are used. Damage to the top flange can be extensive when rig-mounted breakers, 

wrecking balls, and blasting charges are used. New techniques, such as chemical splitters and 

cutters, have been used infrequently, (Tadros & Baishya, 1998). 

The province of Alberta in Canada has its specifications for bridge construction. Jack 

hammers heavier than 14 kg (30 lb) and chipping hammers heavier than 7 kg (15 lb) are not 

allowed to be used for full depth repair of bridge decks (Alberta Ministry of Transportation, 2010). 

2.2 SURVEYS 

2.2.1 NEBRASKA DEPARTMENT OF ROADS (NDOR) SURVEY  

A questionnaire was sent to the state DOTs in order to investigate all the possible methods 

according to the DOT’s experience. Most of the DOTs practices were saw cutting between the 

girders then picking the deck and then jack hammering on top of the girders to remove the 
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remaining part of the deck. Hydro-demolition was suggested by many states, however, with this 

method, it gets challenging to control the water with the concrete according to EPA requirements. 

A list of the 10 DOTs that responded to the survey and their responses are shown in Table 2-1. 

Of the 10 states that responded to the survey, there were 4 states that practice hydro-

demolition. From these 4 states, the response was that hydro-demolition is a noisy and costly 

removal method with environmental control issues however low risk of damage. The state of 

Florida mentioned, if labor cost is low jack hammering is used, and if labor cost is high, hydro-

demolition is preferred. Also from the response gathered, all states practice conventional saw 

cutting and jack hammering practices. 

The use of pneumatic hammers attached to a mini-excavators or backhoe is a practice used 

by many states for the first half depth of the bridge deck. The use of pneumatic hammers is more 

economical but risky, the operators need to be very careful not to damage the girder top flange. 

The remaining concrete down to the girder top flange is removed using hand chippers and small 

jack hammers. Contractors typically attempt to bid this method first, such as in the state of 

Pennsylvania, rather than to hand remove the full depth of the deck. The cost is almost reduced by 

33% when pneumatic hammers are used. The cost of removing with a combination of pneumatic 

hammering and hand chipping is around $600-$700/c.y., whereas the cost of using only hand 

chipping is $900-$1000/c.y.  

Also from the DOT’s response to the survey, the debonded strip at the top flange edge is a 

good starting place for longitudinal saw cutting and easy lifting of deck panels. Florida DOT’s 

mention to vertical saw cut 2 in. inside top flange and lift deck panels with crane. The Florida DOT 

also recommends to slope saw cut longitudinally at flange edge so the deck wedges itself after 

cutting and until it is lifted out.  
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TABLE 2-1: DOT'S RESPONSE TO THE SURVEY (1/2) 

 

 

No. State Contact Experience ResultsMethods Used/Recommended for Deck Removal on Bulb-Tee Girders

Hydro-demolition

Saw cutting removal of deck sections between beams

None

Less probable damage and slow but can be easier when 

good access is provided (false floor on bottom flange)

Faster but had more top flange damage than jackhammer

None

Backhoe with a pneumatic hammer                                      

Saw cutting a few inches beyond the edge of the top flanges, then, use chipping

hammer to remove the deck above the top flanges

Minnesota

Small jackhammers

New Mexico

Indiana

Pennsylvania Saw cut the deck and parapet as in the previous method. Machine break and

then hand demolition over the entire width of the beam. Leave slabs hanging

from some rebars. Torch pan angle welds. Engage slab grab bucket and cut

remaining bars. Only chip and free enough length to stay within the lift capacity

of the excavator.

First method is used if slabs can be pulled free from SIP clips. Second method is

used if slab pans are not pulling free.

Saw cut deck with diamond saw at approximately 10 ft intervals transversely.

Plunge cuts through parapets at same intervals. Break concrete over beam

stirrups using mini-excavator with a small hydraulic hammer for half depth and

chipping hammers for the reminder. Remove slab using a Gradall excavator with

a slab grab bucket. The same procedure is applied to parapets but they need to

be lifted with cables.

Not Specified

Small track mounted pneumatic hammer above the top flange

Hand held cutting and jack hammer removal above the top flange

Steel trowel finish and 6" bond breaker are applied to the newly developed I-

beam that has 4 ft wide top flange.

Yes, BT-54 

girders

Paul Rowekamp 

(651) 366-4484

Fast, noisy, and costly because of water control

Slow (1 cft/hr), less noisy, and economical

Ray M. Trujillo

raymond.trujiilo

@state.nm.us

Tom Macioce

(717)787-2881 

James Colonies 

(317) 467-3964

More economical but risky. Operations need to be 

watched closely to ensure that SIP pan clips are not 

damaging the flanges when pulled out

Most contractors bid this method and try the first one. 

Hand chipping over the entire beam top is very expensive 

($900-$1000 /cy). Combination of machine and hand is 

probably ($600-$700/cy). Hammering is very noisy.

 Safety is an issue. Longitudinal fall protection will need 

to be installed. 

Yes

Yes

Break some of the top flange.

Care needs to be given as the deck removal can break 

off the thin flanges fairly easy.

1

2

3

4
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TABLE 2-1: DOT'S RESPONSE TO THE SURVEY (2/2) 

 

No. State Contact Experience

9 California
Susan E. Hida

(916) 227-8738
No

10 Missouri

Gregory E. 

Sanders

(573) 526-0245  

No

None

Contractor had to repair beam top flange in many 

locations.Yes, Not Bulb 

Tee Girders

Kevin Pruski

(512) 416-2306
5

6

7

8

Oregon
Crain Shike

(503) 986-3323
No None

No methods are recommended at the meantime

Debonding 8" wide strips at the top flange is a good start

Julius F. J. 

Volgyi

(804) 786-7537

Texas

Virginia No

Results

None

Methods Used/Recommended for Deck Removal on Bulb-Tee Girders

Conventional jack-hammer methods

Saw cut between girders and remove deck sections by crane

Hydro-blasting of concrete over top flanges to below top layer of deck

reinforcement and 1' strips from edge of top flange to top of top flange of girder

Small pneumatic hammers (15-20 lbs.) for removal of deck concrete below top

reinforcement in the 2 ft wide center strip

Hydro-demolition with controlling the depth of removal

None

Recommend full depth saw-cutting outside the limits of the top flange and high 

pressure water blasting to remove the concrete deck inside the limits of the top 

flange to prevent damage to the pre-cast bulb-tee girders.

Florida
The bonding action over the 2 in. strip occasionally 

produce minor spalls on the beam flange when vertical 

saw cutting is used.

Concrete over beam flanges is removed using small jack hammers or 

hydroblasting depending on the cost. Hydroblasting can be controlled in a way 

that gouging the top flange is not a problem.

If labor cost is low, jack hammer is used. If labor cost is 

high, hydroblasting is preferred. They both work well.

Deck between beams is removed by either vertical saw cutting 10 ft sections 2 

in. inside the top flange and lifting with a crane, or sloped saw cutting over the 

beam flange tip so the deck wedges itself after cutting until it is lifted out.

Yes
Steven Plotkin 

(904) 360-5501

Superstructure removal may be more feasible and economical option. 

Debonding more of the top flange will certainly help in deck removal.
None
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2.2.2 IOWA STATE UNIVERSITY (ISU) SURVEY  

A national survey was conducted by the Iowa State University Bridge Center, and a total 

of 28 states responded on the methods they practice for concrete and steel bridge deck removal. 

The criteria that methods were evaluated were based on performance, time, cost, noise, and safety. 

The results of the survey taken are summarized in this section. 

Table 2-2 shows deck removal methods currently used by the 28 states that responded to 

the national survey. A description of tools used in each method is given.  

 

TABLE 2-2: EQUIPMENT AND TOOLS USED FOR DIFFERENT METHODS 

 

 

For deck removal and re-use of the girders, three methods are considered; saw cutting, 

breaking, and hydro-demolition. Table 2-3 gives a generic comparison of these three methods for 

the criteria mentioned. Although hydro-demolition has low risks of damage to the girders, it ranks 

at more costly than other methods and more dangerous for the operator. Saw cutting and jack 

hammering are more cost effective, however can also see higher damage to the girders. 
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TABLE 2-3: EVALUATION OF DECK REMOVAL METHODS 

 

 

2.3 ISU RESEARCH 

ISU Bridge Center has conducted a research on the shear capacity of three different types 

of shear connectors with varying levels of deck removal. Three different types of shear connectors 

welded to I-beams were tested for shear capacity and behavior of the connection with the testing 

variable being different levels of removed concrete; 50%, 75%, and 100%.  The three different 

types of shear connectors are standard shear studs, c-channel connector, and the angle with welded 

bar connector. The testing consisted of 27 specimens; three specimens for every variation of 

concrete removal and type of shear connector. The test setup is shown in Figure 2-1. 

Saw Cutting Breakers (Jackhammering) Hydrodemolition

Cost Moderate Moderate to Low High

Duration Moderate to Low Moderate to Low Moderate

Safety Moderate to High Moderate to High Moderate

Noise Moderate High High

Risk of Damage to Steel Girders Moderate to High High None to Low

Risk of Damage to AASHTO Girders Moderate to Low Moderate to Low Low

Risk of Damage to Bulb-T Girders Moderate Moderate Low
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FIGURE 2-1: ISU SHEAR CONNECTOR TEST SETUP 

 

It should be noted that no specific height and width dimensions of the concrete around the 

connector were used to classify 50%, 75%, or 100%, but instead were classified by weight. 

Figure 2-2 shows the different types of shear connectors used in testing. The different type of shear 

connectors used are shear studs, c-channel connectors, and an angle with a welded bar connector. 
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FIGURE 2-2: ANGLE + BAR, C-CHANNEL, AND SHEAR STUD CONNECTORS (COURTESY OF ISU BRIDGE CENTER) 

 

Specimen forms were made by casting the “new” deck around the shear connectors with 

existing concrete on shown in Figure 2-3 and Figure 2-4.  
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FIGURE 2-3: SPECIMEN FORMING (COURTESY OF ISU BRIDGE CENTER) 

 

 

FIGURE 2-4: ISU PUSH-OFF TEST SETUP (COURTESY OF ISU BRIDGE CENTER) 

 

Specimen failure mode is shown in Figure 2-5. All of the shear connector types had the 

same resultant failure mode, which is shearing off the connector at the deck to girder interface.  
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FIGURE 2-5: SHEAR STUD CONNECTOR FAILURE MODE (COURTESY OF ISU BRIDGE CENTER) 

 

The results of testing the different connectors with varying concrete deck removal levels 

of 50%, 75%, and 100% are shown in Figure 2-6 through Figure 2-8. From the graphs, there is no 

correlation between the level of deck removal and the behavior of the connection. Therefore, it can 

be concluded that the amount of concrete removal around the shear connectors does not adversely 

affect the behavior of the connection. 

 

FIGURE 2-6: LOAD VS AVERAGE DISPLACEMENT FOR SHEAR STUDS (COURTESY OF ISU BRIDGE CENTER) 
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FIGURE 2-7: LOAD VS AVERAGE DISPLACEMENT FOR C-CHANNEL (COURTESY OF ISU BRIDGE CENTER) 

 

 

FIGURE 2-8: LOAD VS AVERAGE DISPLACEMENT FOR ANGLE + BAR (COURTESY OF ISU BRIDGE CENTER) 
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2.4 WORKSHOPS 

The University of Nebraska-Lincoln (UNL) hosted a workshop on concrete deck removal 

methods for concrete I-girder on November 16, 2012. Bridge contractors, owners, and researchers 

discussed effective deck removal methods, procedures, and future tasks in this research project. 

 

  

2.4.1 DECK REMOVAL BETWEEN GIRDERS 

For deck removal between girders, the methods are determined by environmental 

restrictions. The most cost effective would be to break the deck panels down to the ground after 

saw cutting using a hydraulic hammer mounted on backhoe. However, this method is not permitted 

with an underlying waterway, highway, or railroad. If there are environmental restrictions, 

transverse and longitudinal saw cutting followed by lifting deck panels with crane or slab crab will 

be used. Concrete deck panels are usually 6’ x 12’ in dimension. 

 

2.4.2 DECK REMOVAL ON TOP OF GIRDERS 

The use of hydro-demolition, hand operated jack hammering, and small impact jack 

hammers mounted on excavators are recommended. With different methods available in removing 

the deck on top of girders, both efficiency and cost need to be investigated. 

 

2.4.3 PROPOSED METHODS FOR RESEARCH 

Four methods were proposed in removing the deck on top of the girders. These methods 

include: 1) sloped saw cutting part of the top flange then forming a new deck; 2) milling part of 

the old deck down to shear connectors and pouring a new deck on top of it; 3) vertical saw cutting 

down to girder flange and jack hammering the concrete around shear connectors; and 4) saw 
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cutting deck just outside of shear connectors followed by milling old deck down to shear 

connectors then pouring new deck on it. Conducting cost analysis of these methods need to be 

investigated, as well as the cost for replacing the entire superstructure (girders and deck) versus 

removing deck only. In some cases, the cost of precast/prestressed bridge girders per square foot 

can be close to the cost of deck removal. 

Method 1- Sloped Saw Cut Top Flange 

A saw-cut machine with a blade that could pivot to a certain angle is needed so it can 

perform sloped cut without the need for the costly and time-consuming operation of using the 

guided rail with wall saws. In this case, using the sloped saw to cut through the top flange can be 

good alternative if the structural capacity and stability of the girder when the top flange width is 

reduced is not a problem. Figure 2-9 shows sketch of this alternative where the shaded area is jack 

hammered and the new deck is then formed similar to forming decks on steel girders. The new 

deck can have a haunch to provide adequate cover for the exposed steel in the girder top flange. 

This alternative does not require the debonded zone, but the ability of cut deck panel to carry the 

weight of construction equipment needs to be investigated. 

 

FIGURE 2-9: SLOPED SAW CUT ALTERNATIVE 
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Method 2- New Deck On Top of Old Deck 

Another alternative is shown in Figure 2-10. Mill the top 2-3 in. of the deck over the girder, 

cut and lift deck panels between girders, keep the old deck around the shear connector, pour the 

new deck on top of it, and connect old and new deck to achieve composite action (using new 

connectors on the top or the side of the old deck). This solution will result in about 5 in. increase 

in deck elevation. 

 

FIGURE 2-10: ALTERNATIVE METHOD IN POURING NEW DECK ONTOP OF OLD DECK 

 

Method 3- Vertical Saw Cut at Deboned Zone  

A third alternative is shown in Figure 2-11. Saw cut the deck panels vertically at the 

debonded zone, use mini-excavator to break the concrete above the girder, and use heavy excavator 

to break the deck between girders. Avoid using 15-kip and 30-kip jack hammers because using 

these small jack hammers is very time consuming and costly.  
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FIGURE 2-11: VERTICAL SAW CUT AT DEBONDED ZONE ALTERNTAIVE 

 

Method 4- Vertical Saw Cut outside Shear Connectors 

A fourth alternative is shown in Figure 2-12. Saw cut deck transversely and longitudinally 

around shear connectors. Grind the top 2-3 in of the deck over the shear connectors (highway 

grinder was suggested as a way of milling that 2-3 in.). Remove the remaining concrete around the 

shear connectors (using small jack hammers or manual hydro-blasting). Finally, lift (pop) the 

slabs/panels between the girders, which should easily break the bonded area. 
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FIGURE 2-12: ALTERINATIVE METHOD VERTICAL SAW CUT OUTSIDE SHEAR CONNECTORS 

2.4.4 EFFECTIVE SEQUENCING OF TASKS 

To minimize cost and unnecessary movements, each sequence should be planned. The 

amount of manual work done should be minimized as should the idle time of equipment. Also, 

saw cutting, jack hammering, and panel lifting should be sequenced so that lifting equipment will 

be supported on deck panels that are not yet cut and jack hammering is done before lifting adjacent 

panels. Discussed in the workshop, the recommended sequence of deck removal tasks include: 

1. Saw-cut deck transversely for the full width every 10-12 ft. 

2. Saw-cut deck longitudinally at the debonded zone over the girder lines. 

3. Jack hammer/hydro-blast on top of the two girder lines. 

4. Lift panels using crane or hydraulic backhoe to take away deck in between girders. 

5. Repeat tasks 1-4 for the following girder lines. 

6. For the last two girders, cut, jack hammer, and lift panels section by section. 



28 

Chapter 3. FIELD INVESTIGATIONS 

3.1 CAMP CREEK BRIDGE 

The purpose of this investigation is to experimentally evaluate the effectiveness and 

efficiency of different deck removal methods and their impact on the supporting girders. For deck 

removal between girders, three main methods were attempted using different locations for 

longitudinal saw cutting. For removal on top of girders, three methods were also attempted with 

different combinations of saw cutting and jack hammering. 

Figure 3-1 shows the sectional elevation, plan, and cross section of the Camp Creek Bridge 

over I-80 in Lancaster County, NE. The bridge is a 170 ft long, 42 ft wide, three span (52.5-65-

52.5 ft) bridge that has four NU1100 girders per span. The bridge was built in 1996 and is being 

demolished after only 15 years due to its functional obsolesce. This bridge is considered one of 

the early bridges made of precast/prestressed NU girders. It is also the first bridge with NU girder 

to have its deck removed. Figure 3-2 gives a chart of deck removal methods implemented on the 

Camp Creek Bridge. 
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FIGURE 3-1: ELEVATION AND CROSS SECTION VIEWS OF THE CAMP CREEK BRIDGE 

 

 

 

FIGURE 3-2: ORGANIZATIONAL CHART OF THE METHODS IMPLEMENTED FOR DECK REMOVAL 
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3.1.1 EVALUATION OF REMOVAL METHODS: BETWEEN THE GIRDERS 

This procedure involved saw cutting the deck transversally into six 8-ft long panels while 

having three different longitudinal saw cuts as shown in Figure 3-3. Below lists the three different 

methods used for the longitudinal saw cuts: 

1. Saw cutting the deck 6 in. from the edge of the top flange of the girder towards the 

inside of the girder, which is close to the end of the debonded zone. 

2. Saw cutting the deck 2 in. from the edge of the top flange of the girder towards the 

inside of the girder, which is the standard practice used in conventional bridge 

girders. 

3. Saw cutting the deck at the edge of the top flange with a 60˚ angle to simplify panel 

lifting after saw cutting. 

 

FIGURE 3-3: IMPLEMENTED METHODS BETWEEN GIRDERS 

 

Figure 3-4 and Figure 3-5 give the panel number that corresponds to the method attempted 

on the panel. Two panels were saw cut and lifted for each method. 
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FIGURE 3-4: PLAN VIEW OF THE METHODS IMPLEMENTED FOR DECK REMOVAL IN-BETWEEN GIRDERS 

 

FIGURE 3-5: THE DECK WHILE SAW CUTTING, SHOWING THE PANEL NUMBERS COMPARED TO THE PLAN 

VIEW OF THE PROPOSED METHODS 

 

3.1.1.1 METHOD 1 AND 2: VERTICAL CUT PANELS 

Method 1 includes cutting panels #1 and #2 at 6 in. from the edge of the girders, while 

method 2 includes cutting panels #3 and #4 at 2 in. from the edge of the girder. All panels were 

transversely saw cut for their full depth (8 in.) at 8 ft spacing. The haunch was 1 in. at the ends of 

the girders, causing for a deck depth of 9 in. at these locations. All cuts were located at the 

debonded zone of the girder top flange. 

8' 8' 8' 8' 8' 8'

9'8'-5"8' 8'-6"

6"

8'-2"

3"

12'

4'

4'

Sloped Cut

Panel #2

Sloped Cut

Panel #1
3" Overlap

Cut Panel #2

3" Overlap

Cut Panel #1

6" Overlap

Cut Panel #2

6" Overlap

Cut Panel #1
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First, 14 in. diameter blades were used for two passes to create 4-4.5 in. deep cut. Second, 

18 in. diameter blades were used for one pass to create 6-6.5 in. deep cut. Last, 24 in. diameter 

blades were used to create 7.5 – 8 in. deep cut. Figure 3-6 shows the three blade sizes used for saw 

cutting. Each pass took about 1 minute to cut 8 ft long. Three 1/8 in. blades were used in each cut, 

making for a 3/8 in. wide cut to simplify panel lifting. 

 

 

Two brackets were anchored at the centerline of the panel at 1 ft away from panel edges. 

Panels were lifted from one bracket first to break the bond between the panel and the deck, and 

then the two brackets were used to lift the panel completely (Figure 3-7). The two panels with 2 

in. overlap and the first panel with 6” overlap were easily lifted. 

 

FIGURE 3-7: LIFTING ONE SIDE OF THE PANEL TO BREAK IT LOOSE 

FIGURE 3-6: (FROM LEFT TO RIGHT) 14 IN. DIAMETER, 18 IN. DIAMETER, AND 24 IN. DIAMETER BLADES 
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The second 6 in. overlap panel caused difficulties when the crew was performing the first 

lift to break the bond between the panel and the remaining part of the deck. The haunch being 

deeper at that part of the bridge was the reason for the difficulty. The lifted edge was hammered 

extensively on both sides; however, it could not separate the panel from the deck. A hammer and 

a chisel were used to break the haunch from the rest of the deck (Figure 3-8). Since the chisel could 

not go deep enough in the concrete due to the thicker haunch, a 60 lb jack hammer was used to 

break the deck attached to the haunch (Figure 3-9). As the crane was lifting the edge of the panel 

and the workers at the same time jack hammering on the panel, the bolts holding the bracket to the 

concrete slipped out of the panel and the location of the bracket had to be changed. The panel 

required a lot of wiggling until it was completely lifted. Despite the rough actions the deck has 

seen, the flange did not show any signs of cracks or damage. 

 

FIGURE 3-8: BREAKING PANEL FROM DECK USING A HAMMER AND A CHISEL 
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FIGURE 3-9: JACK HAMMERING THE DECK ATTACHED TO THE PANEL HAUNCH 

3.1.1.2 METHOD 3: SLOPED CUT PANELS 

Panels #5 and #6 were longitudinally saw cut at a 60̊ slope at the edge of the top flange. 

For sloped cuts, a single 24 in. diameter blade was used to create 6 in. deep cut in two passes, then 

a single 30 in. diameter blade was used to complete the full cut in one pass. This procedure took 

about 20 minutes for 8 ft long cut (Figure 3-10). Another option was attempted to save the time of 

changing the blades, which was to use a 30 in. diameter blade to make the full depth cut in three 

passes. Even though the cutting process is easier, the process of installing the frame for the blade 

and anchoring it to the deck was time consuming; especially with the frame extending a maximum 

of 10 ft only, so for any extra length, the frame would need to be removed and re-anchored in the 

new location. 
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The two sloped saw cut panels where lifted first, showing no problems at all (Figure 3-11). 

Lifting those two panels was determined to be the easiest and fastest way due to the sloped cuts , 

however the saw cutting required more time. The panels were lifted without causing any damage 

to the girder. 

 

FIGURE 3-11: LIFTING THE SLOPED CUT PANEL 

FIGURE 3-10: THE TWO 24 IN. AND 30 IN. DIAMETER BLADES USED IN THE SLOPED CUTS 

(LEFT) AND A SIDE VIEW OF THE SLOPED BLADE MOUNTING (RIGHT) 
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3.1.1.3 DECK PEELING 

The overhang deck in Figure 3-12 was peeled from the supporting girder making use of 

the 8-in wide debonded strip at the edges of the top flange. A  CAT 330DL excavator with a 40 

kip capacity was used to lift the edge of the overhang deck. Despite the powerful shaking of the 

deck, the girder and the deck stayed connected. It was then suggested to push down on the edge of 

the deck so as to cause tension at the top of the deck and crack it. The deck cracked when it was 

pushed down, however the crack did not go deeper than the location of the top reinforcement mat. 

Unlike the rest of the overhang, the west edge of the overhang was saw cut longitudinally; as a 

result, the deck was broken off the flange at the saw cut line when it was pulled up. The side of 

the deck was broken; however, the steel reinforcement did not break (Figure 3-13). 

 

 

FIGURE 3-12: THE CAT 330DL EXCAVATOR PEELING THE OVERHANG DECK 
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FIGURE 3-13: PART OF THE DECK THAT WAS PEELED OFF 

The deck was then jack hammered transversely to form 6 ft long panels to make it easier 

to get the deck peeled (Figure 3-14). However, the edge of the flange broke when the deck was 

jack hammered on top of. When the panel was then lifted by the excavator, the edge of the flange 

broke more and the process was stopped. Deck peeling proved to be a vigorous, inefficient, and 

damaging method. 

 

FIGURE 3-14: JACK HAMMERING THE DECK USING BACKHOE 
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3.1.2 EVALUATION OF REMOVAL METHODS: ON TOP OF THE GIRDERS 

Referring back to the chart in Figure 3-2, three methods were used to evaluate the most 

efficient way for jack hammering the deck on top of the girders. The plan view of the methods 

implemented is shown in Figure 3-15. Three different combinations of longitudinal saw cutting 

and jack hammering were attempted and labeled JH1, JH2, and JH3. The rate of removal was 

recorded and presented for each method. 

 

 

FIGURE 3-15: PLAN VIEW OF ALL THE JACK HAMMERING METHODS USED 

 

3.1.2.1 METHOD 1 (JH1) 

The first method was to saw cut the deck around the shear reinforcement forming a 14 in. 

wide by a 5 ft long rectangle for the full depth of the deck (Figure 3-16). To jack hammer this strip, 

first, a 30 lb jack hammer was used down to the top reinforcing mat, then, a 15 lb jack hammer 

was used down to the top of the girder. This process took two hours for a two-man crew to finish 

it. The rate of deck removal for this method is 0.343 mhr/ft2.   
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FIGURE 3-16: 14” WIDE X 5” LONG FULL DEPTH JACK HAMMERED STRIP 

 

3.1.2.2 METHOD 2 (JH2) 

In the second method, a 4 ft - 10 in. long by 3 ft - 2 in. wide rectangle was saw cut then 

jack hammered (Figure 3-17). Jack hammering was performed using 60 lb and 30 lb jack hammers, 

which is heavier than the specified 30 lb and 15 lb jack hammers for deck removal on top of the 

girders. The 60 lb jack hammer was used down to the bottom reinforcing steel mat, then the 30 lb 

one was used down to the top flange of the girder. It took 4 hours for the two man crew to finish 

the jack hammering process. The girder was slightly damaged when the 30 lb jack hammer slipped 

off and hit the top of the girder. The rate of deck removal for this method is 0.2613 mhr/ft2. 
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FIGURE 3-17: THE 4’10” X 3’2” JACK HAMMERED STRIP 

3.1.2.3 METHOD 3 (JH3) 

The third method was to cut 4 ft - 10 in. long and 3 ft - ½ in. wide rectangle and remove 

concrete using 30 lb and 60 lb jack hammers. This method had additional saw cuts. Saw cuts were 

made directly outside the shear connectors and away from the shear connectors (Figure 3-18). This 

method was significantly more efficient as the broken deck came out in bigger chunks, hence, took 

less time and effort. The two man crew needed 1 hour and 38 minutes to finish. The girder had 

only one location where the jack hammer hit the top surface and caused a 5-½ in. x 2-½ in. piece 

that was about ½ in. deep to be chipped off the girder. The rate of deck removal for this method is 

0.111 mhr/ft2.  

 

FIGURE 3-18: THE 4’10” X 3’1/2” JACK HAMMERED STRIP 
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Based on the observations made in this investigation, the following lessons were learned: 

 For wide and thin top flange I-girders, longitudinal saw cuts can be made at 6 in. from 

top flange edge and achieve the same efficiency in lifting deck panels as with the panels 

with 2 in. overhang. With the saw cuts further inside the de-bonded zone, but not passed 

the debonded zone, a larger portion of deck will be lifted away, leaving less concrete on 

top of girders to jack hammer. If accessible, multiple blades side-by-side should be used 

in creating a wider vertical saw cut, for ease of lifting deck panels.  

 With current equipment and tools used for sloped saw cutting, the process in having to re-

assemble the frame proved to be very inefficient. Although lifting deck panels was very 

easy, this method should not be considered. Deck peeling also should not be considered 

because of the high risk in damaging girder top flanges. 

 For deck removal on top of girders, the more longitudinal saw cuts made proved to be 

much more efficient with concrete breaking in larger chunks. With more longitudinal and 

transverse saw cutting, the time to jack hammer is cut down.   
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3.2 CHAPPELL BRIDGE 

The purpose of this investigation is to evaluate the ease of performing deck removal 

methods in a bridge with stay-in-place forms that need to be re-used for the new deck. Most of 

bridge decks in Nebraska are currently formed using stay-in-place forms. Observations are made 

on the ease of deck removal between girders, and damage to stay-in-place forms. 

Constructed in 1969, the Chappell Bridge interchange re-decking operations started after 

44 years of being in service. The four-span bridge consists of precast/prestressed concrete 

AASHTO girders with a cast-in-place deck. Saw cutting and jack hammering methods were used 

to remove the deck. First, longitudinal saw cuts were made 2 in. from the top flanges of the girders 

on each side. The longitudinal cuts were to the full depth of 7-½ in. Next, transverse saw cuts were 

made at 7 ft. increments. The saw cut locations can be seen as the red lines in Figure 3-19 and 

Figure 3-20. Center to center span from girder lines is 5 ft. 6 in. Chappell Bridge spans 48’, 88’-

6”, 88’-6”, and 48’ from abutment 1 to pier 1, pier 1 to pier 2, pier 2 to pier 3, and pier 3 to abutment 

2, respectively. 

 

 

FIGURE 3-19: I-80 CHAPPELL BRIDGE CROSS SECTIONAL VIEW AND DIMENSIONS 
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FIGURE 3-20: FOUR SPAN CHAPPELL BRIDGE PLAN VIEW WITH LOCATION OF SAW CUTS 

 

Transverse saw cuts through the epoxy coated rebar were made starting above the middle 

bridge pier, the deck panels between the girders were lifted off the stay-in-place forms. The deck 

panels easily lifted away from the stay-in-place forms (Figure 3-21). For the deck on top of the 

girder, a large jack hammer mounted on an excavator was used to get the majority of concrete 

broken up and then finished with smaller jack hammers to minimize damaging the girders and 

shear connectors (Figure 3-22). 

Damage occurred with the use of the large jack hammer mounted to the excavator. 

Figure 3-23 shows the minor damage that occurred to the top flange of the girders, as well as a 

half dozen shear connectors. The broken straps between the stay-in-place forms will be replaced 

before casting the new deck. This operation totaled 1300 man hours with 12 crewmen working 9 

 



44 

hour days to remove a 275 ft x 18.58 ft x 7.5 in. deep deck. The rate of deck removal with a 12 

crewmen on this project is 0.254 mhr/ft2.  

 

FIGURE 3-21: DECK PANEL LIFTED FROM STAY-IN-PLACE FORMS BETWEEN GIRDERS 

 

FIGURE 3-22: JACK HAMMERING ABOVE THE GIRDERS 
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FIGURE 3-23: DAMAGED SHEAR CONNECTORS AND TOP FLANGE OF THE GIRDER 

From this investigation, it was learned that the same deck removal methods presented in 

the first field investigation can be applied to on a bridge with stay-in-place forms. The deck panels 

between girders were lifted with ease and minor damage was seen on the stay-in-place forms. Only 

the straps for the stay-in-place forms needed to be replaced. 

 

3.3 SALT CREEK BRIDGE 

The purpose of this investigation is to evaluate deck removal techniques used when 

environmental restrictions exist. The I-80 Salt Creek Bridge over the Salt Creek waterway in 

Lincoln, NE was demolished in mid-march of 2013. Due to the environmental restrictions, the 

bridge deck needed to be removed in slabs by saw-cutting and lifting panels. The bridge has three 

spans from abutment No.1 to pier No.1, pier No.1 to pier No.2, and pier No.2 to abutment No.2; 

105 ft, 140 ft, and 105 ft, respectively. The bridge has five girder lines with a deck width of 30 ft. 

The bridge consists of steel I-beam girders with a non-composite cast-in-place concrete deck. 
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The non-composite action between deck and girders made removing the deck much easier. 

First, a jack hammer mounted to an excavator was used to remove the overhang of the deck from 

the rail. Jack hammering was the major contribution to concrete chunks that fell down to the 

waterway underneath. Saw cutting longitudinally at the center of the deck above the center line 

girder was done for the whole length of the bridge. Next, transverse saw cuts were made every 5 

ft. The non-composite action simplified the removal process, and deck panels easily li fted in 5 ft 

by 15 ft segments. 

 

FIGURE 3-24: PLAN VIEW WITH DIMENSIONS OF SALT CREEK BRIDGE 

 

FIGURE 3-25: CROSS SECTIONAL VIEW WITH GIRDER SPAN AND THICKNESS OF DECK 
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The location of transverse and longitudinal saw cuts made can be shown as the red dashed 

lines in Figure 3-24 and Figure 3-25. The 5 ft by 15 ft concrete slabs were lifted with the slab crab, 

seen in Figure 3-26. Small concrete chunks fell to the ground from jack hammering the guard rail 

(Figure 3-27). 

 

 

FIGURE 3-26: SLAB CRAB LIFTING DECK SLAB FROM WEST TO EAST 

 

FIGURE 3-27: CONCRETE PIECES FELL TO THE WATERWAY UNDERNEATH 

The lessons learned from this investigation were how to maximize efficiency with a non-

composite bridge and when environmental restrictions exist. Longitudinal saw cutting is not 



48 

restricted by girder line with a non-composite bridge. Deck panels can be saw cut in very large 

segments, only restricted by the lifting capacity of the excavator/crane.  

 

3.4 PACIFIC ST. AND 106TH STREET BRIDGE 

The purpose of this investigation was to observe sequencing of tasks in an area with high 

traffic volume and environmental restrictions. Also, deck removal methods were evaluated when 

steel I-girders with short steel stud shear connectors are used. The Pacific St. Bridge at 106th Street 

is located over the Big Papillion Creek. The operations were not only restricted environmentally, 

but also conducted on one side of the bridge, while the other side was open to two-way heavy 

traffic. Figure 3-28 shows the plan view of Pacific St. Bridge.  

 

FIGURE 3-28: PLAN VIEW AND DIMENSIONS OF PACIFIC ST. BRIDGE 

 

This project included deck replacement and widening of the bridge. The bridge is 240 ft 

long, 83’-8” wide, and has three spans; 70 ft, 100 ft, and 70 ft, respectively. The composite bridge 
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consists of W36 steel girders. Furthermore, because of environmental restrictions, the deck panels 

needed to be lifted away from the waterway. For re-decking, the steel girders will be reused after 

sandblasting and repainting them. 

The sequencing of tasks was important for efficiency and to minimize the duration of 

closed roadway. After clearing the area, closing off the street, and moving equipment into place, 

the contractor first set up safety lines for workers. The second task performed was to longitudinally 

saw cut for the full depth along the full length. Two longitudinal saw cuts were made at each girder 

line, each saw-cut made in the center of the outer most shear stud to the center shear stud. The 

shear connectors used for composite action are three short shear studs spaced along the full length 

of the girders. 

After longitudinal saw cutting, the overhang on each side of the barriers or guard rail were 

jackhammered and broken off. This was the biggest contributor of concrete chunks that fell to the 

ground below. Next, transverse saw cuts were done along the full width at an increment of 5 ft, 

shown in Figure 3-29. 

 

FIGURE 3-29: GIRDER LAYOUT AND SAW CUT LOCATION OF PACIFIC ST. BRIDGE 
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Next, the deck panels were lifted using a large crane. The crane’s capabilities allowed 

lifting panels at mid-span of the bridge. The deck panels popped off from the shear connectors that 

were still embedded in the deck. For efficiency, a jack hammer attached to a backhoe was used to 

jackhammer most of the concrete above the girder. However, the remaining concrete that stayed 

around the shear connectors needed to be removed and cleaned up using hand chippers. The girders 

were then able to be removed for further sandblasting and repainting. The total deck removal 

process took two weeks to complete.  

 

FIGURE 3-30: WORKERS USING HAND CHIPPERS TO REMOVE CONCRETE AROUND SHEAR STUDS 
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FIGURE 3-31: VIEW LOOKING WEST AFTER COMPLETED DECK REMOVAL 

 

The lessons learned from this investigation were the sequencing of tasks required for 

efficient and smooth deck removal. The environmental restrictions and high traffic area dictated 

the methods and equipment used. 
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Chapter 4. COST DATA 

The purpose of this chapter is to obtain cost data for deck removal practices. This includes 

the cost of saw cutting, jack hammering, and hydro-demolition for deck removal. The costs is 

obtained from national average cost data and also local contractors and NDOR contracts. 

The national average cost is obtained from the RSMeans Heavy Construction Cost Data 

publication, which has been engaged in publishing construction cost in North America for more 

than 70 years (Spenser, 2010). The national average cost obtained from the 2010 cost data is shown 

in Table 4-1, which includes 10% overhead and profit. 

 

TABLE 4-1: RSMEANS 2010 COST DATA FOR DECK REMOVAL METHODS 

 

Hawkins Construction Co. is a local bridge contractor who provided estimates on bridge 

deck removal methods. These methods include break and fall, longitudinally saw cutting and 

lifting deck panels, and hand removal with jack hammering on top of girders. The break and fall 

method is used when no environmental restrictions exist and when bridge girders are not to be re-

decked. The cost of this method averages $0.99/S.F. The saw cutting and lifting of panels between 

girders is used when environmental restrictions exist. This method averages $3.16/S.F. The jack 

hammering method is used to remove the deck on top of the girder for re-decking purposes. This 

method averages $15.73/S.F, which is almost five times the cost of saw cutting due to the large 

Total Incl O&P Unit

Hydro-demolition 4000 psi, 8" depth $15.13 S.F.

Concrete Slab Saw Cutting Concrete Slabs with 8" thickness $7.34 L.F.

Break up into small pieces, 

minimum reinforcing $2.38
S.F.

Average reinforcing $3.56 S.F.

Maximum reinforcing $7.14 S.F.

Job Type

Concrete Jack Hammering for 8 in. 

deck (excludes saw cutting, torch 

cutting, loading or hauling)
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number of man-hours involved. Figure 4-1 shows the cost of each method in dollars per square 

foot of deck. These estimates were provided by averaging the cost incurred in several projects by 

the same contractor. 

 

FIGURE 4-1: ILLUSTRATION OF COST VS. TYPE OF METHOD USED IN DECK REMOVAL 

 

The obtained cost data is applied to Camp Creek Bridge presented in the previous chapter. 

The three methods used for deck removal on top of the girders are analyzed as following: 

1. Removal of a 14 in. wide x 5 ft long x 8 in. deep strip with saw cuts directly outside 

shear connectors. This is an area of 5.83 ft2 of deck to jack hammer. 

2. Removal of a 3 ft – 2 in. wide x 4 ft – 10 in. long x 8 in. deep strip with saw cuts at 

1 ft away from stirrup legs. This is an area of 15.30 ft2 of deck. 

3. Removal of a 3 ft – ½ in. wide x 4 ft – 10 in. long x 8 in. deep strip with saw cuts 

at directly outside shear connectors and also saw cuts at approximately 1 ft away 

from stirrup legs. This is an area of 14.70 ft2 of deck. 
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Table 4-2 shows the total cost for each method estimated using the national average prices 

Costs of deck removal varies depending on location and access to job site. 

 

TABLE 4-2: COST ANALYSIS OF CAMP CREEK METHODS 

 

 

This table indicates that Method 1 is the most cost effective method, while Method 3 is 

the least. This is probably due to the very small area used in this analysis. As the deck area 

increases, the relative cost of saw cutting to jackhammering will change, which may alter this 

conclusion.   

 

 

 

 

  

Amount to Saw 

Cut (L.F.)

Cost of Saw 

Cutting

Area of Deck 

to Jack 

Hammer (S.F)

Cost of Jack 

Hammering Total Cost

Method 1 10.00 $73.40 5.83 $20.73 $94.13

Method 2 9.67 $70.98 15.30 $54.40 $125.38

Method 3 19.33 $141.91 14.70 $52.27 $194.17
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Chapter 5. ANALYTICAL INVESTIGATIONS 

5.1 INTRODUCTION 

The purpose of this investigation is to analytically evaluate the effect of top flange width 

on the flexural capacity, horizontal shear capacity, and deflection of the girder during construction 

and at service. This investigate aims to presents whether cutting/damaging the wide and thin top 

flange of bridge concrete I-girders has a significant effect on the structural performance of the 

bridge. A reduction in top flange width by saw cutting will significantly reduce the amount of deck 

to be jackhammered, which consequently reduces removal cost. Because cross bracing placed 

between girders after erection is not removed with the deck, the lateral stability of the girder is not 

a concern even when the top flange width is significantly reduced. Therefore no lateral stability 

analysis is conducted in this investigation. 

In this chapter two examples are investigated; a bridge with low span-to-depth ratio (14.5) 

and bridge with high span-to-depth ratio (33.53). For each example, calculations are made to 

compare the flexural capacity, horizontal shear capacity and deflection of cut flange versus full 

flange girder. 

5.2 COMPARISON OF GEOMETRIC PROPERTIES 

Saw cutting the top flange reduces the area, inertia, and section modulus of I-girders. The 

geometric properties of NU girders with a full flange and cut flange are shown in Table 5-1. 

Geometric properties are calculated assuming reduction of top flange by 50%, or a longitudinal 

cut at 1 ft from flange edge on either side as shown in Figure 5-1. 
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TABLE 5-1: NU GIRDER FULL FLANGE AND CUT FLANGE PROPERTIES 

 

 

 

FIGURE 5-1: NON-COMPOSITE CROSS-SECTION OF A FULL FLANGE AND CUT FLANGE SECTION 

 

Section
Height 

(in.)

Web 

Width 

(in.)

Top 

Flange 

Width 

Bottom 

Flange 

Width 

A 

(in^2)

Yb 

(in.)

Yt 

(in.)
I (in^4)

Sb 

(in^3)

St 

(in^3)

NU 900 35.4 5.9 48.2 38.4 648.1 16.1 19.3 110,262 6849 5713

NU 1100 43.3 5.9 48.2 38.4 694.6 19.6 23.7 182,279 9300 7691

NU 1350 53.1 5.9 48.2 38.4 752.7 24.0 29.1 302,334 12597 10389

NU 1600 63.0 5.9 48.2 38.4 810.8 28.4 34.6 458,482 16144 13251

NU 1800 70.9 5.9 48.2 38.4 857.3 32.0 38.9 611,328 19104 15715

NU 2000 78.7 5.9 48.2 38.4 903.8 35.7 43.0 790,592 22145 18386

NU Girder Properties - Full Flange Section

Section
Height 

(in.)

Web 

Width 

(in.)

Top 

Flange 

Width 

Bottom 

Flange 

Width 

A 

(in^2)

Yb 

(in.)

Yt 

(in.)
I (in^4)

Sb 

(in^3)

St 

(in^3)

NU 900 35.4 5.9 24.1 38.4 583.5 14.1 21.3 86,550 6151 4058

NU 1100 43.3 5.9 24.1 38.4 629.9 17.2 26.1 145,744 8493 5576

NU 1350 53.1 5.9 24.1 38.4 687.5 21.2 32.0 245,547 11610 7685

NU 1600 63.0 5.9 24.1 38.4 745.7 25.3 37.7 378,927 14960 10059

NU 1800 70.9 5.9 24.1 38.4 792.1 28.7 42.2 510,897 17777 12118

NU 2000 78.7 5.9 24.1 38.4 837.9 32.2 46.5 665,007 20672 14292

NU Girder Properties - Cut Flange Section
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Table 5-2 lists the percent of reduction in all geometric properties of non-composite NU 

girder when the top flange width is reduced by 50%. The range of reduction in area is from 7.3% 

to 10%, while the range of reduction in moment of inertia is from 15.9% to 21.5%.  

TABLE 5-2: EFFECT OF CUTTING TOP FLANGE ON NU GIRDER SECTIONS 

 

5.3 EXAMPLE 1: ANALYSIS OF CAMP CREEK BRIDGE 

5.3.1 BRIDGE PARAMETERS 

The Camp Creek Bridge over I-80 in Lancaster County, NE, is analyzed using full and cut 

flange girders. The bridge has 3 spans with 4 girder lines per span. Table 5.3  

Girder cross-sectional dimensions for composite sections are shown in Figure 5-2. The 

bridge has girder spacing of 12 ft. Camp Creek bridge parameters are shown in Table 5-3. 

Section

Percent 

Area 

Reduction

Percent 

Reduction 

in Centroid 

(Yb)

Percent 

Increase in 

Centroid 

(Yt)

Percent 

Reduction 

in Inertia

Percent 

Reduction in  

Section 

Modulus 

(Sb)

Percent 

Reduction 

in  Section 

Modulus 

(St)

NU 900 10.0 12.6 10.5 21.5 10.2 29.0

NU 1100 9.3 12.4 10.3 20.0 8.7 27.5

NU 1350 8.7 11.9 9.8 18.8 7.8 26.0

NU 1600 8.0 10.8 8.9 17.4 7.3 24.1

NU 1800 7.6 10.2 8.4 16.4 6.9 22.9

NU 2000 7.3 9.9 8.2 15.9 6.7 22.3

Effect of Cutting Top Flange on NU Girder Properties
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TABLE 5-3: PARAMETERS OF THE CAMP CREEK BRIDGE 

 

 

Cross-sectional geometric properties of non-composite and composite sections are 

presented in Table 5-4. Composite cross-sections to be analyzed are shown in Figure 5-2. 

TABLE 5-4: FULL AND CUT FLANGE CROSS-SECTIONAL PROPERTIES 

 

Parameter Symbol Unit Value

No. of Girder Lines x - 4

Girder spacing s ft 12

Girder span length L ft 52.5

Girder weight Wt k/ft 0.724

Deck thickness t in. 8

Weight of concrete Wc k/ft^3 0.15

Girder compressive strength fc'girder ksi 8

Deck compressive strength fc'deck ksi 4

Precast Section
Composite 

Section
Precast Section

Composite 

Section

A (in^2) 692 1844 618 1770

Ig (in^4) 180,542 523,623 139,301 521,735

Yb (in.) 19.40 32.90 16.70 32.50

Yt (in.) 23.92 14.48 26.59 14.68

Sb (in^3) 9,306 15,916 8,341 16,053

St (in^3) 7,547 36,174 5,239 35,547

Girder Cross-Sectional 

Property

Girder With Cut FlangeGirder With Full Flange
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FIGURE 5-2: NU1100 GIRDER COMPOSITE CROSS-SECTIONAL DIMENSIONS 

5.3.2 EFFECT OF FLANGE WIDTH REDUCTION ON FLEXURAL CAPACITY AND 

DEFLECTION 

This section outlines the analytical investigation of effect of a reduced flange width on 

flexural capacity. NU1100 girders use 22 - 0.5 in. diameter strands and are tensioned to 75% of 

ultimate stress of 270 ksi. A conservative assumption for prestressing losses of 20% is used. The 

effective prestressing force after all losses is 549 kips. 

Applied moments acting on the girder during construction and at service are analyzed. This 

includes dead load due to girder self-weight, deck-weight, weight due to guardrails, wearing 
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surface, and any contributing dead loads acting on the super structure. Moments from dead loads 

and live load are considered.  

For applied moments due to live load, the HL-93 live load model proposed by AASHTO 

is used. Table 5-5 shows the calculated applied moments due to dead and live loads. There is no 

significant difference in applied moment values due to the reduction of flange width. 

TABLE 5-5: CALCULATED DEAD AND LIVE LOAD MOMENTS 

 

The demand at each phase is calculated using AASHTO LRFD specifications. The strength 

limit state used is Strength I for basic load combination relating to the normal vehicular use of the 

bridge without wind. Load factor for permanent loads, ɤp, is a value of 1.25 (AASHTO, 2007).   

The demand is compared against girder capacity calculated for composite and non-

composite sections. Strain compatibility concepts are used to calculate full flange girder capacity 

and cut flange girder capacity under each loading phase. The structural demand and capacity are 

compared in Table 5-6. The demand presented is at mid-span during construction and under service 

loads.  
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TABLE 5-6: CAPACITY/DEMAND COMPARISON OF FULL FLANGE AND CUT FLANGE GIRDER SECTIONS 

 

The percent reduction in nominal flexural capacity due to cutting of the flange is 8% of 

non-composite section during construction. There is no reduction in capacity after deck and girder 

become a composite section.  

The deflection due to live load moment at mid-span is compared for the full flange section 

and cut flange section. The composite section inertia values are relatively the same for the full 

flange and cut flange girder cross-sections, which gives close values for service load deflections. 

Deflection values are all within the limit of l/400.  

As presented in the table, the flexural capacity of the cut flange girder highly exceeds the 

demand at construction, which is the critical loading stage. This is the case for the 52 ft – 6 in. long 

span girder, whereas a NU1100 girder can span much longer.  

Figure 5-3 shows a graph of the capacity/demand ratio at each critical stage for the full 

flange section and cut flange section. The ratio in all loading stages is greater than 1.0, which is 

considered adequate. 
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FIGURE 5-3: CAPACITY/DEMAND RATIO FOR NU1100 AT ALL LOADING STAGES 

Because of the short span, the girder does not experience moment values close to the 

nominal capacity. However, this may not always be the case. 

Analytical steps are taken in satisfying serviceability requirements. Stresses at the top and 

bottom fibers are checked at different loading stages. Stress values are checked under construction 

loads and under service loads.  

AASHTO LRFD Specifications limit states are used. Maximum compression is checked 

under Service 1 limit states and maximum tension is checked under Service III limit states. The 

difference between Service I and Service III limit states is that Service I has a limit state of 1.0 for 

live load whereas Service III has a limit state of 0.8 for live load.  

From Table 5.9.4.2.1-1 and Table 5.9.4.2.2-1 compressive stress limits and tensile stress 

limits are obtained. For compressive stress, the limit due to the sum of effective prestress, 

permanent loads, and transient loads and during shipping and handling is 0.60*𝑓𝑐
′ (AASHTO, 
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2007). For tensile stress, the limit in prestressed concrete after losses for fully prestressed 

components in bridges, which include bonded prestressing tendons and are subjected to not worse 

than moderate corrosion conditions, shall be taken as 0.19 ∗ √𝑓𝑐
′ (AASHTO, 2007). 

Table 5-7 summarizes the results of the analysis. As presented in the table, the 

serviceability requirements assuming uncracked sections are met. 

TABLE 5-7: MIDSPAN CRITICAL STRESSES FOR 52 FT LONG NU1100 GIRDER 

 

The results obtained for critical stresses for Service I limit state and for Service III limit 

state and are all within the limit for an uncracked section.  

 

5.3.3 EFFECT OF FLANGE WIDTH REDUCTION ON HORIZONTAL SHEAR CAPACITY 
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This section analyzes the effect on cutting girder top flange on horizontal shear. The 2012 

AASHTO Bridge Specifications are followed for calculations. By reducing flange width, the area 

of concrete engaged in horizontal shear transfer, Acv , is reduced.  

For the full flange girder, 𝐴𝑐𝑣  is the full concrete surface area of the flange minus the 

debonded area. The effective width, 𝑏𝑣, is shown below. The effective depth, 𝑑𝑣, is the same for 

both cases. Acv  is reduced by 25% when the flange is cut to a 2 ft width. 

TABLE 5-8: PARAMETERS FOR HORIZONTAL SHEAR ANALYSIS ON NU1100 

 

Parameters 

Full Flange 

Girder 

Cut Flange 

Girder 

𝑏𝑣 32 in. 24 in. 

𝑑𝑣 44.7 in. 44.7 in. 

𝐴𝑐𝑣 1430 in2 1073 in2 

 

The stirrup configuration of the Camp Creek girders is shown in Figure 5-4. The maximum 

interface reinforcement spacing is 2-#3 stirrups every 12 in. at mid-span and minimum spacing of 

2 in. at the ends of the girder. Stirrup reinforcement area for 2#3 bars is 0.22 in2. 

 

FIGURE 5-4: NU1100 STIRRUP CONFIGURATION 

Nominal horizontal shear capacity values are calculated for distances from the mid-span in 

increments of 2 ft. Stirrup reinforcement area for 2#3 bars is 0.22 in2. The results are obtained and 

graphed in Figure 5-5. From the results, it is apparent that when cutting through the top flange, 

some horizontal shear capacity is lost due to a reduction in top flange width. The average percent 

loss in horizontal shear capacity over 24 ft from mid-span is 20.75%.  
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FIGURE 5-5: EFFECT OF CUTTING TOP FLANGE ON HORIZONTAL SHEAR CAPACITY FOR NU1100 

 

5.4 EXAMPLE 2: OXFORD SOUTH BRIDGE 

5.4.1 BRIDGE PARAMETERS 

The second example is of bridge utilizing NU1350 girders. The span chosen for analysis is 

140 ft long. The span-to-depth ratio is 33.53. With more than double the span-to-depth ratio from 

the previous example, this is a much less conservative case. The same analytical procedure is taken 

in analyzing the effect of cutting the top flange on flexural capacity, horizontal shear capacity, and 

mid-span deflection. The composite cross-sections of the NU1350 full flange and cut flange 

section is shown below in Figure 5-6. The bridge parameters are shown below in Table 5-9. 
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TABLE 5-9: PARAMETERS OF OXFORD SOUTH BRIDGE 

 

Cross-sectional geometric properties for the case of a NU1350 girder with a full flange and 

cut flange section are shown in Table 5-10. In this example, the larger girder has slightly less of a 

reduction in properties than in the previous example. Composite cross-sections to be analyzed are 

shown in Figure 5-6. 

TABLE 5-10: FULL AND CUT FLANGE CROSS-SECTIONAL DIMENSIONS 

 

Parameter Symbol Unit Value

No. of Girder Lines x - 4

Girder spacing s ft 9

Girder span length L ft 140

Girder weight Wt k/ft 0.785

Deck thickness t in. 8

Weight of concrete Wc k/ft^3 0.15

Girder compressive strength fc'girder ksi 9

Deck compressive strength fc'deck ksi 4

Precast Section
Composite 

Section
Precast Section

Composite 

Section

A (in^2) 749.3 1613.3 675.3 1539.3

Ig (in^4) 298,886 751,710 235,405 744,047

Yb (in.) 23.7 41.6 20.9 41.3

Yt (in.) 29.4 19.5 32.5 20.0

Sb (in^3) 12,611 18,070 11,263 18,016

St (in^3) 10,159 38,505 7,251 37,207

Girder Cross-

Sectional Property

Girder With Full Flange Girder With Cut Flange
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FIGURE 5-6: NU1350 GIRDER COMPOSITE CROSS-SECTIONAL DIMENSIONS 

5.4.2 EFFECT OF FLANGE WIDTH REDUCTION ON FLEXURAL CAPACITY AND 

DEFLECTION 

The Oxford South Bridge is a 5 span bridge with 4 girder lines per span. Span lengths are 

110 ft, 110 ft, 140 ft, 110 ft, and 110 ft respectively from the south abutment to the north abutment.  
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NU1350 girders are tensioned using 34-0.7 in. diameter strands and 6-0.6 in. diameter 

strands. With an assumption for prestress losses of 20%, the effective prestressing force is 1830 

kips. 

Dead load moments from the girder self-weight and from the deck are accounted for 

applied moments at construction. Dead load from guardrail, wearing surface, and live load using 

AASHTO HL-93 model are accounted for applied moments at service. The values for applied 

moments are in Table 5-11 below. For live load moment, the distribution factor for the full flange 

section and cut flange section are the same, despite the reduced inertia, area, and centroid of the 

section. The case for an interior bridge girder is assumed. 

TABLE 5-11: CALCULATED DEAD AND LIVE LOAD MOMENTS 

 

For the full flange section, the demand is 4,438 k-ft at construction and 10,832 k-ft at 

service. The capacity of the full flange section and cut flange section are compared against the 

demand in Table 5-12. At the critical stage at construction, the capacity/demand ratio is at 1.37 for 

a full flange section and 1.13 for the cut flange section.  
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TABLE 5-12: CAPACITY VS. DEMAND OF FULL FLANGE AND CUT FLANGE GIRDERS 

 

The effect of cutting the top flange reduced the girder flexural capacity by 20.81% during 

construction. After the deck and girder become a composite section, there is no difference in 

capacity with a full flange or cut flange section. The critical stage in using this method is during 

re-decking processes with the weight of fresh concrete during construction. Table 5-6 graphs the 

capacity/demand ratio for the girder in this example, showing the ratio above 1.0 as adequately 

designed. 

For mid-span deflection calculations, the values are the same for composite sections under 

live load moments at service. Deflection values are all within the limit of l/400.  
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FIGURE 5-7: CAPACITY/DEMAND RATIO FOR NU1350 (OXFORD BRIDGE) 

This extreme example shows that the deck removal method of cutting the top flange to 

reduce manual labor may not always be adequate for re-decking. Contractors must always take 

precautions and checks must always be made. 

For serviceability requirements, AASHTO LRFD Specifications limit states are used. 

Maximum compression is checked under Service 1 limit states and maximum tension is checked 

under Service III limit states. For compressive stress, the limit during construction loading stages 

shall be taken as 0.45*𝑓𝑐
′ , and at final loading conditions as 0.60*𝑓𝑐

′ (AASHTO, 2007). For tensile 

stress, the limit shall be taken as 0.19 ∗ √𝑓𝑐
′ (AASHTO, 2007). The critical service stresses exceed 

the limit for an uncracked section (Table 5-13).  
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TABLE 5-13: MIDSPAN CRITICAL STRESSES FOR 140 FT LONG NU1350 GIRDER 

 

Service I limit state for compressive stresses is exceeded in the top flange at construction 

and service due to a reduction in flange width.  

5.4.3 EFFECT OF FLANGE WIDTH REDUCTION ON HORIZONTAL SHEAR CAPACITY 

This section analyzes the effect of horizontal shear on Oxford South Bridge NU1350 

girder. The analytical steps are the same as in the previous section, the only difference is the 

effective depth, 𝑑𝑣, is 53.81 in. instead of 44.7 in. and the stirrup distribution is slightly different. 

However, the effective width,  𝑏𝑣 , is reduced the same amount by cutting the top flange, and 

therefore the engaged area 𝐴𝑐𝑣 is reduced by 25%.  
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TABLE 5-14: PARAMETERS FOR HORIZONTAL SHEAR ANALYSIS ON NU1350 

 

Parameters 

Full Flange 

Girder 

Cut Flange 

Girder 

𝑏𝑣 32 in. 24 in. 

𝑑𝑣 53.81 in. 53.81 in. 

𝐴𝑐𝑣 1430 in2 1073 in2 

 

 The stirrup configuration of the Oxford South Bridge girders is shown in Figure 5-8. The 

maximum interface reinforcement spacing is 2-#3 stirrups every 12 in. at midspan and minimum 

spacing of 2 in. at the ends of the girder. Stirrup reinforcement area for 2#3 bars is 0.22 in2. 

 

FIGURE 5-8: NU1350 STIRRUP DISTRIBUTION TO MIDSPAN OF GIRDER 

Nominal horizontal shear capacity values are calculated for distances from the mid-span in 

increments of 2 ft. The results are obtained and graphed in Figure 5-9. From the results, the average 

percent loss in horizontal shear capacity over 24 ft from mid-span is 21.87%.  
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FIGURE 5-9: EFFECT OF CUTTING TOP FLANGE ON HORIZONTAL SHEAR CAPACITY FOR NU1350 

 

5.5 CONCLUSION 

From the analytical investigations of this chapter, the conclusions are the following:  

1. For a low span-to-depth ratio scenario, a reduction in top flange width is not 

detrimental to girder capacity under service loads. However, there is a 

significant enough difference in capacity in a large span-to-depth ratio scenario 

to be inadequate.   

2. There is a significant reduction in horizontal shear capacity due to flange width 

reduction of 50%, by about 20-22%.  
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Chapter 6. EXPERIMENTAL INVESTIGATION 

The purpose of the experimental investigation is threefold: 

1. Evaluate the effect of the saw cutting/damaging the thin top flange on the girder flexural 

capacity and validating the analytical investigation presented in Chapter 5.  

2. Evaluate the effect of the saw cutting/damaging the thin top flange on the horizontal shear 

capacity of the girder due to reduced interface surface area. Also the effect of partial 

removal of concrete around the shear connected will be evaluated.  

3. Evaluate the efficiency of saw cutting and jackhammering operations to estimate the cost 

and duration of different removal methods. 

 

Two 52 ft long girders were removed from the Camp Creek Bridge in the spring of 2012 

and stored at Concrete Industries (CI) in Lincoln, NE to be used for this experimental 

investigations. The bridge deck was saw cut 8 in. from the edge of the top flange and the 

intermediate and end diaphragms were broken. Cross-sectional view of the bridge and bridge 

layout can be seen in the deck removal field investigation discussed in Section 3.1. Figure 6-1 

shows one of the two NU1100 bridge girders used in the experimental investigation being lifted. 

Figure 6-2 shows the locations of the concrete cores drilled from the girder ends to evaluate the 

effectiveness of the debonding agents used between the girder top flange and the deck to facilitate 

deck removal without damaging the thin top flange. 
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FIGURE 6-1: CAMP CREEK GIRDERS LIFTED USING STRAPS  

 

FIGURE 6-2: VIEW OF GIRDER END AND LOCATION OF TWO CONCRETE CORES 

For each girder, four cores were drilled; two on each side of the two girders. On each side 

of the girders, one core was drilled in the bonded area, and one in the debonded area between the 

deck and the girder, shown in Figure 6-3. The cores taken in the bonded area remained in one 

piece, the cores taken in the debonded area split at the deck to girder interface. The orange-colored 

surface shown in Figure 6-4 is due to the use of debonding agent. Concrete cores were also used 

to estimate compressive strength of the two girders. 
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FIGURE 6-3: CORES TAKEN FROM BONDED ZONE (LEFT) AND FROM DEBONDED ZONE (RIGHT) 

       

FIGURE 6-4: BONDED CONCRETE SUFRACE (LEFT) AND DEBONDED CONCRETE SURFACE (RIGHT)  

 

6.1 SPECIMEN PREPARATION 

6.1.1 SAW CUTTING SEQUENCE 

The first step in preparing the two 52 ft long NU1100 girders for testing is to make 

longitudinal full depth saw cuts. The “full flange girder” was saw cut to the full depth of the deck 

while keeping the full flange intact. The “cut flange girder” was saw cut the full depth of the deck 

and through the flange. The effect of reduced flange width on the flexural and horizontal shear 
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capacities will be determined via testing. The dimensions of the girders with old deck are given in 

Figure 6-5. The deck is 5 ft- 4in. wide and 8 in. thick with an additional 1 in. haunch. The debonded 

zone is 8 in. wide strip from the edges of the 4 ft wide top flange. 

 

FIGURE 6-5: COMPOSITE DIMENSIONS OF GIRDERS TAKEN FROM CAMP CREEK BRIDGE 

 

6.1.1.1 FULL FLANGE GIRDER 

For the full flange girder, saw cuts were made at the end of the debonded zone for the full 

depth of the deck to make the removal of the overhung portions of the deck easy to remove without 

damaging the girder top flange. Saw cutting closer to the shear connectors will minimize the 

amount of jack hammering needed, however removing the bonded deck would have been very 

difficult without damaging the top flange. Therefore, longitudinal saw cuts were made 1 ft – 4 in. 

from the center of the girder on either side. Figure 6-6 shows the location of each saw cut. The 

cuts were made to the full depth of about 9 in. 
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FIGURE 6-6: LOCATION OF LONGITUDENAL SAW CUTS ON GIRDER #1 

 

The 9 in. deep longitudinal saw cuts required 3 passes, cutting down about 2-3 in. per pass. 

Figure 6-7 shows the longitudinal saw cuts being made on the full flange girder. Figure 6-8 shows 

a cross-sectional view after all longitudinal saw cuts were made.  
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FIGURE 6-7: WORKERS MAKING THREE PASSES FOR EACH SAW CUT LOCATION 

 

FIGURE 6-8: FINISHED SAW CUTS (BEFORE END DECK SECTIONS WERE REMOVED) 

6.1.1.2 CUT FLANGE GIRDER 

For the cut flange girder, the saw cuts were made to the full depth of the deck and through 

the top flange. The location of saw cuts was dictated by the width of the saw cutting machine, 

which is 25 in. Therefore, the flange width was reduced from 48 in to 25 in. Figure 6-9 shows the 

location of longitudinal saw cuts on the cut flange girder, which were made 12.5 in. from the center 

of the girder. The cuts were made to a depth of about 1 ft. 
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FIGURE 6-9: LOCATION OF LONGITUDENAL SAW CUTS ON GIRDER #2 

The 12 in deep longitudinal cut required four passes, cutting down about 3 in. per pass. In 

the last pass, a larger blade was required. The blade was switched from an 18 in. diameter blade to 

a 24 in. diameter blade as shown in Figure 6-10. Saw cutting was most difficult when the blade hit 

a longitudinal bar, because the bar would be needed to be cut in the longitudinal direction, which 

slowed down the process. Figure 6-11 shows a cross-sectional view of the cut flange girder after 

saw cutting was completed. The total time required was five hours to finish the saw cutting on 

both girders. Two hours were spent on the full flange girder, and three hours on the cut flange 

girder. 
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FIGURE 6-10: SEPERATION OF DECK AND FLANGE AFTER FALLING DOWN 

 

FIGURE 6-11: FINISHED SAW CUTS FOR CUT FLANGE GIRDER 
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6.1.2 JACK HAMMERING SEQUENCE 

The next step is to remove the deck above the girder and around the shear connectors by 

jack hammering. The jack hammering plan for both girders is to have deck completely removed 

in half of the girder (100% deck removal), and partially removed around the connectors in the 

other half (50% deck removal). The purpose of doing this, is to investigate the effect of deck 

removal level on horizontal shear capacity. By not requiring the contractor to completely remove 

the old deck around the connectors, significant savings in the removal cost and duration could be 

achieved.  

There is no specific volume or dimensions of the concrete deck to leave around the 

connector; jack hammering is not a very precise action and this would defeat the purpose. 

However, it is important to leave some space, about 1-2 in. underneath each stirrup leg. This would 

provide the space for the new deck to latch onto the bar as well as the necessary clearance. Also, 

enough space in-between the shear connectors should be provided to lay transverse reinforcement 

of the new deck. Three workers from a local concrete removal contactor were hired to do this job. 

Observations were made, activity logs were recorded, and different removal methods were 

attempted.  

Figure 6-12 and Figure 6-13 shows a plan view, cross- sectional view, and side view of the 

jack hammering plan with the orange hatched area being the area to jack hammer. The remaining 

deck after saw cutting on the full flange girder is a 2 ft – 8 in. wide, 9 in. deep, and 52 ft long deck. 

And the remaining deck for the cut flange girder is 25 in. wide, 9 in. deep, and 52 ft long. The job 

took five days to complete, with the fifth day being a half day. 
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FIGURE 6-12: JACK HAMMERING PLAN FOR GIRDER #1 
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FIGURE 6-13: JACK HAMMERING PLAN FOR GIRDER #2 
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Two sizes of jack hammers were used. The 90 lb jack hammer was used down to the depth 

of shear connectors. This top 4 in. of concrete took the least time per unit volume to remove. Once 

the shear connectors reached, the 60 lb jack hammer was used to remove the remaining concrete, 

which was much more difficult especially at the girder ends where the spacing between shear 

connectors is small as shown in Figure 6-14. 

 

FIGURE 6-14: DIFFICULT REMOVING CONCRETE UNDER LONGITUDENAL BARS 

 

For the full flange girder, approximately 88 ft3 total volume of concrete deck needed to be 

removed. For the cut flange girder, approximately 62 ft3 needed to be removed. At the end of the 

first day, workers removed approximately 51 ft3 of concrete. This was mostly the volume of 

concrete above the stirrups, shown in Figure 6-15, which is the easiest to remove.  



86 

 

FIGURE 6-15: JACK HAMMERING DOWN TO STIRRUPS 

 

Using the 90 lb jack hammer caused vibration that resulted in minor damages to the sides 

of the top flange as shown in Figure 6-16. Stirrups were also damaged from the blunt force of the 

90 lb jack hammer (Figure 6-17). Few instances caused delays in jack hammering, such as the 

generator shutting off, and the jack hammer getting stuck. 

 

FIGURE 6-16: DAMAGED FLANGE FROM VIBRATION OF 90LB JACK HAMMER 
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FIGURE 6-17: DAMAGED STIRRUP LEGS 

 

At the end of the second day, the crew suggested to saw cut the deck transversely to speed 

up the deck removal with the jack hammer. A hand held saw is used. Transverse saw cuts were 

made every 5 in. for about a 4 in. depth, seen in Figure 6-18 and Figure 6-19. This method is much 

more efficient. The concrete came out easier in bigger chunks. It was especially efficient with 

simultaneous jack hammering and use of electric hand chipper. Jack hammers were used vertically 

from the top of the deck, while electric chipper was used from the side. The concrete came out in 

larger blocks. At the end of the second day, approximately an additional 46 ft3 of concrete had 

been removed. At the end of the third day, the “fully removed” half of the cut flange girder was 

completed, leaving only the “partially removed” half. This is approximately 26 ft3 of concrete. The 

full flange girder had only the concrete around the stirrups for the full length of the girder. 
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FIGURE 6-18: TRANSVERSE SAW CUTTING EVERY 5 IN.  

 

FIGURE 6-19: DEPTH OF SAW CUTS ABOUT 4 IN.; 1 IN. FROM TOP FLANGE 

Deck removal continued with the technique of first transverse saw cutting, then jack 

hammering and chipping. It was specified to leave space underneath the stirrup legs, about 1-2 

in. Figure 6-20 and Figure 6-21 show simultaneous jack hammering and electric chipping while 
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keeping the necessary clearance underneath stirrup legs. At the end of the fourth day, the jack 

hammering plan was completed on the full flange girder. 

 

FIGURE 6-20: LEAVING SPACE UNDERNEATH STIRRUP LEGS, AND REMOVING TRANSVERSE BARS ON FULL 

FLANGE GIRDER 

 

FIGURE 6-21: 1-2 IN. OF SPACE UNDERNEATH STIRRUP LEGS 

On the fifth day, the jack hammering job was completed on the cut flange girder. There 

was damage observed on the top flange of the girder, which can be seen in Figure 6-22. Also, some 

damage to the stirrups, one which completely detached from the flange (Figure 6-23). The total 
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time to finish the last portion of the job, about 25 ft3 of concrete, took 3.5 hrs. A view of the 

prepared NU1100 specimen after saw cutting and jack hammering procedures is seen in 

Figure 6-24. 

 

FIGURE 6-22: DAMAGED FLANGE ON GIRDER #2 

 

FIGURE 6-23: BROKEN STIRRUP LEG 
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FIGURE 6-24: JOB COMPLETED ON OCT 26TH BY NOON 

 

A man-hour log was made for the full flange girder and cut flange girder. The results show 

that by spending 1 extra hour on saw cutting through the top flange, it will save approximately 

20% of the jack hammering on top of the girder ( 

Table 6-1). 

 

TABLE 6-1: SUMMARY OF MAN-HOUR LOG 

 

 

6.2 SPECIMEN TESTING 

The two NU1100 girders were shipped to the structural laboratory at Peter Kiewit Institute 

in Omaha, NE on November 20th, 2013. Since there are no lifting points, girders were handled by 

wrapping lifting chains around the girders and to place them on the supports for flexure testing. 

Full Flange Girder Cut Flange Girder

Saw Cutting 2 hours 3 hours

Jack 

Hammering 60 hours 48 hours

Total MHrs 62 hours 51 hours

Time spent of Manual Labor
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6.2.1 RE-DECKING 

For the full flange girder, a 4 ft wide and 7.5 in. thick deck was formed using plywood 

sheets and threaded rod ties as shown in Figure 6-25 and Figure 6-27. The new deck was reinforced 

transversely in two layers with #5@12 in. and longitudinally with 4#8 at the mid-thickness, which 

is equivalent to two layers of #4@12 in. over 8 ft wide deck.  

 

FIGURE 6-25: TIES WITH PVC PIPE SPACED 3FT APART TO HOLD FORM SIDES  

 

FIGURE 6-26: TOP VIEW OF REINFORCEMENT 
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The deck was poured using 8 ksi self-consolidating concrete (SCC) with 25 in. slump. This 

is equivalent to a 4 ksi concrete for 8 ft wide deck. Figure 6-27 shows the new deck after forms 

have been stripped. 

 

FIGURE 6-27: VIEW OF FULLY COMPOSITE DECK FOR FULL FLANGE GIRDER 

The same procedures were followed for re-decking the cut flange girder. It should be noted 

that two pairs of shear connectors on each half of the girder was cut off from the flange on both 

the fully removed and partially removed halves as shown in Figure 6-29. This was suggested to 

simulate the situation when some shear connectors are damaged during the jack hammering 

process.  

 

FIGURE 6-28: CUT SHEAR CONNECTORS IN PARTIALLY REMOVED SECTION 
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6.2.2 TEST SETUP 

Girders were tested in flexure after the desired concrete compressive strength was 

achieved. The test setup is shown in Figure 6-29. Girders were simply supported on concrete 

blocks and roller supports that are spaced 40 ft on center. Two threaded rods that are 10 ft apart 

were used to anchor the steel loading I-beam to the strong floor. A 400 kip capacity hydraulic jack 

and load cell were used for loading each girder at mid-span. Rotation of the loading frame was 

prevented by using a strap on both sides; straps were anchored into the ground 12 ft from the center 

of the girder on either side as shown in Figure 6-30 

 

FIGURE 6-29: CROSS SECTIONAL VIEW OF TEST SETUP (FULL FLANGE GIRDER EXAMPLE) 
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FIGURE 6-30: ELEVATION VIEW OF TEST SETUP AND SPAN LENGTHS 

 

Each girder was instrumented with four horizontal and two vertical linear variable 

differential transformers (LVDT’s) to measure displacement, one string potentiometer to measure 

deflection at mid-span, and three strain gauges to measure strains at the critical section. Figure 6-31 

show the instrumentations used during testing. A view of the completed test setup on the full flange 

girder is shown in Figure 6-32. 

   

FIGURE 6-31: LVDT’S (LEFT), STRAIN GAUGES (RIGHT) 
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FIGURE 6-32: TEST SETUP ON FULL FLANGE GIRDER 

6.3 ANALYSIS OF RESULTS 

6.3.1 CONCRETE COMPRESSIVE STRENGTH 

The compressive strength testing results of the cores extracted from the girders and the 

cylinders made from the newly poured deck are shown in Table 6-2. These results indicate that the 

measured strength exceeded the specified strength significantly for the new deck. 

 

TABLE 6-2: CONCRETE COMPRESSIVE STRENGTH RESULTS 

 

 

 

Camp Creek Girder 

cored cylinders

Cylinder

4-day 

strength 

16-day 

strength 

7-day 

strength 

18-day 

strength 

Strength recorded 

on 12/12/2013

1 8,897 10,765 9,679 11,052 6,994

2 8,885 11,093 10,052 11,911 7,236

3 8,903 11,209 9,234 11,259 -

Ave. (psi) 8,895 11,022 9,655 11,407 7,115

Full Flange Deck 

poured on Nov 27th

Cut Flange Deck 

poured on Dec 19th
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6.3.2 FULL FLANGE GIRDER TEST 

The full flange girder was tested on December 10th, 2013. Horizontal and vertical LVDTs 

will be referred to as H-NW and H-NE for the horizontal North West and North East LVDTs; and 

as V-N and V-S for the vertical north and south LVDTs. Strain gauges were labeled as deck, top 

flange, and bottom flange strain gauges. The same notations were used for the cut flange girder. 

The full flange girder failed in flexure at an ultimate load of 379 kips and had a cracking load of 

224 kips. The vertical deflection at mid-span was 0.45 in. at the cracking load and 5.83 in. at 

ultimate load. Flexural failure mode is shown in Figure 6-33. 

 

FIGURE 6-33: FAILURE MODE OF FULL FLANGE GIRDER 

The load-deflection curve of testing the full flange girder is shown in Figure 6-34. This 

figure indicates the elastic behavior of the composite girder up to the cracking load; and the 

leveling off of the curve up to the ultimate load. 
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FIGURE 6-34: FULL FLANGE - LOAD VS. DEFLECTION GRAPH 

Figure 6-35 plots strain data at the critical section. This plot indicates the increase in the 

compression strains at the top fibers and tension strains at the bottom fibers up to failure load, 

which demonstrates the composite action of the girder. 

 

FIGURE 6-35: FULL FLANGE - LOAD VS. STRAIN GRAPH  
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The relative displacement data gathered from LVDTs is shown in Figure 6-36 and 

Figure 6-37. These two graphs indicate that horizontal and vertical displacements of the new deck 

relative to the girder are negligible as the maximum value for horizontal displacement is 0.001 in. 

and for vertical displacement is 0.0035 in., which are less than 0.01 in. (minimum acceptable initial 

slip). Furthermore, the displacements of the fully removed half of the girder and the partially 

removed half are identical. This indicates that the level of deck removal around the shear 

connectors does not affect the horizontal shear capacity of the full flange girder.  

 

FIGURE 6-36: HORIZONTAL DISPLACEMENT FOR PARTIALLY REMOVED VS. FULLY REMOVED 
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FIGURE 6-37: VERTICAL DISPLACEMENT FOR PARTIALLY REMOVED VS. FULLY REMOVED 

 

6.3.3 CUT FLANGE GIRDER TEST 

The cut flange girder was tested on January 9th, 2014. The girder failed in flexure; however 

the strands did not rupture as shown in Figure 6-38. The ultimate load was 378 kips and the 

cracking load was 230 kips. The vertical deflection at mid-span was 0.35 in. at the cracking load 

and 5.96 in. at ultimate load as shown in the load-displacement curve plotted in Figure 6-39. Figure 

6-40 plots strain data at the critical section. This plot indicates the increase in the compression 

strains at the top fibers and tension strains at the bottom fibers up to failure load, which 

demonstrates the composite action of the girder. 
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FIGURE 6-38: CUT FLANGE GIRDER FAILURE MODE 

 

 

FIGURE 6-39: CUT FLANGE - LOAD VS. DEFLECTION GRAPH 
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FIGURE 6-40: CUT FLANGE - LOAD VS. STRAIN GRAPH 

 

Figure 6-41 and Figure 6-42 show the horizontal and vertical displacements of the new 

deck relative to the girder. The amount of displacements was negligible as the maximum value is 

0.002 in., which is lower than the minimum acceptable value for initial slip (0.01 in.). Furthermore, 

the displacements of the fully removed half of the girder and the partially removed half are 

identical. This indicates that the level of deck removal around the shear connectors does not affect 

the horizontal shear capacity of the cut flange girder.  
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FIGURE 6-41: HORIZONTAL DISPLACEMENT FOR PARTIALLY REMOVED VS. FULLY REMOVED 

 

FIGURE 6-42: VERTICAL DISPLACEMENT FOR PARTIALLY REMOVED VS. FULLY REMOVED 
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6.3.4 COMPARISON 

Comparing the test results of the full flange girder and cut flange girder indicates that the 

top flange width has no effect on the flexural capacity, which confirms the results of the analytical 

investigation presented in chapter 4. Figure 6-43 shows the load-deflection curves of the two 

girders, while Figure 6.45 and Figure 6.46 plot the measured cracking load, ultimate load, and 

deflection versus predicted ones. This plot indicates that measured values are very close to the 

predicted values, calculated assuming fully composite section. This means that tested girders 

whether full flange, cut flange, with partial deck removal, or with full deck removal behaved as 

fully composite with the new deck. 

 

 

FIGURE 6-43: LOAD VS. DEFLECTION CURVE OF INVESTIGATED NU1100 GIRDERS 
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FIGURE 6-44: BAR GRAPH COMPARING ACTUAL TO PREDICTED LOAD 

 

FIGURE 6-45: BAR GRAPH COMPARING ACTUAL TO PREDICTED DEFLECTION 
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7. CONCLUSIONS 

Based on the results of the field investigations, analytical investigation, and experimental 

investigation presented in this Report, the following conclusions can be made: 

1. Saw cutting, jack hammering, and hydro demolition are the most common methods 

of deck removal for re-decking. 

2. Debonding the edges of the top flange is an effective way for lifting saw cut deck 

panels between girders without damaging the thin top flange of the girders. 

3. The most cost effective method of deck removal is highly dependent on the 

quantity, environmental restrictions, and type of girder and its shear connectors. 

4. Leaving approximately 50% of the old deck concrete around shear connectors does 

not significantly affect the horizontal shear capacity of the new composite section. 

5. The effect of cutting approximately 50% of the girder top flange width on the 

structural performance of the girder is highly dependent on the span-to-depth ratio. 

In girders with low span-to depth ratio, this effect is negligible; however, in girders 

with high span-to-depth ratio, this effect could be significant. Flexural capacity, 

horizontal shear capacity, and deflections should be checked during construction 

and at final stages. 
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8. RECOMMENDATIONS 

Based on the observations made in this project and the outcomes of the literature search 

and analytical and experimental investigations, the following recommendations can be made:  

1. Extend the width of the debonded strip for wide and thin top flange girders, such 

as NU girders, to be at least 12 in. instead of 8 in. as shown in Figure 8-1. The will 

minimize the amount of deck that need to be jackhammered, which is a tedious and 

costly process, and ensure easy lifting of deck panels.  

2. Saw cut deck panels at angles to simplify the deck removal process rather than 

using vertical saw cuts as shown in Figure 8-1. However, pivoted saw cut machines 

are needed to improve the efficiency of this option compared to using the frame 

mounted saws that slow down the process. 

 

FIGURE 8-1: RECOMMENDED PRACTICE FOR DEBONDING AND SAW CUTTING 

3. For existing bridges with low span-to-depth ratio and narrow debonded zone, saw 

cut the deck outside the shear connectors and through the wide and thin girder top 
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flange as shown in Figure 8-2. The remaining concrete around the shear connectors 

could be manually removed with 60 lb jack hammers up to the level of the shear 

connectors, and 30 lb jack hammer below the shear connectors.  

 

FIGURE 8-2: RECOMMENDED PRACTICE FOR EXISTING BRIDGES 

 

4. Approximately 50% of the concrete around the shear connectors can be left 

unremoved as long as the concrete is not contaminated and will not affect the 

durability of the new deck. Also, several transverse cuts are recommended to 

maximize the efficiency of deck removal over the girder flange.   
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